Commit Graph

1015523 Commits

Author SHA1 Message Date
Qu Wenruo 9047e3170a btrfs: make end_bio_extent_writepage() to be subpage compatible
Now in end_bio_extent_writepage(), the only subpage incompatible code is
the end_page_writeback().

Just call the subpage helpers.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo e38992be1f btrfs: make __process_pages_contig() to handle subpage dirty/error/writeback status
For __process_pages_contig() and process_one_page(), to handle subpage
we only need to pass bytenr in and call subpage helpers to handle
dirty/error/writeback status.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo f02a85d2d5 btrfs: make btrfs_dirty_pages() to be subpage compatible
Since the extent io tree operations in btrfs_dirty_pages() are already
subpage compatible, we only need to make the page status update to use
subpage helpers.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo 321a02db32 btrfs: only require sector size alignment for end_bio_extent_writepage()
Just like read page, for subpage support we only require sector size
alignment.

So change the error message condition to only require sector alignment.

This should not affect existing code, as for regular sectorsize ==
PAGE_SIZE case, we are still requiring page alignment.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo 60e2d25500 btrfs: provide btrfs_page_clamp_*() helpers
In the coming subpage RW supports, there are a lot of page status update
calls which need to be converted to subpage compatible version, which
needs @start and @len.

Some call sites already have such @start/@len and are already in
page range, like various endio functions.

But there are also call sites which need to clamp the range for subpage
case, like btrfs_dirty_pagse() and __process_contig_pages().

Here we introduce new helpers, btrfs_page_clamp_*(), to do and only do the
clamp for subpage version.

Although in theory all existing btrfs_page_*() calls can be converted to
use btrfs_page_clamp_*() directly, but that would make us to do
unnecessary clamp operations.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo ed8f13bf4a btrfs: refactor page status update into process_one_page()
In __process_pages_contig() we update page status according to page_ops.

That update process is a bunch of 'if' branches, which lie inside
two loops, this makes it pretty hard to expand for later subpage
operations.

So this patch will extract these operations into its own function,
process_one_pages().

Also since we're refactoring __process_pages_contig(), also move the new
helper and __process_pages_contig() before the first caller of them, to
remove the forward declaration.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo 98af9ab12b btrfs: pass bytenr directly to __process_pages_contig()
As a preparation for incoming subpage support, we need bytenr passed to
__process_pages_contig() directly, not the current page index.

So change the parameter and all callers to pass bytenr in.

With the modification, here we need to replace the old @index_ret with
@processed_end for __process_pages_contig(), but this brings a small
problem.

Normally we follow the inclusive return value, meaning @processed_end
should be the last byte we processed.

If parameter @start is 0, and we failed to lock any page, then we would
return @processed_end as -1, causing more problems for
__unlock_for_delalloc().

So here for @processed_end, we use two different return value patterns.
If we have locked any page, @processed_end will be the last byte of
locked page.
Or it will be @start otherwise.

This change will impact lock_delalloc_pages(), so it needs to check
@processed_end to only unlock the range if we have locked any.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo 968f2566ad btrfs: fix hang when run_delalloc_range() failed
[BUG]
When running subpage preparation patches on x86, btrfs/125 will hang
forever with one ordered extent never finished.

[CAUSE]
The test case btrfs/125 itself will always fail as the fix is never merged.

When the test fails at balance, btrfs needs to cleanup the ordered
extent in btrfs_cleanup_ordered_extents() for data reloc inode.

The problem is in the sequence how we cleanup the page Order bit.

Currently it works like:

  btrfs_cleanup_ordered_extents()
  |- find_get_page();
  |- btrfs_page_clear_ordered(page);
  |  Now the page doesn't have Ordered bit anymore.
  |  !!! This also includes the first (locked) page !!!
  |
  |- offset += PAGE_SIZE
  |  This is to skip the first page
  |- __endio_write_update_ordered()
     |- btrfs_mark_ordered_io_finished(NULL)
        Except the first page, all ordered extents are finished.

Then the locked page is cleaned up in __extent_writepage():

  __extent_writepage()
  |- If (PageError(page))
  |- end_extent_writepage()
     |- btrfs_mark_ordered_io_finished(page)
        |- if (btrfs_test_page_ordered(page))
        |-  !!! The page gets skipped !!!
            The ordered extent is not decreased as the page doesn't
            have ordered bit anymore.

This leaves the ordered extent with bytes_left == sectorsize, thus never
finish.

[FIX]
The fix is to ensure we never clear page Ordered bit without running the
ordered extent accounting.

