The XIVE device structure is now allocated in kvmppc_xive_get_device()
and kfree'd in kvmppc_core_destroy_vm(). In case of an OPAL error when
allocating the XIVE VPs, the kfree() call in kvmppc_xive_*create()
will result in a double free and corrupt the host memory.
Fixes: 5422e95103 ("KVM: PPC: Book3S HV: XIVE: Replace the 'destroy' method by a 'release' method")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/6ea6998b-a890-2511-01d1-747d7621eb19@kaod.org
Under XIVE, the ESB pages of an interrupt are used for interrupt
management (EOI) and triggering. They are made available to guests
through a mapping of the XIVE KVM device.
When a device is passed-through, the passthru_irq helpers,
kvmppc_xive_set_mapped() and kvmppc_xive_clr_mapped(), clear the ESB
pages of the guest IRQ number being mapped and let the VM fault
handler repopulate with the correct page.
The ESB pages are mapped at offset 4 (KVM_XIVE_ESB_PAGE_OFFSET) in the
KVM device mapping. Unfortunately, this offset was not taken into
account when clearing the pages. This lead to issues with the
passthrough devices for which the interrupts were not functional under
some guest configuration (tg3 and single CPU) or in any configuration
(e1000e adapter).
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
According to Documentation/virtual/kvm/locking.txt, the srcu read lock
should be taken when accessing the memslots of the VM. The XIVE KVM
device needs to do so when configuring the page of the OS event queue
of vCPU for a given priority and when marking the same page dirty
before migration.
This avoids warnings such as :
[ 208.224882] =============================
[ 208.224884] WARNING: suspicious RCU usage
[ 208.224889] 5.2.0-rc2-xive+ #47 Not tainted
[ 208.224890] -----------------------------
[ 208.224894] ../include/linux/kvm_host.h:633 suspicious rcu_dereference_check() usage!
[ 208.224896]
other info that might help us debug this:
[ 208.224898]
rcu_scheduler_active = 2, debug_locks = 1
[ 208.224901] no locks held by qemu-system-ppc/3923.
[ 208.224902]
stack backtrace:
[ 208.224907] CPU: 64 PID: 3923 Comm: qemu-system-ppc Kdump: loaded Not tainted 5.2.0-rc2-xive+ #47
[ 208.224909] Call Trace:
[ 208.224918] [c000200cdd98fa30] [c000000000be1934] dump_stack+0xe8/0x164 (unreliable)
[ 208.224924] [c000200cdd98fa80] [c0000000001aec80] lockdep_rcu_suspicious+0x110/0x180
[ 208.224935] [c000200cdd98fb00] [c0080000075933a0] gfn_to_memslot+0x1c8/0x200 [kvm]
[ 208.224943] [c000200cdd98fb40] [c008000007599600] gfn_to_pfn+0x28/0x60 [kvm]
[ 208.224951] [c000200cdd98fb70] [c008000007599658] gfn_to_page+0x20/0x40 [kvm]
[ 208.224959] [c000200cdd98fb90] [c0080000075b495c] kvmppc_xive_native_set_attr+0x8b4/0x1480 [kvm]
[ 208.224967] [c000200cdd98fca0] [c00800000759261c] kvm_device_ioctl_attr+0x64/0xb0 [kvm]
[ 208.224974] [c000200cdd98fcf0] [c008000007592730] kvm_device_ioctl+0xc8/0x110 [kvm]
[ 208.224979] [c000200cdd98fd10] [c000000000433a24] do_vfs_ioctl+0xd4/0xcd0
[ 208.224981] [c000200cdd98fdb0] [c000000000434724] ksys_ioctl+0x104/0x120
[ 208.224984] [c000200cdd98fe00] [c000000000434768] sys_ioctl+0x28/0x80
[ 208.224988] [c000200cdd98fe20] [c00000000000b888] system_call+0x5c/0x70
legoater@boss01:~$
Fixes: 13ce3297c5 ("KVM: PPC: Book3S HV: XIVE: Add controls for the EQ configuration")
Fixes: e6714bd167 ("KVM: PPC: Book3S HV: XIVE: Add a control to dirty the XIVE EQ pages")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XICS-on-XIVE KVM device needs to allocate XIVE event queues when a
priority is used by the OS. This is referred as EQ provisioning and it
is done under the hood when :
1. a CPU is hot-plugged in the VM
2. the "set-xive" is called at VM startup
3. sources are restored at VM restore
The kvm->lock mutex is used to protect the different XIVE structures
being modified but in some contexts, kvm->lock is taken under the
vcpu->mutex which is not permitted by the KVM locking rules.
