Commit Graph

89 Commits

Author SHA1 Message Date
Aneesh Kumar K.V 92d9dfda8b powerpc/mm/4k: Limit 4k page size config to 64TB virtual address space
Supporting 512TB requires us to do a order 3 allocation for level 1 page
table (pgd). This results in page allocation failures with certain workloads.
For now limit 4k linux page size config to 64TB.

Fixes: f6eedbba7a ("powerpc/mm/hash: Increase VA range to 128TB")
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-06-08 20:42:56 +10:00
Scott Wood 61baf15555 powerpc/64e: Don't place the stack beyond TASK_SIZE
Commit f4ea6dcb08 ("powerpc/mm: Enable mappings above 128TB") increased
the task size on book3s, and introduced a mechanism to dynamically
control whether a task uses these larger addresses.  While the change to
the task size itself was ifdef-protected to only apply on book3s, the
change to STACK_TOP_USER64 was not.  On book3e, this had the effect of
trying to use addresses up to 128TiB for the stack despite a 64TiB task
size limit -- which broke 64-bit userspace producing the following errors:

Starting init: /sbin/init exists but couldn't execute it (error -14)
Starting init: /bin/sh exists but couldn't execute it (error -14)
Kernel panic - not syncing: No working init found.  Try passing init= option to kernel. See Linux Documentation/admin-guide/init.rst for guidance.

Fixes: f4ea6dcb08 ("powerpc/mm: Enable mappings above 128TB")
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
2017-05-05 01:22:06 -05:00
Aneesh Kumar K.V f4ea6dcb08 powerpc/mm: Enable mappings above 128TB
Not all user space application is ready to handle wide addresses. It's
known that at least some JIT compilers use higher bits in pointers to
encode their information. It collides with valid pointers with 512TB
addresses and leads to crashes.

To mitigate this, we are not going to allocate virtual address space
above 128TB by default.

But userspace can ask for allocation from full address space by
specifying hint address (with or without MAP_FIXED) above 128TB.

If hint address set above 128TB, but MAP_FIXED is not specified, we try
to look for unmapped area by specified address. If it's already
occupied, we look for unmapped area in *full* address space, rather than
from 128TB window.

This approach helps to easily make application's memory allocator aware
about large address space without manually tracking allocated virtual
address space.

This is going to be a per mmap decision. ie, we can have some mmaps with
larger addresses and other that do not.

A sample memory layout looks like:

  10000000-10010000 r-xp 00000000 fc:00 9057045          /home/max_addr_512TB
  10010000-10020000 r--p 00000000 fc:00 9057045          /home/max_addr_512TB
  10020000-10030000 rw-p 00010000 fc:00 9057045          /home/max_addr_512TB
  10029630000-10029660000 rw-p 00000000 00:00 0          [heap]
  7fff834a0000-7fff834b0000 rw-p 00000000 00:00 0
  7fff834b0000-7fff83670000 r-xp 00000000 fc:00 9177190  /lib/powerpc64le-linux-gnu/libc-2.23.so
  7fff83670000-7fff83680000 r--p 001b0000 fc:00 9177190  /lib/powerpc64le-linux-gnu/libc-2.23.so
  7fff83680000-7fff83690000 rw-p 001c0000 fc:00 9177190  /lib/powerpc64le-linux-gnu/libc-2.23.so
  7fff83690000-7fff836a0000 rw-p 00000000 00:00 0
  7fff836a0000-7fff836c0000 r-xp 00000000 00:00 0        [vdso]
  7fff836c0000-7fff83700000 r-xp 00000000 fc:00 9177193  /lib/powerpc64le-linux-gnu/ld-2.23.so
  7fff83700000-7fff83710000 r--p 00030000 fc:00 9177193  /lib/powerpc64le-linux-gnu/ld-2.23.so
  7fff83710000-7fff83720000 rw-p 00040000 fc:00 9177193  /lib/powerpc64le-linux-gnu/ld-2.23.so
  7fffdccf0000-7fffdcd20000 rw-p 00000000 00:00 0        [stack]
  1000000000000-1000000010000 rw-p 00000000 00:00 0
  1ffff83710000-1ffff83720000 rw-p 00000000 00:00 0

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-01 21:12:29 +11:00
Aneesh Kumar K.V f6eedbba7a powerpc/mm/hash: Increase VA range to 128TB
We update the hash linux page table layout such that we can support
512TB. But we limit the TASK_SIZE to 128TB. We can switch to 128TB by
default without conditional because that is the max virtual address
supported by other architectures. We will later add a mechanism to
on-demand increase the application's effective address range to 512TB.

Having the page table layout changed to accommodate 512TB makes testing
large memory configuration easier with less code changes to kernel

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-03-31 23:10:01 +11:00
Michael Ellerman 6c8f9ad566 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/scottwood/linux into next
Freescale updates from Scott:

"Highlights include 8xx breakpoints and perf, t1042rdb display support,
and board updates."
2017-02-18 21:37:14 +11:00
Gautham R. Shenoy 09206b600c powernv: Pass PSSCR value and mask to power9_idle_stop
The power9_idle_stop method currently takes only the requested stop
level as a parameter and picks up the rest of the PSSCR bits from a
hand-coded macro. This is not a very flexible design, especially when
the firmware has the capability to communicate the psscr value and the
mask associated with a particular stop state via device tree.

This patch modifies the power9_idle_stop API to take as parameters the
PSSCR value and the PSSCR mask corresponding to the stop state that
needs to be set. These PSSCR value and mask are respectively obtained
by parsing the "ibm,cpu-idle-state-psscr" and
"ibm,cpu-idle-state-psscr-mask" fields from the device tree.

In addition to this, the patch adds support for handling stop states
for which ESL and EC bits in the PSSCR are zero. As per the
architecture, a wakeup from these stop states resumes execution from
the subsequent instruction as opposed to waking up at the System
Vector.

The older firmware sets only the Requested Level (RL) field in the
psscr and psscr-mask exposed in the device tree. For older firmware
where psscr-mask=0xf, this patch will set the default sane values that
the set for for remaining PSSCR fields (i.e PSLL, MTL, ESL, EC, and
TR). For the new firmware, the patch will validate that the invariants
required by the ISA for the psscr values are maintained by the
firmware.