Here we choose to skip the locked page in
btrfs_cleanup_ordered_extents() so that later end_extent_writepage() can
properly finish the ordered extent.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo f57ad93735 btrfs: rename PagePrivate2 to PageOrdered inside btrfs
Inside btrfs we use Private2 page status to indicate we have an ordered
extent with pending IO for the sector.

But the page status name, Private2, tells us nothing about the bit
itself, so this patch will rename it to Ordered.
And with extra comment about the bit added, so reader who is still
uncertain about the page Ordered status, will find the comment pretty
easily.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo 3b8358407a btrfs: refactor btrfs_invalidatepage() for subpage support
This patch will refactor btrfs_invalidatepage() for the incoming subpage
support.

The involved modifications are:

- Use while() loop instead of "goto again;"
- Use single variable to determine whether to delete extent states
  Each branch will also have comments why we can or cannot delete the
  extent states
- Do qgroup free and extent states deletion per-loop
  Current code can only work for PAGE_SIZE == sectorsize case.

This refactor also makes it clear what we do for different sectors:

- Sectors without ordered extent
  We're completely safe to remove all extent states for the sector(s)

- Sectors with ordered extent, but no Private2 bit
  This means the endio has already been executed, we can't remove all
  extent states for the sector(s).

- Sectors with ordere extent, still has Private2 bit
  This means we need to decrease the ordered extent accounting.
  And then it comes to two different variants:

  * We have finished and removed the ordered extent
    Then it's the same as "sectors without ordered extent"
  * We didn't finished the ordered extent
    We can remove some extent states, but not all.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo c095f3333f btrfs: introduce btrfs_lookup_first_ordered_range()
Although we already have btrfs_lookup_first_ordered_extent() and
btrfs_lookup_ordered_extent(), they all have their own limitations:

- btrfs_lookup_ordered_extent() can't do extra range check

  It's only designed to lookup any ordered extent before certain bytenr.

- btrfs_lookup_first_ordered_extent() may not return the first ordered
  extent in the range

  It doesn't ensure the first ordered extent is returned.
  The existing callers are only interested in exhausting all ordered
  extents in a range, the order is not important.

For incoming btrfs_invalidatepage() refactoring, we need a way to
properly iterate all ordered extents in their bytenr order of a range.

So this patch will introduce a new function,
btrfs_lookup_first_ordered_range(), to do ordered extent with bytenr
order awareness and extra range check.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 266a258678 btrfs: update comments in btrfs_invalidatepage()
The existing comments in btrfs_invalidatepage() don't really get to the
point, especially for what Private2 is really representing and how the
race avoidance is done.

The truth is, there are only three entrances to do ordered extent
accounting:

- btrfs_writepage_endio_finish_ordered()
- __endio_write_update_ordered()
  Those two entrance are just endio functions for dio and buffered
  write.

- btrfs_invalidatepage()

But there is a pitfall, in endio functions there is no check on whether
the ordered extent is already accounted.
They just blindly clear the Private2 bit and do the accounting.

So it's all btrfs_invalidatepage()'s responsibility to make sure we
won't do double account for the same sector.

That's why in btrfs_invalidatepage() we have to wait for page writeback,
this will ensure all submitted bios have finished, thus their endio
functions have finished the accounting on the ordered extent.

Then we also check page Private2 to ensure that, we only run ordered
extent accounting on pages who has no bio submitted.

This patch will rework related comments to make it more clear on the
race and how we use wait_on_page_writeback() and Private2 to prevent
double accounting on ordered extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo e65f152e43 btrfs: refactor how we finish ordered extent io for endio functions
Btrfs has two endio functions to mark certain io range finished for
ordered extents:

- __endio_write_update_ordered()
  This is for direct IO

- btrfs_writepage_endio_finish_ordered()
  This for buffered IO.

However they go different routines to handle ordered extent io:

- Whether to iterate through all ordered extents
  __endio_write_update_ordered() will but
  btrfs_writepage_endio_finish_ordered() will not.

  In fact, iterating through all ordered extents will benefit later
  subpage support, while for current PAGE_SIZE == sectorsize requirement
  this behavior makes no difference.

- Whether to update page Private2 flag
  __endio_write_update_ordered() will not update page Private2 flag as
  for iomap direct IO, the page can not be even mapped.
  While btrfs_writepage_endio_finish_ordered() will clear Private2 to
  prevent double accounting against btrfs_invalidatepage().

Those differences are pretty subtle, and the ordered extent iterations
code in callers makes code much harder to read.

So this patch will introduce a new function,
btrfs_mark_ordered_io_finished(), to do the heavy lifting:

- Iterate through all ordered extents in the range
- Do the ordered extent accounting
- Queue the work for finished ordered extent

This function has two new feature:

- Proper underflow detection and recovery
  The old underflow detection will only detect the problem, then
  continue.
  No proper info like root/inode/ordered extent info, nor noisy enough
  to be caught by fstests.