Introduce a new mutex 'lock' for the KVM devices for them to
synchronize accesses to the XIVE device structures.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a vCPU is connected to the KVM device, it is done using its vCPU
identifier in the guest. Fix the enforced limit on the vCPU identifier
by taking into account the SMT mode.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a CPU is hot-unplugged, the EQ is deconfigured using a zero size
and a zero address. In this case, there is no need to check the flag
and queue size validity. Move the checks after the queue reset code
section to fix CPU hot-unplug.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Improve the release of the XIVE KVM device by clearing the file
address_space, which is used to unmap the interrupt ESB pages when a
device is passed-through.
Suggested-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, kvmppc_xive_release() and kvmppc_xive_native_release() clear
kvm->arch.mmu_ready and call kick_all_cpus_sync() as a way of ensuring
that no vcpus are executing in the guest. However, future patches will
change the mutex associated with kvm->arch.mmu_ready to a new mutex that
nests inside the vcpu mutexes, making it difficult to continue to use
this method.
In fact, taking the vcpu mutex for a vcpu excludes execution of that
vcpu, and we already take the vcpu mutex around the call to
kvmppc_xive_[native_]cleanup_vcpu(). Once the cleanup function is
done and we release the vcpu mutex, the vcpu can execute once again,
but because we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type,
vcpu->arch.xive_esc_vaddr and vcpu->arch.xive_esc_raddr, that vcpu will
not be going into XIVE code any more. Thus, once we have cleaned up
all of the vcpus, we are safe to clean up the rest of the XIVE state,
and we don't need to use kvm->arch.mmu_ready to hold off vcpu execution.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There is a spelling mistake in a pr_err message, fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Now that we have the possibility of a XIVE or XICS-on-XIVE device being
released while the VM is still running, we need to be careful about
races and potential use-after-free bugs. Although the kvmppc_xive
struct is not freed, but kept around for re-use, the kvmppc_xive_vcpu
structs are freed, and they are used extensively in both the XIVE native
and XICS-on-XIVE code.
There are various ways in which XIVE code gets invoked:
- VCPU entry and exit, which do push and pull operations on the XIVE hardware
- one_reg get and set functions (vcpu->mutex is held)
- XICS hypercalls (but only inside guest execution, not from
kvmppc_pseries_do_hcall)
- device creation calls (kvm->lock is held)
- device callbacks - get/set attribute, mmap, pagefault, release/destroy
- set_mapped/clr_mapped calls (kvm->lock is held)
- connect_vcpu calls
- debugfs file read callbacks
Inside a device release function, we know that userspace cannot have an
open file descriptor referring to the device, nor can it have any mmapped
regions from the device. Therefore the device callbacks are excluded,
as are the connect_vcpu calls (since they need a fd for the device).
Further, since the caller holds the kvm->lock mutex, no other device
creation calls or set/clr_mapped calls can be executing concurrently.
To exclude VCPU execution and XICS hypercalls, we temporarily set
kvm->arch.mmu_ready to 0. This forces any VCPU task that is trying to
enter the guest to take the kvm->lock mutex, which is held by the caller
of the release function. Then, sending an IPI to all other CPUs forces
any VCPU currently executing in the guest to exit.
Finally, we take the vcpu->mutex for each VCPU around the process of
cleaning up and freeing its XIVE data structures, in order to exclude
any one_reg get/set calls.
To exclude the debugfs read callbacks, we just need to ensure that
debugfs_remove is called before freeing any data structures. Once it
returns we know that no CPU can be executing the callbacks (for our
kvmppc_xive instance).