This skiboot patch that exports fully populated PSSCR values and the
mask for all the stop states can be found here:
https://lists.ozlabs.org/pipermail/skiboot/2016-September/004869.html

[Optimize the number of instructions before entering STOP with
ESL=EC=0, validate the PSSCR values provided by the firimware
maintains the invariants required as per the ISA suggested by Balbir
Singh]

Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-01-31 08:32:13 +11:00
Christophe Leroy fa769d3f58 powerpc/32: Enable HW_BREAKPOINT on BOOK3S
BOOK3S also has DABR register and capability to handle data
breakpoints, so this patch enable it on all BOOK3S, not only 64 bits.

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
2017-01-25 02:43:56 -06:00
Linus Torvalds de399813b5 powerpc updates for 4.10
Highlights include:
 
  - Support for the kexec_file_load() syscall, which is a prereq for secure and
    trusted boot.
 
  - Prevent kernel execution of userspace on P9 Radix (similar to SMEP/PXN).
 
  - Sort the exception tables at build time, to save time at boot, and store
    them as relative offsets to save space in the kernel image & memory.
 
  - Allow building the kernel with thin archives, which should allow us to build
    an allyesconfig once some other fixes land.
 
  - Build fixes to allow us to correctly rebuild when changing the kernel endian
    from big to little or vice versa.
 
  - Plumbing so that we can avoid doing a full mm TLB flush on P9 Radix.
 
  - Initial stack protector support (-fstack-protector).
 
  - Support for dumping the radix (aka. Linux) and hash page tables via debugfs.
 
  - Fix an oops in cxl coredump generation when cxl_get_fd() is used.
 
  - Freescale updates from Scott: "Highlights include 8xx hugepage support,
    qbman fixes/cleanup, device tree updates, and some misc cleanup."
 
  - Many and varied fixes and minor enhancements as always.
 
 Thanks to:
   Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual,
   Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz, Christophe Jaillet,
   Christophe Leroy, Denis Kirjanov, Elimar Riesebieter, Frederic Barrat,
   Gautham R. Shenoy, Geliang Tang, Geoff Levand, Jack Miller, Johan Hovold,
   Lars-Peter Clausen, Libin, Madhavan Srinivasan, Michael Neuling, Nathan
   Fontenot, Naveen N. Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin,
   Rashmica Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
   Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJYU4YSAAoJEFHr6jzI4aWAC4gQALtIAqqPon0Cd5b/FVVcMbW7
 mMqB2b/0FGEl5GoRTzGUDaQqElilm6AEVfHO86C7DFji/a6olneFfw87iz+mtWuZ
 JvrNq68ZiSnoeszdUy4MgtXFLb5sTzNMev4skaHfjI9E5CepWBoR0zH4G+kNVnd5
 WSgudv8Cq4Px+MEuTOigt3QYjHzZ3cw/XNOOm9c+oGj+PDW4O9UItVI+S1WLoey4
 rAB2nRcLMDPuwfRQC9XsF3zEbkv4h1dEXo/EBRuRpcF+0lLTzFw1lv1WE8OxlUmS
 kAXbty3dIytBfSbtJT0c0Ps6sfQ4HFhu6ZV2fjnxNTz2KDkBIN7LBYHmBYiqY9oZ
 9zvbUWtfiTu5ocfRtTq7rC/Hcj4Kbr9S9F/FvXR0WyDsKgu4xxAovqC3gcn6YjYK
 Rr1tcCI4nUzyhVJVmd+OEhUvc5JbFy9aGage+YeOyejfvvSbXIunaxWlPjoDkvim
 Vjl+UKU8gw51XFssqY5ZBi/HNlMFKYedLpMFp/fItnLglhj50V0eFWkpDgdSCYom
 vo9ifPLZx8n8m8De3H7TV4E0F4gCHcTeqZdu7tW9AAUVM6iLJcDLm3asGmtNh21t
 snOHNOJ5QSIno6ezUUg29T6VBjbPh46fdJJSlIZrEe8OzLZ1haGyttf0tD00PQvY
 Z2W/m3gxafnOeGgBqvyv
 =xOzf
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Highlights include:

   - Support for the kexec_file_load() syscall, which is a prereq for
     secure and trusted boot.

   - Prevent kernel execution of userspace on P9 Radix (similar to
     SMEP/PXN).

   - Sort the exception tables at build time, to save time at boot, and
     store them as relative offsets to save space in the kernel image &
     memory.

   - Allow building the kernel with thin archives, which should allow us
     to build an allyesconfig once some other fixes land.

   - Build fixes to allow us to correctly rebuild when changing the
     kernel endian from big to little or vice versa.

   - Plumbing so that we can avoid doing a full mm TLB flush on P9
     Radix.

   - Initial stack protector support (-fstack-protector).

   - Support for dumping the radix (aka. Linux) and hash page tables via
     debugfs.

   - Fix an oops in cxl coredump generation when cxl_get_fd() is used.

   - Freescale updates from Scott: "Highlights include 8xx hugepage
     support, qbman fixes/cleanup, device tree updates, and some misc
     cleanup."

   - Many and varied fixes and minor enhancements as always.