  Furthermore when underflow happens, the ordered extent will never
  finish.

  New error detection will reset the bytes_left to 0, do proper
  kernel warning, and output extra info including root, ino, ordered
  extent range, the underflow value.

- Prevent double accounting based on Private2 flag
  Now if we find a range without Private2 flag, we will skip to next
  range.
  As that means someone else has already finished the accounting of
  ordered extent.

  This makes no difference for current code, but will be a critical part
  for incoming subpage support, as we can call
  btrfs_mark_ordered_io_finished() for multiple sectors if they are
  beyond inode size.
  Thus such double accounting prevention is a key feature for subpage.

Now both endio functions only need to call that new function.

And since the only caller of btrfs_dec_test_first_ordered_pending() is
removed, also remove btrfs_dec_test_first_ordered_pending() completely.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 87b4d86baa btrfs: make Private2 lifespan more consistent
Currently we use page Private2 bit to indicate that we have ordered
extent for the page range.

But the lifespan of it is not consistent, during regular writeback path,
there are two locations to clear the same PagePrivate2:

    T ----- Page marked Dirty
    |
    + ----- Page marked Private2, through btrfs_run_dealloc_range()
    |
    + ----- Page cleared Private2, through btrfs_writepage_cow_fixup()
    |       in __extent_writepage_io()
    |       ^^^ Private2 cleared for the first time
    |
    + ----- Page marked Writeback, through btrfs_set_range_writeback()
    |       in __extent_writepage_io().
    |
    + ----- Page cleared Private2, through
    |       btrfs_writepage_endio_finish_ordered()
    |       ^^^ Private2 cleared for the second time.
    |
    + ----- Page cleared Writeback, through
            btrfs_writepage_endio_finish_ordered()

Currently PagePrivate2 is mostly to prevent ordered extent accounting
being executed for both endio and invalidatepage.
Thus only the one who cleared page Private2 is responsible for ordered
extent accounting.

But the fact is, in btrfs_writepage_endio_finish_ordered(), page
Private2 is cleared and ordered extent accounting is executed
unconditionally.

The race prevention only happens through btrfs_invalidatepage(), where
we wait for the page writeback first, before checking the Private2 bit.

This means, Private2 is also protected by Writeback bit, and there is no
need for btrfs_writepage_cow_fixup() to clear Priavte2.

This patch will change btrfs_writepage_cow_fixup() to just check
PagePrivate2, not to clear it.
The clearing will happen in either btrfs_invalidatepage() or
btrfs_writepage_endio_finish_ordered().

This makes the Private2 bit easier to understand, just meaning the page
has unfinished ordered extent attached to it.

And this patch is a hard requirement for the incoming refactoring for
how we finished ordered IO for endio context, as the coming patch will
check Private2 to determine if we need to do the ordered extent
accounting.  Thus this patch is definitely needed or we will hang due to
unfinished ordered extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 38a39ac77e btrfs: pass btrfs_inode to btrfs_writepage_endio_finish_ordered()
There is a pretty bad abuse of btrfs_writepage_endio_finish_ordered() in
end_compressed_bio_write().

It passes compressed pages to btrfs_writepage_endio_finish_ordered(),
which is only supposed to accept inode pages.

Thankfully the important info here is the inode, so let's pass
btrfs_inode directly into btrfs_writepage_endio_finish_ordered(), and
make @page parameter optional.

By this, end_compressed_bio_write() can happily pass page=NULL while
still getting everything done properly.

Also, to cooperate with such modification, replace @page parameter for
trace_btrfs_writepage_end_io_hook() with btrfs_inode.
Although this removes page_index info, the existing start/len should be
enough for most usage.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo fa04c16574 btrfs: make subpage metadata write path call its own endio functions
For subpage metadata, we're reusing two functions for subpage metadata
write:

- end_bio_extent_buffer_writepage()
- write_one_eb()

But the truth is, for subpage we just call
end_bio_subpage_eb_writepage() without using any bit in
end_bio_extent_buffer_writepage().

For write_one_eb(), it's pretty similar, but with a small part of code
reused.

There is really no need to pollute the existing code path if we're not
really using most of them.

So this patch will do the following change to separate the subpage
metadata write path from regular write path by:

- Use end_bio_subpage_eb_writepage() directly as endio in
  write_one_subpage_eb()
- Directly call write_one_subpage_eb() in submit_eb_subpage()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 390ed29b81 btrfs: refactor submit_extent_page() to make bio and its flag tracing easier
There is a lot of code inside extent_io.c needs both "struct bio
**bio_ret" and "unsigned long prev_bio_flags", along with some
parameters like "unsigned long bio_flags".