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a P9 sPAPR VM boots, the CAS negotiation process determines which
interrupt mode to use (XICS legacy or XIVE native) and invokes a
machine reset to activate the chosen mode.
We introduce 'release' methods for the XICS-on-XIVE and the XIVE
native KVM devices which are called when the file descriptor of the
device is closed after the TIMA and ESB pages have been unmapped.
They perform the necessary cleanups : clear the vCPU interrupt
presenters that could be attached and then destroy the device. The
'release' methods replace the 'destroy' methods as 'destroy' is not
called anymore once 'release' is. Compatibility with older QEMU is
nevertheless maintained.
This is not considered as a safe operation as the vCPUs are still
running and could be referencing the KVM device through their
presenters. To protect the system from any breakage, the kvmppc_xive
objects representing both KVM devices are now stored in an array under
the VM. Allocation is performed on first usage and memory is freed
only when the VM exits.
[paulus@ozlabs.org - Moved freeing of xive structures to book3s.c,
put it under #ifdef CONFIG_KVM_XICS.]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The KVM XICS-over-XIVE device and the proposed KVM XIVE native device
implement an IRQ space for the guest using the generic IPI interrupts
of the XIVE IC controller. These interrupts are allocated at the OPAL
level and "mapped" into the guest IRQ number space in the range 0-0x1FFF.
Interrupt management is performed in the XIVE way: using loads and
stores on the addresses of the XIVE IPI interrupt ESB pages.
Both KVM devices share the same internal structure caching information
on the interrupts, among which the xive_irq_data struct containing the
addresses of the IPI ESB pages and an extra one in case of pass-through.
The later contains the addresses of the ESB pages of the underlying HW
controller interrupts, PHB4 in all cases for now.
A guest, when running in the XICS legacy interrupt mode, lets the KVM
XICS-over-XIVE device "handle" interrupt management, that is to
perform the loads and stores on the addresses of the ESB pages of the
guest interrupts. However, when running in XIVE native exploitation
mode, the KVM XIVE native device exposes the interrupt ESB pages to
the guest and lets the guest perform directly the loads and stores.
The VMA exposing the ESB pages make use of a custom VM fault handler
which role is to populate the VMA with appropriate pages. When a fault
occurs, the guest IRQ number is deduced from the offset, and the ESB
pages of associated XIVE IPI interrupt are inserted in the VMA (using
the internal structure caching information on the interrupts).
Supporting device passthrough in the guest running in XIVE native
exploitation mode adds some extra refinements because the ESB pages
of a different HW controller (PHB4) need to be exposed to the guest
along with the initial IPI ESB pages of the XIVE IC controller. But
the overall mechanic is the same.
When the device HW irqs are mapped into or unmapped from the guest
IRQ number space, the passthru_irq helpers, kvmppc_xive_set_mapped()
and kvmppc_xive_clr_mapped(), are called to record or clear the
passthrough interrupt information and to perform the switch.
The approach taken by this patch is to clear the ESB pages of the
guest IRQ number being mapped and let the VM fault handler repopulate.
The handler will insert the ESB page corresponding to the HW interrupt
of the device being passed-through or the initial IPI ESB page if the
device is being removed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Each source is associated with an Event State Buffer (ESB) with a
even/odd pair of pages which provides commands to manage the source:
to trigger, to EOI, to turn off the source for instance.
The custom VM fault handler will deduce the guest IRQ number from the
offset of the fault, and the ESB page of the associated XIVE interrupt
will be inserted into the VMA using the internal structure caching
information on the interrupts.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Each thread has an associated Thread Interrupt Management context
composed of a set of registers. These registers let the thread handle
priority management and interrupt acknowledgment. The most important
are :
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
They are exposed to software in four different pages each proposing a
view with a different privilege. The first page is for the physical
thread context and the second for the hypervisor. Only the third
(operating system) and the fourth (user level) are exposed the guest.