  Thanks to:
    Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman
    Khandual, Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz,
    Christophe Jaillet, Christophe Leroy, Denis Kirjanov, Elimar
    Riesebieter, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff
    Levand, Jack Miller, Johan Hovold, Lars-Peter Clausen, Libin,
    Madhavan Srinivasan, Michael Neuling, Nathan Fontenot, Naveen N.
    Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin, Rashmica
    Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
    Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain"

[ And thanks to Michael, who took time off from a new baby to get this
  pull request done.   - Linus ]

* tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (174 commits)
  powerpc/fsl/dts: add FMan node for t1042d4rdb
  powerpc/fsl/dts: add sg_2500_aqr105_phy4 alias on t1024rdb
  powerpc/fsl/dts: add QMan and BMan nodes on t1024
  powerpc/fsl/dts: add QMan and BMan nodes on t1023
  soc/fsl/qman: test: use DEFINE_SPINLOCK()
  powerpc/fsl-lbc: use DEFINE_SPINLOCK()
  powerpc/8xx: Implement support of hugepages
  powerpc: get hugetlbpage handling more generic
  powerpc: port 64 bits pgtable_cache to 32 bits
  powerpc/boot: Request no dynamic linker for boot wrapper
  soc/fsl/bman: Use resource_size instead of computation
  soc/fsl/qe: use builtin_platform_driver
  powerpc/fsl_pmc: use builtin_platform_driver
  powerpc/83xx/suspend: use builtin_platform_driver
  powerpc/ftrace: Fix the comments for ftrace_modify_code
  powerpc/perf: macros for power9 format encoding
  powerpc/perf: power9 raw event format encoding
  powerpc/perf: update attribute_group data structure
  powerpc/perf: factor out the event format field
  powerpc/mm/iommu, vfio/spapr: Put pages on VFIO container shutdown
  ...
2016-12-16 09:26:42 -08:00
Christian Borntraeger 6d0d287891 locking/core: Provide common cpu_relax_yield() definition
No need to duplicate the same define everywhere. Since
the only user is stop-machine and the only provider is
s390, we can use a default implementation of cpu_relax_yield()
in sched.h.

Suggested-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-s390 <linux-s390@vger.kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: sparclinux@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1479298985-191589-1-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-17 08:17:36 +01:00
Christian Borntraeger 5bd0b85ba8 locking/core, arch: Remove cpu_relax_lowlatency()
As there are no users left, we can remove cpu_relax_lowlatency()
implementations from every architecture.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Cc: <linux-arch@vger.kernel.org>
Link: http://lkml.kernel.org/r/1477386195-32736-6-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-16 10:15:11 +01:00
Christian Borntraeger 79ab11cdb9 locking/core: Introduce cpu_relax_yield()
For spinning loops people do often use barrier() or cpu_relax().
For most architectures cpu_relax and barrier are the same, but on
some architectures cpu_relax can add some latency.
For example on power,sparc64 and arc, cpu_relax can shift the CPU
towards other hardware threads in an SMT environment.
On s390 cpu_relax does even more, it uses an hypercall to the
hypervisor to give up the timeslice.
In contrast to the SMT yielding this can result in larger latencies.
In some places this latency is unwanted, so another variant
"cpu_relax_lowlatency" was introduced. Before this is used in more
and more places, lets revert the logic and provide a cpu_relax_yield
that can be called in places where yielding is more important than
latency. By default this is the same as cpu_relax on all architectures.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1477386195-32736-2-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-16 10:15:09 +01:00
Michael Neuling 29a969b764 powerpc: Revert Load Monitor Register Support
Load monitored is no longer supported on POWER9 so let's remove the
code.

This reverts commit bd3ea317fd ("powerpc: Load Monitor Register
Support").

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-11-14 20:05:57 +11:00
Cyril Bur 5d176f751e powerpc: tm: Enable transactional memory (TM) lazily for userspace
Currently the MSR TM bit is always set if the hardware is TM capable.
This adds extra overhead as it means the TM SPRS (TFHAR, TEXASR and
TFAIR) must be swapped for each process regardless of if they use TM.

For processes that don't use TM the TM MSR bit can be turned off
allowing the kernel to avoid the expensive swap of the TM registers.

A TM unavailable exception will occur if a thread does use TM and the
kernel will enable MSR_TM and leave it so for some time afterwards.

Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-10-04 20:33:17 +11:00
Cyril Bur 000ec280e3 powerpc: tm: Rename transct_(*) to ck(\1)_state
Make the structures being used for checkpointed state named
consistently with the pt_regs/ckpt_regs.

Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-10-04 20:33:16 +11:00
Cyril Bur dc3106690b powerpc: tm: Always use fp_state and vr_state to store live registers
There is currently an inconsistency as to how the entire CPU register
state is saved and restored when a thread uses transactional memory
(TM).

Using transactional memory results in the CPU having duplicated
(almost) all of its register state. This duplication results in a set
of registers which can be considered 'live', those being currently
modified by the instructions being executed and another set that is
frozen at a point in time.

On context switch, both sets of state have to be saved and (later)
restored. These two states are often called a variety of different
things. Common terms for the state which only exists after the CPU has
entered a transaction (performed a TBEGIN instruction) in hardware are
'transactional' or 'speculative'.

Between a TBEGIN and a TEND or TABORT (or an event that causes the
hardware to abort), regardless of the use of TSUSPEND the
transactional state can be referred to as the live state.

The second state is often to referred to as the 'checkpointed' state
and is a duplication of the live state when the TBEGIN instruction is
executed. This state is kept in the hardware and will be rolled back
to on transaction failure.

Currently all the registers stored in pt_regs are ALWAYS the live
registers, that is, when a thread has transactional registers their
values are stored in pt_regs and the checkpointed state is in
ckpt_regs. A strange opposite is true for fp_state/vr_state. When a
thread is non transactional fp_state/vr_state holds the live
registers. When a thread has initiated a transaction fp_state/vr_state
holds the checkpointed state and transact_fp/transact_vr become the
structure which holds the live state (at this point it is a
transactional state).

This method creates confusion as to where the live state is, in some
circumstances it requires extra work to determine where to put the
live state and prevents the use of common functions designed (probably
before TM) to save the live state.

With this patch pt_regs, fp_state and vr_state all represent the
same thing and the other structures [pending rename] are for
checkpointed state.

Acked-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-10-04 20:33:15 +11:00
Shreyas B. Prabhu bcef83a00d powerpc/powernv: Add platform support for stop instruction
POWER ISA v3 defines a new idle processor core mechanism. In summary,
 a) new instruction named stop is added. This instruction replaces
	instructions like nap, sleep, rvwinkle.
 b) new per thread SPR named Processor Stop Status and Control Register
	(PSSCR) is added which controls the behavior of stop instruction.