Such strange parameters are here for bio assembly.

For example, we have such inode page layout:

  0       4K      8K      12K
  |<-- Extent A-->|<- EB->|

Then what we do is:

- Page [0, 4K)
  *bio_ret = NULL
  So we allocate a new bio to bio_ret,
  Add page [0, 4K) to *bio_ret.

- Page [4K, 8K)
  *bio_ret != NULL
  We found this page is continuous to *bio_ret,
  and if we're not at stripe boundary, we
  add page [4K, 8K) to *bio_ret.

- Page [8K, 12K)
  *bio_ret != NULL
  But we found this page is not continuous, so
  we submit *bio_ret, then allocate a new bio,
  and add page [8K, 12K) to the new bio.

This means we need to record both the bio and its bio_flag, but we
record them manually using those strange parameter list, other than
encapsulating them into their own structure.

So this patch will introduce a new structure, btrfs_bio_ctrl, to record
both the bio, and its bio_flags.

Also, in above case, for all pages added to the bio, we need to check if
the new page crosses stripe boundary.  This check itself can be time
consuming, and we don't really need to do that for each page.

This patch also integrates the stripe boundary check into btrfs_bio_ctrl.
When a new bio is allocated, the stripe and ordered extent boundary is
also calculated, so no matter how large the bio will be, we only
calculate the boundaries once, to save some CPU time.

The following functions/structures are affected:

- struct extent_page_data
  Replace its bio pointer with structure btrfs_bio_ctrl (embedded
  structure, not pointer)

- end_write_bio()
- flush_write_bio()
  Just change how bio is fetched

- btrfs_bio_add_page()
  Use pre-calculated boundaries instead of re-calculating them.
  And use @bio_ctrl to replace @bio and @prev_bio_flags.

- calc_bio_boundaries()
  New function

- submit_extent_page() callers
- btrfs_do_readpage() callers
- contiguous_readpages() callers
  To Use @bio_ctrl to replace @bio and @prev_bio_flags, and how to grab
  bio.

- btrfs_bio_fits_in_ordered_extent()
  Removed, as now the ordered extent size limit is done at bio
  allocation time, no need to check for each page range.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 1a0b5c4d64 btrfs: allow btrfs_bio_fits_in_stripe() to accept bio without any page
Function btrfs_bio_fits_in_stripe() now requires a bio with at least one
page added.  Or btrfs_get_chunk_map() will fail with -ENOENT.

But in fact this requirement is not needed at all, as we can just pass
sectorsize for btrfs_get_chunk_map().

This tiny behavior change is important for later subpage refactoring on
submit_extent_page().

As for 64K page size, we can have a page range with pgoff=0 and size=64K.
If the logical bytenr is just 16K before the stripe boundary, we have to
split the page range into two bios.

This means, we must check page range against stripe boundary, even adding
the range to an empty bio.

This tiny refactoring is for the incoming changes, but on its own,
regular sectorsize == PAGE_SIZE is not affected anyway.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 43c0d1a5e1 btrfs: remove the unused parameter @len for btrfs_bio_fits_in_stripe()
The parameter @len is not really used in btrfs_bio_fits_in_stripe(),
just remove it.

It got removed in 4203431319 ("btrfs: let callers of
btrfs_get_io_geometry pass the em"), before that btrfs_get_chunk_map
utilized it.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 0044ae11e8 btrfs: make free space cache size consistent across different PAGE_SIZE
Currently free space cache inode size is determined by two factors:

- block group size
- PAGE_SIZE

This means, for the same sized block groups, with different PAGE_SIZE,
it will result in different inode sizes.

This will not be a good thing for subpage support, so change the
requirement for PAGE_SIZE to sectorsize.

Now for the same 4K sectorsize btrfs, it should result the same inode
size no matter what the PAGE_SIZE is.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo 8df507cbb5 btrfs: scrub: fix subpage repair error caused by hard coded PAGE_SIZE
[BUG]
For the following file layout, scrub will not be able to repair all
these two repairable error, but in fact make one corruption even
unrepairable:

	  inode offset 0      4k     8K
Mirror 1               |XXXXXX|      |
Mirror 2               |      |XXXXXX|

[CAUSE]
The root cause is the hard coded PAGE_SIZE, which makes scrub repair to
go crazy for subpage.

For above case, when reading the first sector, we use PAGE_SIZE other
than sectorsize to read, which makes us to read the full range [0, 64K).
In fact, after 8K there may be no data at all, we can just get some
garbage.

Then when doing the repair, we also writeback a full page from mirror 2,
this means, we will also writeback the corrupted data in mirror 2 back
to mirror 1, leaving the range [4K, 8K) unrepairable.