A custom VM fault handler will populate the VMA with the appropriate
pages, which should only be the OS page for now.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The state of the thread interrupt management registers needs to be
collected for migration. These registers are cached under the
'xive_saved_state.w01' field of the VCPU when the VPCU context is
pulled from the HW thread. An OPAL call retrieves the backup of the
IPB register in the underlying XIVE NVT structure and merges it in the
KVM state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When migration of a VM is initiated, a first copy of the RAM is
transferred to the destination before the VM is stopped, but there is
no guarantee that the EQ pages in which the event notifications are
queued have not been modified.
To make sure migration will capture a consistent memory state, the
XIVE device should perform a XIVE quiesce sequence to stop the flow of
event notifications and stabilize the EQs. This is the purpose of the
KVM_DEV_XIVE_EQ_SYNC control which will also marks the EQ pages dirty
to force their transfer.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control will be used by the H_INT_SYNC hcall from QEMU to flush
event notifications on the XIVE IC owning the source.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control is to be used by the H_INT_RESET hcall from QEMU. Its
purpose is to clear all configuration of the sources and EQs. This is
necessary in case of a kexec (for a kdump kernel for instance) to make
sure that no remaining configuration is left from the previous boot
setup so that the new kernel can start safely from a clean state.
The queue 7 is ignored when the XIVE device is configured to run in
single escalation mode. Prio 7 is used by escalations.
The XIVE VP is kept enabled as the vCPU is still active and connected
to the XIVE device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
These controls will be used by the H_INT_SET_QUEUE_CONFIG and
H_INT_GET_QUEUE_CONFIG hcalls from QEMU to configure the underlying
Event Queue in the XIVE IC. They will also be used to restore the
configuration of the XIVE EQs and to capture the internal run-time
state of the EQs. Both 'get' and 'set' rely on an OPAL call to access
the EQ toggle bit and EQ index which are updated by the XIVE IC when
event notifications are enqueued in the EQ.
The value of the guest physical address of the event queue is saved in
the XIVE internal xive_q structure for later use. That is when
migration needs to mark the EQ pages dirty to capture a consistent
memory state of the VM.
To be noted that H_INT_SET_QUEUE_CONFIG does not require the extra
OPAL call setting the EQ toggle bit and EQ index to configure the EQ,
but restoring the EQ state will.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control will be used by the H_INT_SET_SOURCE_CONFIG hcall from
QEMU to configure the target of a source and also to restore the
configuration of a source when migrating the VM.
The XIVE source interrupt structure is extended with the value of the
Effective Interrupt Source Number. The EISN is the interrupt number
pushed in the event queue that the guest OS will use to dispatch
events internally. Caching the EISN value in KVM eases the test when
checking if a reconfiguration is indeed needed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XIVE KVM device maintains a list of interrupt sources for the VM
which are allocated in the pool of generic interrupts (IPIs) of the
main XIVE IC controller. These are used for the CPU IPIs as well as
for virtual device interrupts. The IRQ number space is defined by
QEMU.
The XIVE device reuses the source structures of the XICS-on-XIVE
device for the source blocks (2-level tree) and for the source
interrupts. Under XIVE native, the source interrupt caches mostly
configuration information and is less used than under the XICS-on-XIVE
device in which hcalls are still necessary at run-time.
When a source is initialized in KVM, an IPI interrupt source is simply
allocated at the OPAL level and then MASKED. KVM only needs to know
about its type: LSI or MSI.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to
let QEMU connect the vCPU presenters to the XIVE KVM device if
required. The capability is not advertised for now as the full support
for the XIVE native exploitation mode is not yet available. When this
is case, the capability will be advertised on PowerNV Hypervisors
only. Nested guests (pseries KVM Hypervisor) are not supported.
Internally, the interface to the new KVM device is protected with a
new interrupt mode: KVMPPC_IRQ_XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This is the basic framework for the new KVM device supporting the XIVE
native exploitation mode. The user interface exposes a new KVM device
to be created by QEMU, only available when running on a L0 hypervisor.
Support for nested guests is not available yet.
The XIVE device reuses the device structure of the XICS-on-XIVE device
as they have a lot in common. That could possibly change in the future
if the need arise.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>