PSSCR layout:
----------------------------------------------------------
| PLS | /// | SD | ESL | EC | PSLL | /// | TR | MTL | RL |
----------------------------------------------------------
0      4     41   42    43   44     48    54   56    60

PSSCR key fields:
	Bits 0:3  - Power-Saving Level Status. This field indicates the lowest
	power-saving state the thread entered since stop instruction was last
	executed.

	Bit 42 - Enable State Loss
	0 - No state is lost irrespective of other fields
	1 - Allows state loss

	Bits 44:47 - Power-Saving Level Limit
	This limits the power-saving level that can be entered into.

	Bits 60:63 - Requested Level
	Used to specify which power-saving level must be entered on executing
	stop instruction

This patch adds support for stop instruction and PSSCR handling.

Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-15 20:18:41 +10:00
Jack Miller bd3ea317fd powerpc: Load Monitor Register Support
This enables new registers, LMRR and LMSER, that can trigger an EBB in
userspace code when a monitored load (via the new ldmx instruction)
loads memory from a monitored space. This facility is controlled by a
new FSCR bit, LM.

This patch disables the FSCR LM control bit on task init and enables
that bit when a load monitor facility unavailable exception is taken
for using it. On context switch, this bit is then used to determine
whether the two relevant registers are saved and restored. This is
done lazily for performance reasons.

Signed-off-by: Jack Miller <jack@codezen.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-21 15:30:50 +10:00
Michael Neuling b57bd2de8c powerpc: Improve FSCR init and context switching
This fixes a few issues with FSCR init and switching.

In commit 152d523e63 ("powerpc: Create context switch helpers
save_sprs() and restore_sprs()") we moved the setting of the FSCR
register from inside an CPU_FTR_ARCH_207S section to inside just a
CPU_FTR_ARCH_DSCR section. Hence we are setting FSCR on POWER6/7 where
the FSCR doesn't exist. This is harmless but we shouldn't do it.

Also, we can simplify the FSCR context switch. We don't need to go
through the calculation involving dscr_inherit. We can just restore
what we saved last time.

We also set an initial value in INIT_THREAD, so that pid 1 which is
cloned from that gets a sane value.

Based on patch by Jack Miller.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-21 15:30:50 +10:00
Michael Ellerman 027dfac694 powerpc: Various typo fixes
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-14 13:58:26 +10:00
Simon Guo 71528d8bd7 powerpc: Correct used_vsr comment
The used_vsr flag is set if process has used VSX registers, not Altivec
registers. But the comment says otherwise, correct the comment.

Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-03-29 12:08:08 +11:00
Cyril Bur 70fe3d980f powerpc: Restore FPU/VEC/VSX if previously used
Currently the FPU, VEC and VSX facilities are lazily loaded. This is not
a problem unless a process is using these facilities.

Modern versions of GCC are very good at automatically vectorising code,
new and modernised workloads make use of floating point and vector
facilities, even the kernel makes use of vectorised memcpy.

All this combined greatly increases the cost of a syscall since the
kernel uses the facilities sometimes even in syscall fast-path making it
increasingly common for a thread to take an *_unavailable exception soon
after a syscall, not to mention potentially taking all three.

The obvious overcompensation to this problem is to simply always load
all the facilities on every exit to userspace. Loading up all FPU, VEC
and VSX registers every time can be expensive and if a workload does
avoid using them, it should not be forced to incur this penalty.

An 8bit counter is used to detect if the registers have been used in the
past and the registers are always loaded until the value wraps to back
to zero.

Several versions of the assembly in entry_64.S were tested:

  1. Always calling C.
  2. Performing a common case check and then calling C.
  3. A complex check in asm.

After some benchmarking it was determined that avoiding C in the common
case is a performance benefit (option 2). The full check in asm (option
3) greatly complicated that codepath for a negligible performance gain
and the trade-off was deemed not worth it.

Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
[mpe: Move load_vec in the struct to fill an existing hole, reword change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>

fixup
2016-03-02 23:34:48 +11:00
Anton Blanchard 1f2e25b2d5 powerpc: Remove fp_enable() and vec_enable(), use msr_check_and_{set, clear}()
More consolidation of our MSR available bit handling.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-12-01 13:52:26 +11:00
Anton Blanchard af1bbc3dd3 powerpc: Remove UP only lazy floating point and vector optimisations
The UP only lazy floating point and vector optimisations were written
back when SMP was not common, and neither glibc nor gcc used vector
instructions. Now SMP is very common, glibc aggressively uses vector
instructions and gcc autovectorises.

We want to add new optimisations that apply to both UP and SMP, but
in preparation for that remove these UP only optimisations.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-12-01 13:52:24 +11:00
Anton Blanchard 152d523e63 powerpc: Create context switch helpers save_sprs() and restore_sprs()
Move all our context switch SPR save and restore code into two
helpers. We do a few optimisations:

- Group all mfsprs and all mtsprs. In many cases an mtspr sets a
scoreboarding bit that an mfspr waits on, so the current practise of
mfspr A; mtspr A; mfpsr B; mtspr B is the worst scheduling we can
do.

- SPR writes are slow, so check that the value is changing before
writing it.

A context switch microbenchmark using yield():

http://ozlabs.org/~anton/junkcode/context_switch2.c

./context_switch2 --test=yield 0 0

shows an improvement of almost 10% on POWER8.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-12-01 13:52:24 +11:00
Anshuman Khandual 829023df86 powerpc/tm: Drop tm_orig_msr from thread_struct
Currently tm_orig_msr is getting used during process context switch only.
Then there is ckpt_regs which saves the checkpointed userspace context
The MSR slot contained in ckpt_regs structure can be used during process
context switch instead of tm_orig_msr, thus allowing us to drop it from
thread_struct structure. This patch does that change.

Acked-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-07-16 16:02:37 +10:00
Anshuman Khandual d3cb06e0cd powerpc/dscr: Add some in-code documentation
This patch adds some in-code documentation to the DSCR related code to
make it more readable without having any functional change to it.

Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-07 19:29:15 +10:00
Shreyas B. Prabhu 77b54e9f21 powernv/powerpc: Add winkle support for offline cpus
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.