[FIX]
This patch will modify the following PAGE_SIZE use with sectorsize:

- scrub_print_warning_inode()
  Remove the min() and replace PAGE_SIZE with sectorsize.
  The min() makes no sense, as csum is done for the full sector with
  padding.

  This fixes a bug that subpage report extra length like:
   checksum error at logical 298844160 on dev /dev/mapper/arm_nvme-test,
   physical 575668224, root 5, inode 257, offset 0, length 12288, links 1 (path: file)

  Where the error is only 1 sector.

- scrub_handle_errored_block()
  Comments with PAGE|page involved, all changed to sector.

- scrub_setup_recheck_block()
- scrub_repair_page_from_good_copy()
- scrub_add_page_to_wr_bio()
- scrub_wr_submit()
- scrub_add_page_to_rd_bio()
- scrub_block_complete()
  Replace PAGE_SIZE with sectorsize.
  This solves several problems where we read/write extra range for
  subpage case.

RAID56 code is excluded intentionally, as RAID56 has extra PAGE_SIZE
usage, and is not really safe enough.
Thus we will reject RAID56 for subpage in later commit.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Nikolay Borisov ec87b42f70 btrfs: use list_last_entry in add_falloc_range
Instead of calling list_entry with head->prev simply call
list_last_entry which makes it obvious which member of the list is
being referred. This allows to remove the extra 'prev' pointer.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain 4183abf6cb btrfs: fix comment about max_out in btrfs_compress_pages
Commit e5d7490236 ("btrfs: derive maximum output size in the
compression implementation") removed @max_out argument in
btrfs_compress_pages() but its comment remained, remove it.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain 65b5355f77 btrfs: optimize variables size in btrfs_submit_compressed_write
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Function arguments @len, @compressed_len and @nr_pages
can be declared as unsigned int.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain 356b4a2dc1 btrfs: optimize variables size in btrfs_submit_compressed_read
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Declare the variables @compressed_len, @nr_pages and
@pg_index size as an unsigned int in the function
btrfs_submit_compressed_read.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain 1d08ce5840 btrfs: reduce the variable size to fit nr_pages
Patch "btrfs: reduce compressed_bio member's types" reduced the
@nr_pages size to unsigned int, its cascading effects are updated here.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Filipe Manana b590b83972 btrfs: avoid unnecessary logging of xattrs during fast fsyncs
When logging an inode we always log all its xattrs, so that we are able
to figure out which ones should be deleted during log replay. However this
is unnecessary when we are doing a fast fsync and no xattrs were added,
changed or deleted since the last time we logged the inode in the current
transaction.

So skip the logging of xattrs when the inode was previously logged in the
current transaction and no xattrs were added, changed or deleted. If any
changes to xattrs happened, than the inode has BTRFS_INODE_COPY_EVERYTHING
set in its runtime flags and the xattrs get logged. This saves time on
scanning for xattrs, allocating memory, COWing log tree extent buffers and
adding more lock contention on the extent buffers when there are multiple
tasks logging in parallel.

The use of xattrs is common when using ACLs, some applications, or when
using security modules like SELinux where every inode gets a security
xattr added to it.

The following test script, using fio, was used on a box with 12 cores, 64G
of RAM, a NVMe device and the default non-debug kernel config from Debian.
It uses 8 concurrent jobs each writing in blocks of 64K to its own 4G file,
each file with a single xattr of 50 bytes (about the same size for an ACL
or SELinux xattr), doing random buffered writes with an fsync after each
write.

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/nvme0n1
   MNT=/mnt/test
   MOUNT_OPTIONS="-o ssd"
   MKFS_OPTIONS="-d single -m single"

   NUM_JOBS=8
   FILE_SIZE=4G

   cat <<EOF > /tmp/fio-job.ini
   [writers]
   rw=randwrite
   fsync=1
   fallocate=none
   group_reporting=1
   direct=0
   bs=64K
   ioengine=sync
   size=$FILE_SIZE
   directory=$MNT
   numjobs=$NUM_JOBS
   EOF

   echo "performance" | \
       tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

   mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
   mount $MOUNT_OPTIONS $DEV $MNT

   echo "Creating files before fio runs, each with 1 xattr of 50 bytes"
   for ((i = 0; i < $NUM_JOBS; i++)); do
       path="$MNT/writers.$i.0"
       truncate -s $FILE_SIZE $path
       setfattr -n user.xa1 -v $(printf '%0.sX' $(seq 50)) $path
   done

   fio /tmp/fio-job.ini
   umount $MNT

fio output before this change:

WRITE: bw=120MiB/s (126MB/s), 120MiB/s-120MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=272145-272145msec

fio output after this change:

WRITE: bw=142MiB/s (149MB/s), 142MiB/s-142MiB/s (149MB/s-149MB/s), io=32.0GiB (34.4GB), run=230408-230408msec

+16.8% throughput, -16.6% runtime

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba 67ae34b69c btrfs: add device delete cancel
Accept device name "cancel" as a request to cancel running device
deletion operation. The string is literal, in case there's a real device
named "cancel", pass it as full absolute path or as "./cancel"

This works for v1 and v2 ioctls when the device is specified by name.
Moving chunks from the device uses relocation, use the conditional
exclusive operation start and cancellation helpers

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba bb059a37c9 btrfs: add cancellation to resize
Accept literal string "cancel" as resize operation and interpret that
as a request to cancel the running operation. If it's running, wait
until it finishes current work and return ECANCELED.

Shrinking resize uses relocation to move the chunks away, use the
conditional exclusive operation start and cancellation helpers.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba 17aaa434ed btrfs: add wrapper for conditional start of exclusive operation
To support optional cancellation of some operations, add helper that will
wrap all the combinations. In normal mode it's same as
btrfs_exclop_start, in cancellation mode it checks if it's already
running and request cancellation and waits until completion.

The error codes can be returned to to user space and semantics is not
changed, adding ECANCELED. This should be evaluated as an error and that
the operation has not completed and the operation should be restarted
or the filesystem status reviewed.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba 578bda9e17 btrfs: introduce try-lock semantics for exclusive op start
Add try-lock for exclusive operation start to allow callers to do more
checks. The same operation must already be running. The try-lock and
unlock must pair and are a substitute for btrfs_exclop_start, thus it
must also pair with btrfs_exclop_finish to release the exclop context.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba 907d2710d7 btrfs: add cancellable chunk relocation support
Add support code that will allow canceling relocation on the chunk
granularity. This is different and independent of balance, that also
uses relocation but is a higher level operation and manages it's own
state and pause/cancellation requests.

Relocation is used for resize (shrink) and device deletion so this will
be a common point to implement cancellation for both. The context is
entirely in btrfs_relocate_block_group and btrfs_recover_relocation,
enclosing one chunk relocation. The status bit is set and unset between
the chunks. As relocation can take long, the effects may not be
immediate and the request and actual action can slightly race.

The fs_info::reloc_cancel_req is only supposed to be increased and does
not pair with decrement like fs_info::balance_cancel_req.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba 0d7ed32c1e btrfs: protect exclusive_operation by super_lock
The exclusive operation is now atomically checked and set using bit
operations. Switch it to protection by spinlock. The super block lock is
not frequently used and adding a new lock seems like an overkill so it
should be safe to reuse it.

The reason to use spinlock is to enhance the locking context so more
checks can be done, eg. allowing the same exclusive operation enter
the exclop section and cancel the running one. This will be used for
resize and device delete.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 24880be59c btrfs: clean up header members offsets in write helpers
Move header offsetof() to the expression that calculates the address so
it's part of get_eb_offset_in_page where the 2nd parameter is the member
offset.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba dfd29eed4a btrfs: simplify eb checksum verification in btrfs_validate_metadata_buffer
The verification copies the calculated checksum bytes to a temporary
buffer but this is not necessary. We can map the eb header on the first
page and use the checksum bytes directly.

This saves at least one function call and boundary checks so it could
lead to a minor performance improvement.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba ff14aa7987 btrfs: remove extra sb::s_id from message in btrfs_validate_metadata_buffer
The s_id is already printed by message helpers.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 282ab3ff16 btrfs: reduce compressed_bio members' types
Several members of compressed_bio are of type that's unnecessarily big
for the values that they'd hold:

- the size of the uncompressed and compressed data is 128K now, we can
  keep is as int
- same for number of pages
- the compress type fits to a byte
- the errors is 0/1

The size of the unpatched structure is 80 bytes with several holes.
Reordering nr_pages next to the pages the hole after pending_bios is
filled and the resulting size is 56 bytes. This keeps the csums array
aligned to 8 bytes, which is nice. Further size optimizations may be
possible but right now it looks good to me:

struct compressed_bio {
        refcount_t                 pending_bios;         /*     0     4 */
        unsigned int               nr_pages;             /*     4     4 */
        struct page * *            compressed_pages;     /*     8     8 */
        struct inode *             inode;                /*    16     8 */
        u64                        start;                /*    24     8 */
        unsigned int               len;                  /*    32     4 */
        unsigned int               compressed_len;       /*    36     4 */
        u8                         compress_type;        /*    40     1 */
        u8                         errors;               /*    41     1 */