But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.

Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.

With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.

Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-15 10:46:41 +11:00
Shreyas B. Prabhu 7cba160ad7 powernv/cpuidle: Redesign idle states management
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.

The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.

This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.

Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-15 10:46:40 +11:00
Paul Mackerras 56548fc0e8 powerpc/powernv: Return to cpu offline loop when finished in KVM guest
When a secondary hardware thread has finished running a KVM guest, we
currently put that thread into nap mode using a nap instruction in
the KVM code.  This changes the code so that instead of doing a nap
instruction directly, we instead cause the call to power7_nap() that
put the thread into nap mode to return.  The reason for doing this is
to avoid having the KVM code having to know what low-power mode to
put the thread into.

In the case of a secondary thread used to run a KVM guest, the thread
will be offline from the point of view of the host kernel, and the
relevant power7_nap() call is the one in pnv_smp_cpu_disable().
In this case we don't want to clear pending IPIs in the offline loop
in that function, since that might cause us to miss the wakeup for
the next time the thread needs to run a guest.  To tell whether or
not to clear the interrupt, we use the SRR1 value returned from
power7_nap(), and check if it indicates an external interrupt.  We
arrange that the return from power7_nap() when we have finished running
a guest returns 0, so pending interrupts don't get flushed in that
case.

Note that it is important a secondary thread that has finished
executing in the guest, or that didn't have a guest to run, should
not return to power7_nap's caller while the kvm_hstate.hwthread_req
flag in the PACA is non-zero, because the return from power7_nap
will reenable the MMU, and the MMU might still be in guest context.
In this situation we spin at low priority in real mode waiting for
hwthread_req to become zero.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-08 13:16:31 +11:00
Davidlohr Bueso 3a6bfbc91d arch, locking: Ciao arch_mutex_cpu_relax()
The arch_mutex_cpu_relax() function, introduced by 34b133f, is
hacky and ugly. It was added a few years ago to address the fact
that common cpu_relax() calls include yielding on s390, and thus
impact the optimistic spinning functionality of mutexes. Nowadays
we use this function well beyond mutexes: rwsem, qrwlock, mcs and
lockref. Since the macro that defines the call is in the mutex header,
any users must include mutex.h and the naming is misleading as well.

This patch (i) renames the call to cpu_relax_lowlatency  ("relax, but
only if you can do it with very low latency") and (ii) defines it in
each arch's asm/processor.h local header, just like for regular cpu_relax
functions. On all archs, except s390, cpu_relax_lowlatency is simply cpu_relax,
and thus we can take it out of mutex.h. While this can seem redundant,
I believe it is a good choice as it allows us to move out arch specific
logic from generic locking primitives and enables future(?) archs to
transparently define it, similarly to System Z.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharat Bhushan <r65777@freescale.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Joseph Myers <joseph@codesourcery.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Qais Yousef <qais.yousef@imgtec.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Stratos Karafotis <stratosk@semaphore.gr>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Kulikov <segoon@openwall.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wolfram Sang <wsa@the-dreams.de>
Cc: adi-buildroot-devel@lists.sourceforge.net
Cc: linux390@de.ibm.com
Cc: linux-alpha@vger.kernel.org
Cc: linux-am33-list@redhat.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-cris-kernel@axis.com
Cc: linux-hexagon@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux@lists.openrisc.net
Cc: linux-m32r-ja@ml.linux-m32r.org
Cc: linux-m32r@ml.linux-m32r.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-metag@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1404079773.2619.4.camel@buesod1.americas.hpqcorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-17 12:32:47 +02:00
Michael Ellerman 8d6f7c5aa3 powerpc/powernv: Make it possible to skip the IRQHAPPENED check in power7_nap()
To support split core we need to be able to force all secondaries into
nap, so the core can detect they are idle and do an unsplit.

Currently power7_nap() will return without napping if there is an irq
pending. We want to ignore the pending irq and nap anyway, we will deal
with the interrupt later.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-28 13:35:35 +10:00
Vaidyanathan Srinivasan aca79d2b6e powerpc/powernv: Add context management for Fast Sleep
Before adding Fast-Sleep into the cpuidle framework, some low level
support needs to be added to enable it. This includes saving and
restoring of certain registers at entry and exit time of this state
respectively just like we do in the NAP idle state.

Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
[Changelog modified by Preeti U. Murthy <preeti@linux.vnet.ibm.com>]
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-03-05 15:56:31 +11:00
Deepthi Dharwar 3fa8cad82b powerpc/pseries/cpuidle: smt-snooze-delay cleanup.
smt-snooze-delay was designed to disable NAP state or delay the entry
to the NAP state prior to adoption of cpuidle framework. This
is per-cpu variable. With the coming of CPUIDLE framework,
states can be disabled on per-cpu basis using the cpuidle/enable
sysfs entry.

Also, with the coming of cpuidle driver each state's target residency
is per-driver unlike earlier which was per-device. Therefore,
the per-cpu sysfs smt-snooze-delay which decides the target residency
of the idle state on a particular cpu causes more confusion to the user
as we cannot have different smt-snooze-delay (target residency)
values for each cpu.

In the current code, smt-snooze-delay functionality is completely broken.
It makes sense to remove smt-snooze-delay from idle driver with the
coming of cpuidle framework.
However, sysfs files are retained as ppc64_util currently
utilises it. Once we fix ppc64_util, propose to clean
up the kernel code.

Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-29 17:02:24 +11:00
Deepthi Dharwar 962e7bd497 powerpc/pseries/cpuidle: Move processor_idle.c to drivers/cpuidle.
Move the file from arch specific pseries/processor_idle.c
to drivers/cpuidle/cpuidle-pseries.c
Make the relevant Makefile and Kconfig changes.
Also, introduce Kconfig.powerpc in drivers/cpuidle
for all powerpc cpuidle drivers.

Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-29 17:02:22 +11:00
Benjamin Herrenschmidt fac515db45 Merge remote-tracking branch 'scott/next' into next
Freescale updates from Scott:

<<
Highlights include 32-bit booke relocatable support, e6500 hardware
tablewalk support, various e500 SPE fixes, some new/revived boards, and
e6500 deeper idle and altivec powerdown modes.
>>
2014-01-15 14:22:35 +11:00
Paul Mackerras d31626f70b powerpc: Don't corrupt transactional state when using FP/VMX in kernel
Currently, when we have a process using the transactional memory
facilities on POWER8 (that is, the processor is in transactional
or suspended state), and the process enters the kernel and the
kernel then uses the floating-point or vector (VMX/Altivec) facility,
we end up corrupting the user-visible FP/VMX/VSX state.  This
happens, for example, if a page fault causes a copy-on-write
operation, because the copy_page function will use VMX to do the
copy on POWER8.  The test program below demonstrates the bug.

The bug happens because when FP/VMX state for a transactional process
is stored in the thread_struct, we store the checkpointed state in
.fp_state/.vr_state and the transactional (current) state in
.transact_fp/.transact_vr.  However, when the kernel wants to use
FP/VMX, it calls enable_kernel_fp() or enable_kernel_altivec(),
which saves the current state in .fp_state/.vr_state.  Furthermore,
when we return to the user process we return with FP/VMX/VSX
disabled.  The next time the process uses FP/VMX/VSX, we don't know
which set of state (the current register values, .fp_state/.vr_state,
or .transact_fp/.transact_vr) we should be using, since we have no
way to tell if we are still in the same transaction, and if not,
whether the previous transaction succeeded or failed.

Thus it is necessary to strictly adhere to the rule that if FP has
been enabled at any point in a transaction, we must keep FP enabled
for the user process with the current transactional state in the
FP registers, until we detect that it is no longer in a transaction.
Similarly for VMX; once enabled it must stay enabled until the
process is no longer transactional.

In order to keep this rule, we add a new thread_info flag which we
test when returning from the kernel to userspace, called TIF_RESTORE_TM.
This flag indicates that there is FP/VMX/VSX state to be restored
before entering userspace, and when it is set the .tm_orig_msr field
in the thread_struct indicates what state needs to be restored.
The restoration is done by restore_tm_state().  The TIF_RESTORE_TM
bit is set by new giveup_fpu/altivec_maybe_transactional helpers,
which are called from enable_kernel_fp/altivec, giveup_vsx, and
flush_fp/altivec_to_thread instead of giveup_fpu/altivec.

The other thing to be done is to get the transactional FP/VMX/VSX
state from .fp_state/.vr_state when doing reclaim, if that state
has been saved there by giveup_fpu/altivec_maybe_transactional.
Having done this, we set the FP/VMX bit in the thread's MSR after
reclaim to indicate that that part of the state is now valid
(having been reclaimed from the processor's checkpointed state).

Finally, in the signal handling code, we move the clearing of the
transactional state bits in the thread's MSR a bit earlier, before
calling flush_fp_to_thread(), so that we don't unnecessarily set
the TIF_RESTORE_TM bit.

This is the test program:

/* Michael Neuling 4/12/2013
 *
 * See if the altivec state is leaked out of an aborted transaction due to
 * kernel vmx copy loops.
 *
 *   gcc -m64 htm_vmxcopy.c -o htm_vmxcopy
 *
 */

/* We don't use all of these, but for reference: */

int main(int argc, char *argv[])
{
	long double vecin = 1.3;
	long double vecout;
	unsigned long pgsize = getpagesize();
	int i;
	int fd;
	int size = pgsize*16;
	char tmpfile[] = "/tmp/page_faultXXXXXX";
	char buf[pgsize];
	char *a;
	uint64_t aborted = 0;

	fd = mkstemp(tmpfile);
	assert(fd >= 0);

	memset(buf, 0, pgsize);
	for (i = 0; i < size; i += pgsize)
		assert(write(fd, buf, pgsize) == pgsize);

	unlink(tmpfile);

	a = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
	assert(a != MAP_FAILED);

	asm __volatile__(
		"lxvd2x 40,0,%[vecinptr] ; " // set 40 to initial value
		TBEGIN
		"beq	3f ;"
		TSUSPEND
		"xxlxor 40,40,40 ; " // set 40 to 0
		"std	5, 0(%[map]) ;" // cause kernel vmx copy page
		TABORT
		TRESUME
		TEND
		"li	%[res], 0 ;"
		"b	5f ;"
		"3: ;" // Abort handler
		"li	%[res], 1 ;"
		"5: ;"
		"stxvd2x 40,0,%[vecoutptr] ; "
		: [res]"=r"(aborted)
		: [vecinptr]"r"(&vecin),
		  [vecoutptr]"r"(&vecout),
		  [map]"r"(a)
		: "memory", "r0", "r3", "r4", "r5", "r6", "r7");

	if (aborted && (vecin != vecout)){
		printf("FAILED: vector state leaked on abort %f != %f\n",
		       (double)vecin, (double)vecout);
		exit(1);
	}

	munmap(a, size);

	close(fd);

	printf("PASSED!\n");
	return 0;
}

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-15 13:59:11 +11:00
Joseph Myers 640e922501 powerpc: fix exception clearing in e500 SPE float emulation
The e500 SPE floating-point emulation code clears existing exceptions
(__FPU_FPSCR &= ~FP_EX_MASK;) before ORing in the exceptions from the
emulated operation.  However, these exception bits are the "sticky",
cumulative exception bits, and should only be cleared by the user
program setting SPEFSCR, not implicitly by any floating-point
instruction (whether executed purely by the hardware or emulated).
The spurious clearing of these bits shows up as missing exceptions in
glibc testing.

Fixing this, however, is not as simple as just not clearing the bits,
because while the bits may be from previous floating-point operations
(in which case they should not be cleared), the processor can also set
the sticky bits itself before the interrupt for an exception occurs,
and this can happen in cases when IEEE 754 semantics are that the
sticky bit should not be set.  Specifically, the "invalid" sticky bit
is set in various cases with non-finite operands, where IEEE 754
semantics do not involve raising such an exception, and the
"underflow" sticky bit is set in cases of exact underflow, whereas
IEEE 754 semantics are that this flag is set only for inexact
underflow.  Thus, for correct emulation the kernel needs to know the
setting of these two sticky bits before the instruction being
emulated.