        /* XXX 2 bytes hole, try to pack */

        int                        mirror_num;           /*    44     4 */
        struct bio *               orig_bio;             /*    48     8 */
        u8                         sums[];               /*    56     0 */

        /* size: 56, cachelines: 1, members: 12 */
        /* sum members: 54, holes: 1, sum holes: 2 */
        /* last cacheline: 56 bytes */
};

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 49547068f6 btrfs: document byte swap optimization of root_item::flags accessors
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 7735cd755b btrfs: scrub: factor out common scrub_stripe constraints
There are common values set for the stripe constraints, some of them
are already factored out. Do that for increment and mirror_num as well.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 1aeb6b563a btrfs: clear log tree recovering status if starting transaction fails
When a log recovery is in progress, lots of operations have to take that
into account, so we keep this status per tree during the operation. Long
time ago error handling revamp patch 79787eaab4 ("btrfs: replace many
BUG_ONs with proper error handling") removed clearing of the status in
an error branch. Add it back as was intended in e02119d5a7 ("Btrfs:
Add a write ahead tree log to optimize synchronous operations").

There are probably no visible effects, log replay is done only during
mount and if it fails all structures are cleared so the stale status
won't be kept.

Fixes: 79787eaab4 ("btrfs: replace many BUG_ONs with proper error handling")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 6819703f5a btrfs: clear defrag status of a root if starting transaction fails
The defrag loop processes leaves in batches and starting transaction for
each. The whole defragmentation on a given root is protected by a bit
but in case the transaction fails, the bit is not cleared

In case the transaction fails the bit would prevent starting
defragmentation again, so make sure it's cleared.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
David Sterba 8c5ec99561 btrfs: sysfs: fix format string for some discard stats
The type of discard_bitmap_bytes and discard_extent_bytes is u64 so the
format should be %llu, though the actual values would hardly ever
overflow to negative values.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
Josef Bacik 5963ffcaf3 btrfs: always abort the transaction if we abort a trans handle
While stress testing our error handling I noticed that sometimes we
would still commit the transaction even though we had aborted the
transaction.

Currently we track if a trans handle has dirtied any metadata, and if it
hasn't we mark the filesystem as having an error (so no new transactions
can be started), but we will allow the current transaction to complete
as we do not mark the transaction itself as having been aborted.

This sounds good in theory, but we were not properly tracking IO errors
in btrfs_finish_ordered_io, and thus committing the transaction with
bogus free space data.  This isn't necessarily a problem per-se with the
free space cache, as the other guards in place would have kept us from
accepting the free space cache as valid, but highlights a real world
case where we had a bug and could have corrupted the filesystem because
of it.

This "skip abort on empty trans handle" is nice in theory, but assumes
we have perfect error handling everywhere, which we clearly do not.
Also we do not allow further transactions to be started, so all this
does is save the last transaction that was happening, which doesn't
necessarily gain us anything other than the potential for real
corruption.

Remove this particular bit of code, if we decide we need to abort the
transaction then abort the current one and keep us from doing real harm
to the file system, regardless of whether this specific trans handle
dirtied anything or not.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
Filipe Manana 0d7d316597 btrfs: don't set the full sync flag when truncation does not touch extents
At btrfs_truncate() where we truncate the inode either to the same size
or to a smaller size, we always set the full sync flag on the inode.

This is needed in case the truncation drops or trims any file extent items
that start beyond or cross the new inode size, so that the next fsync
drops all inode items from the log and scans again the fs/subvolume tree
to find all items that must be logged.

However if the truncation does not drop or trims any file extent items, we
do not need to set the full sync flag and force the next fsync to use the
slow code path. So do not set the full sync flag in such cases.

One use case where it is frequent to do truncations that do not change
the inode size and do not drop any extents (no prealloc extents beyond
i_size) is when running Microsoft's SQL Server inside a Docker container.
One example workload is the one Philipp Fent reported recently, in the
thread with a link below. In this workload a large number of fsyncs are
preceded by such truncate operations.

After this change I constantly get the runtime for that workload from
Philipp to be reduced by about -12%, for example from 184 seconds down
to 162 seconds.

Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00
Filipe Manana 4f7e67378e btrfs: fix misleading and incomplete comment of btrfs_truncate()
The comment at the top of btrfs_truncate() mentions that csum items are
dropped or truncated to the new i_size, but this is wrong and non sense,
as they are unrelated to the i_size and are located in the csums tree and
not on a tree with inode items (fs/subvolume tree or a log tree). Instead
that claim applies to file extent items, so fix the comment to refer to
them instead.

While at it make the whole comment for the function more descriptive and
follow the kernel doc style.

Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00
Josef Bacik 04587ad9be btrfs: abort transaction if we fail to update the delayed inode
If we fail to update the delayed inode we need to abort the transaction,
because we could leave an inode with the improper counts or some other
such corruption behind.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00
Josef Bacik bb385bedde btrfs: fix error handling in __btrfs_update_delayed_inode
If we get an error while looking up the inode item we'll simply bail
without cleaning up the delayed node.  This results in this style of
warning happening on commit:

  WARNING: CPU: 0 PID: 76403 at fs/btrfs/delayed-inode.c:1365 btrfs_assert_delayed_root_empty+0x5b/0x90
  CPU: 0 PID: 76403 Comm: fsstress Tainted: G        W         5.13.0-rc1+ #373
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  RIP: 0010:btrfs_assert_delayed_root_empty+0x5b/0x90
  RSP: 0018:ffffb8bb815a7e50 EFLAGS: 00010286
  RAX: 0000000000000000 RBX: ffff95d6d07e1888 RCX: ffff95d6c0fa3000
  RDX: 0000000000000002 RSI: 000000000029e91c RDI: ffff95d6c0fc8060
  RBP: ffff95d6c0fc8060 R08: 00008d6d701a2c1d R09: 0000000000000000
  R10: ffff95d6d1760ea0 R11: 0000000000000001 R12: ffff95d6c15a4d00
  R13: ffff95d6c0fa3000 R14: 0000000000000000 R15: ffffb8bb815a7e90
  FS:  00007f490e8dbb80(0000) GS:ffff95d73bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f6e75555cb0 CR3: 00000001101ce001 CR4: 0000000000370ef0
  Call Trace:
   btrfs_commit_transaction+0x43c/0xb00
   ? finish_wait+0x80/0x80
   ? vfs_fsync_range+0x90/0x90
   iterate_supers+0x8c/0x100
   ksys_sync+0x50/0x90
   __do_sys_sync+0xa/0x10
   do_syscall_64+0x3d/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Because the iref isn't dropped and this leaves an elevated node->count,
so any release just re-queues it onto the delayed inodes list.  Fix this
by going to the out label to handle the proper cleanup of the delayed
node.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00
Josef Bacik a4cb90dc01 btrfs: make btrfs_release_delayed_iref handle the !iref case
Right now we only cleanup the delayed iref if we have
BTRFS_DELAYED_NODE_DEL_IREF set on the node.  However we have some error
conditions that need to cleanup the iref if it still exists, so to make
this code cleaner move the test_bit into btrfs_release_delayed_iref
itself and unconditionally call it in each of the cases instead.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00
David Sterba eb3b505366 btrfs: scrub: per-device bandwidth control
Add sysfs interface to limit io during scrub. We relied on the ionice
interface to do that, eg. the idle class let the system usable while
scrub was running. This has changed when mq-deadline got widespread and
did not implement the scheduling classes. That was a CFQ thing that got
deleted. We've got numerous complaints from users about degraded
performance.

Currently only BFQ supports that but it's not a common scheduler and we
can't ask everybody to switch to it.

Alternatively the cgroup io limiting can be used but that also a
non-trivial setup (v2 required, the controller must be enabled on the
system). This can still be used if desired.

Other ideas that have been explored: piggy-back on ionice (that is set
per-process and is accessible) and interpret the class and classdata as
bandwidth limits, but this does not have enough flexibility as there are
only 8 allowed and we'd have to map fixed limits to each value. Also
adjusting the value would need to lookup the process that currently runs
scrub on the given device, and the value is not sticky so would have to
be adjusted each time scrub runs.

Running out of options, sysfs does not look that bad:

- it's accessible from scripts, or udev rules
- the name is similar to what MD-RAID has
  (/proc/sys/dev/raid/speed_limit_max or /sys/block/mdX/md/sync_speed_max)
- the value is sticky at least for filesystem mount time
- adjusting the value has immediate effect
- sysfs is available in constrained environments (eg. system rescue)
- the limit also applies to device replace

Sysfs:

- raw value is in bytes
- values written to the file accept suffixes like K, M
- file is in the per-device directory /sys/fs/btrfs/FSID/devinfo/DEVID/scrub_speed_max
- 0 means use default priority of IO

The scheduler is a simple deadline one and the accuracy is up to nearest
128K.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00
Johannes Thumshirn e7ff9e6b8e btrfs: zoned: factor out zoned device lookup
To be able to construct a zone append bio we need to look up the
btrfs_device. The code doing the chunk map lookup to get the device is
present in btrfs_submit_compressed_write and submit_extent_page.

Factor out the lookup calls into a helper and use it in the submission
paths.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:05 +02:00