When a floating-point operation raises an exception, the kernel can
note the state of the sticky bits immediately afterwards.  Some
<fenv.h> functions that affect the state of these bits, such as
fesetenv and feholdexcept, need to use prctl with PR_GET_FPEXC and
PR_SET_FPEXC anyway, and so it is natural to record the state of those
bits during that call into the kernel and so avoid any need for a
separate call into the kernel to inform it of a change to those bits.
Thus, the interface I chose to use (in this patch and the glibc port)
is that one of those prctl calls must be made after any userspace
change to those sticky bits, other than through a floating-point
operation that traps into the kernel anyway.  feclearexcept and
fesetexceptflag duly make those calls, which would not be required
were it not for this issue.

The previous EGLIBC port, and the uClibc code copied from it, is
fundamentally broken as regards any use of prctl for floating-point
exceptions because it didn't use the PR_FP_EXC_SW_ENABLE bit in its
prctl calls (and did various worse things, such as passing a pointer
when prctl expected an integer).  If you avoid anything where prctl is
used, the clearing of sticky bits still means it will never give
anything approximating correct exception semantics with existing
kernels.  I don't believe the patch makes things any worse for
existing code that doesn't try to inform the kernel of changes to
sticky bits - such code may get incorrect exceptions in some cases,
but it would have done so anyway in other cases.

Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
2014-01-07 18:32:21 -06:00
Linus Torvalds f080480488 Here are the 3.13 KVM changes. There was a lot of work on the PPC
side: the HV and emulation flavors can now coexist in a single kernel
 is probably the most interesting change from a user point of view.
 On the x86 side there are nested virtualization improvements and a
 few bugfixes.  ARM got transparent huge page support, improved
 overcommit, and support for big endian guests.
 
 Finally, there is a new interface to connect KVM with VFIO.  This
 helps with devices that use NoSnoop PCI transactions, letting the
 driver in the guest execute WBINVD instructions.  This includes
 some nVidia cards on Windows, that fail to start without these
 patches and the corresponding userspace changes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJShPAhAAoJEBvWZb6bTYbyl48P/297GgmELHAGBgjvb6q7yyGu
 L8+eHjKbh4XBAkPwyzbvUjuww5z2hM0N3JQ0BDV9oeXlO+zwwCEns/sg2Q5/NJXq
 XxnTeShaKnp9lqVBnE6G9rAOUWKoyLJ2wItlvUL8JlaO9xJ0Vmk0ta4n2Nv5GqDp
 db6UD7vju6rHtIAhNpvvAO51kAOwc01xxRixCVb7KUYOnmO9nvpixzoI/S0Rp1gu
 w/OWMfCosDzBoT+cOe79Yx1OKcpaVW94X6CH1s+ShCw3wcbCL2f13Ka8/E3FIcuq
 vkZaLBxio7vjUAHRjPObw0XBW4InXEbhI1DjzIvm8dmc4VsgmtLQkTCG8fj+jINc
 dlHQUq6Do+1F4zy6WMBUj8tNeP1Z9DsABp98rQwR8+BwHoQpGQBpAxW0TE0ZMngC
 t1caqyvjZ5pPpFUxSrAV+8Kg4AvobXPYOim0vqV7Qea07KhFcBXLCfF7BWdwq/Jc
 0CAOlsLL4mHGIQWZJuVGw0YGP7oATDCyewlBuDObx+szYCoV4fQGZVBEL0KwJx/1
 7lrLN7JWzRyw6xTgJ5VVwgYE1tUY4IFQcHu7/5N+dw8/xg9KWA3f4PeMavIKSf+R
 qteewbtmQsxUnvuQIBHLs8NRWPnBPy+F3Sc2ckeOLIe4pmfTte6shtTXcLDL+LqH
 NTmT/cfmYp2BRkiCfCiS
 =rWNf
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM changes from Paolo Bonzini:
 "Here are the 3.13 KVM changes.  There was a lot of work on the PPC
  side: the HV and emulation flavors can now coexist in a single kernel
  is probably the most interesting change from a user point of view.

  On the x86 side there are nested virtualization improvements and a few
  bugfixes.

  ARM got transparent huge page support, improved overcommit, and
  support for big endian guests.

  Finally, there is a new interface to connect KVM with VFIO.  This
  helps with devices that use NoSnoop PCI transactions, letting the
  driver in the guest execute WBINVD instructions.  This includes some
  nVidia cards on Windows, that fail to start without these patches and
  the corresponding userspace changes"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits)
  kvm, vmx: Fix lazy FPU on nested guest
  arm/arm64: KVM: PSCI: propagate caller endianness to the incoming vcpu
  arm/arm64: KVM: MMIO support for BE guest
  kvm, cpuid: Fix sparse warning
  kvm: Delete prototype for non-existent function kvm_check_iopl
  kvm: Delete prototype for non-existent function complete_pio
  hung_task: add method to reset detector
  pvclock: detect watchdog reset at pvclock read
  kvm: optimize out smp_mb after srcu_read_unlock
  srcu: API for barrier after srcu read unlock
  KVM: remove vm mmap method
  KVM: IOMMU: hva align mapping page size
  KVM: x86: trace cpuid emulation when called from emulator
  KVM: emulator: cleanup decode_register_operand() a bit
  KVM: emulator: check rex prefix inside decode_register()
  KVM: x86: fix emulation of "movzbl %bpl, %eax"
  kvm_host: typo fix
  KVM: x86: emulate SAHF instruction
  MAINTAINERS: add tree for kvm.git
  Documentation/kvm: add a 00-INDEX file
  ...
2013-11-15 13:51:36 +09:00
Gleb Natapov 95f328d3ad Merge branch 'kvm-ppc-queue' of git://github.com/agraf/linux-2.6 into queue
Conflicts:
	arch/powerpc/include/asm/processor.h
2013-11-04 10:20:57 +02:00
Bharat Bhushan 51ae8d4a2b powerpc: move debug registers in a structure
This way we can use same data type struct with KVM and
also help in using other debug related function.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Acked-by: Michael Neuling <mikey@neuling.org>
[scottwood@freescale.com: removed obvious debug_reg comment]
Signed-off-by: Scott Wood <scottwood@freescale.com>
2013-10-18 18:44:49 -05:00
Bharat Bhushan 95791988fe powerpc: move debug registers in a structure
This way we can use same data type struct with KVM and
also help in using other debug related function.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:38 +02:00
Benjamin Herrenschmidt 3ad26e5c44 Merge branch 'for-kvm' into next
Topic branch for commits that the KVM tree might want to pull
in separately.

Hand merged a few files due to conflicts with the LE stuff

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 18:23:53 +11:00
Paul Mackerras 18461960cb powerpc: Provide for giveup_fpu/altivec to save state in alternate location
This provides a facility which is intended for use by KVM, where the
contents of the FP/VSX and VMX (Altivec) registers can be saved away
to somewhere other than the thread_struct when kernel code wants to
use floating point or VMX instructions.  This is done by providing a
pointer in the thread_struct to indicate where the state should be
saved to.  The giveup_fpu() and giveup_altivec() functions test these
pointers and save state to the indicated location if they are non-NULL.
Note that the MSR_FP/VEC bits in task->thread.regs->msr are still used
to indicate whether the CPU register state is live, even when an
alternate save location is being used.

This also provides load_fp_state() and load_vr_state() functions, which
load up FP/VSX and VMX state from memory into the CPU registers, and
corresponding store_fp_state() and store_vr_state() functions, which
store FP/VSX and VMX state into memory from the CPU registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 17:26:50 +11:00
Paul Mackerras de79f7b9f6 powerpc: Put FP/VSX and VR state into structures
This creates new 'thread_fp_state' and 'thread_vr_state' structures
to store FP/VSX state (including FPSCR) and Altivec/VSX state
(including VSCR), and uses them in the thread_struct.  In the
thread_fp_state, the FPRs and VSRs are represented as u64 rather
than double, since we rarely perform floating-point computations
on the values, and this will enable the structures to be used
in KVM code as well.  Similarly FPSCR is now a u64 rather than
a structure of two 32-bit values.

This takes the offsets out of the macros such as SAVE_32FPRS,
REST_32FPRS, etc.  This enables the same macros to be used for normal
and transactional state, enabling us to delete the transactional
versions of the macros.   This also removes the unused do_load_up_fpu
and do_load_up_altivec, which were in fact buggy since they didn't
create large enough stack frames to account for the fact that
load_up_fpu and load_up_altivec are not designed to be called from C
and assume that their caller's stack frame is an interrupt frame.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 17:26:49 +11:00
Anton Blanchard e156bd8ad7 powerpc: Fix offset of FPRs in VSX registers in little endian builds
The FPRs overlap the high doublewords of the first 32 VSX registers.
Fix TS_FPROFFSET and TS_VSRLOWOFFSET so we access the correct fields
in little endian mode.

If VSX is disabled the FPRs are only one doubleword in length so
TS_FPROFFSET needs adjusting in little endian.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 16:48:26 +11:00
Benjamin Herrenschmidt cbc9565ee8 powerpc: Remove ksp_limit on ppc64
We've been keeping that field in thread_struct for a while, it contains
the "limit" of the current stack pointer and is meant to be used for
detecting stack overflows.

It has a few problems however:

 - First, it was never actually *used* on 64-bit. Set and updated but
not actually exploited

 - When switching stack to/from irq and softirq stacks, it's update
is racy unless we hard disable interrupts, which is costly. This
is fine on 32-bit as we don't soft-disable there but not on 64-bit.

Thus rather than fixing 2 in order to implement 1 in some hypothetical
future, let's remove the code completely from 64-bit. In order to avoid
a clutter of ifdef's, we remove the updates from C code completely
during interrupt stack switching, and instead maintain it from the
asm helper that is used to do the stack switching in the first place.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-09-25 14:15:51 +10:00
Michael Neuling 28e61cc466 powerpc/tm: Fix context switching TAR, PPR and DSCR SPRs
If a transaction is rolled back, the Target Address Register (TAR), Processor
Priority Register (PPR) and Data Stream Control Register (DSCR) should be
restored to the checkpointed values before the transaction began.  Any changes
to these SPRs inside the transaction should not be visible in the abort
handler.

Currently Linux doesn't save or restore the checkpointed TAR, PPR or DSCR.  If
we preempt a processes inside a transaction which has modified any of these, on
process restore, that same transaction may be aborted we but we won't see the
checkpointed versions of these SPRs.

This adds checkpointed versions of these SPRs to the thread_struct and adds the
save/restore of these three SPRs to the treclaim/trechkpt code.

Without this if any of these SPRs are modified during a transaction, users may
incorrectly see a speculated SPR value even if the transaction is aborted.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-09 18:07:12 +10:00
Michael Ellerman 330a1eb777 powerpc/perf: Core EBB support for 64-bit book3s
Add support for EBB (Event Based Branches) on 64-bit book3s. See the
included documentation for more details.

EBBs are a feature which allows the hardware to branch directly to a
specified user space address when a PMU event overflows. This can be
used by programs for self-monitoring with no kernel involvement in the
inner loop.

Most of the logic is in the generic book3s code, primarily to avoid a
proliferation of PMU callbacks.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-07-01 11:50:10 +10:00
Michael Ellerman 2ac138ca21 powerpc/perf: Drop MMCRA from thread_struct
In commit 59affcd "Context switch more PMU related SPRs" I added more
PMU SPRs to thread_struct, later modified in commit b11ae95. To add
insult to injury it turns out we don't need to switch MMCRA as it's
only user readable, and the value is recomputed by the PMU code.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-07-01 11:50:07 +10:00
Anton Blanchard 475e68cfdd powerpc: Align thread->fpr to 16 bytes
On newer CPUs we use VSX loads and stores to the thread->fpr array.
For best performance we need to ensure 16 byte alignment.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-06-20 17:04:30 +10:00