When using the special SID to store the mode bits in an ACE (See
http://technet.microsoft.com/en-us/library/hh509017(v=ws.10).aspx)
which is enabled with mount parm "modefromsid" we were not
passing in the mode via SMB3 create (although chmod was enabled).
SMB3 create allows a security descriptor context to be passed
in (which is more atomic and thus preferable to setting the mode
bits after create via a setinfo).
This patch enables setting the mode bits on create when using
modefromsid mount option. In addition it fixes an endian
error in the definition of the Control field flags in the SMB3
security descriptor. It also makes the ACE type of the special
SID better match the documentation (and behavior of servers
which use this to store mode bits in SMB3 ACLs).
Signed-off-by: Steve French <stfrench@microsoft.com>
Acked-by: Ronnie Sahlberg <lsahlber@redhat.com>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
fs/cifs/cifsacl.c:43:30: warning:
sid_user defined but not used [-Wunused-const-variable=]
It is never used, so remove it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
DACL should start with mode ACE first but we are putting it at the
end. reorder them to put it first.
Signed-off-by: Aurelien Aptel <aaptel@suse.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
When mounting with "modefromsid" retrieve mode bits from
special SID (S-1-5-88-3) on stat. Subsequent patch will fix
setattr (chmod) to save mode bits in S-1-5-88-3-<mode>
Note that when an ACE matching S-1-5-88-3 is not found, we
default the mode to an approximation based on the owner, group
and everyone permissions (as with the "cifsacl" mount option).
See See e.g.
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/hh509017(v=ws.10)
Signed-off-by: Steve French <stfrench@microsoft.com>
Replace the uid/gid/perm permissions checking on a key with an ACL to allow
the SETATTR and SEARCH permissions to be split. This will also allow a
greater range of subjects to represented.
============
WHY DO THIS?
============
The problem is that SETATTR and SEARCH cover a slew of actions, not all of
which should be grouped together.
For SETATTR, this includes actions that are about controlling access to a
key:
(1) Changing a key's ownership.
(2) Changing a key's security information.
(3) Setting a keyring's restriction.
And actions that are about managing a key's lifetime:
(4) Setting an expiry time.
(5) Revoking a key.
and (proposed) managing a key as part of a cache:
(6) Invalidating a key.
Managing a key's lifetime doesn't really have anything to do with
controlling access to that key.
Expiry time is awkward since it's more about the lifetime of the content
and so, in some ways goes better with WRITE permission. It can, however,
be set unconditionally by a process with an appropriate authorisation token
for instantiating a key, and can also be set by the key type driver when a
key is instantiated, so lumping it with the access-controlling actions is
probably okay.
As for SEARCH permission, that currently covers:
(1) Finding keys in a keyring tree during a search.
(2) Permitting keyrings to be joined.
(3) Invalidation.
But these don't really belong together either, since these actions really
need to be controlled separately.
Finally, there are number of special cases to do with granting the
administrator special rights to invalidate or clear keys that I would like
to handle with the ACL rather than key flags and special checks.
===============
WHAT IS CHANGED
===============
The SETATTR permission is split to create two new permissions:
(1) SET_SECURITY - which allows the key's owner, group and ACL to be
changed and a restriction to be placed on a keyring.
(2) REVOKE - which allows a key to be revoked.
The SEARCH permission is split to create:
(1) SEARCH - which allows a keyring to be search and a key to be found.
(2) JOIN - which allows a keyring to be joined as a session keyring.
(3) INVAL - which allows a key to be invalidated.
The WRITE permission is also split to create:
(1) WRITE - which allows a key's content to be altered and links to be
added, removed and replaced in a keyring.
(2) CLEAR - which allows a keyring to be cleared completely. This is
split out to make it possible to give just this to an administrator.
(3) REVOKE - see above.
Keys acquire ACLs which consist of a series of ACEs, and all that apply are
unioned together. An ACE specifies a subject, such as:
(*) Possessor - permitted to anyone who 'possesses' a key
(*) Owner - permitted to the key owner
(*) Group - permitted to the key group
(*) Everyone - permitted to everyone
Note that 'Other' has been replaced with 'Everyone' on the assumption that
you wouldn't grant a permit to 'Other' that you wouldn't also grant to
everyone else.
Further subjects may be made available by later patches.
The ACE also specifies a permissions mask. The set of permissions is now:
VIEW Can view the key metadata
READ Can read the key content
WRITE Can update/modify the key content
SEARCH Can find the key by searching/requesting
LINK Can make a link to the key
SET_SECURITY Can change owner, ACL, expiry
INVAL Can invalidate
REVOKE Can revoke
JOIN Can join this keyring
CLEAR Can clear this keyring
The KEYCTL_SETPERM function is then deprecated.
The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set,
or if the caller has a valid instantiation auth token.
The KEYCTL_INVALIDATE function then requires INVAL.
The KEYCTL_REVOKE function then requires REVOKE.
The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an
existing keyring.
The JOIN permission is enabled by default for session keyrings and manually
created keyrings only.
======================
BACKWARD COMPATIBILITY
======================
To maintain backward compatibility, KEYCTL_SETPERM will translate the
permissions mask it is given into a new ACL for a key - unless
KEYCTL_SET_ACL has been called on that key, in which case an error will be
returned.
It will convert possessor, owner, group and other permissions into separate
ACEs, if each portion of the mask is non-zero.
SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE
permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned
on if a keyring is being altered.
The KEYCTL_DESCRIBE function translates the ACL back into a permissions
mask to return depending on possessor, owner, group and everyone ACEs.
It will make the following mappings:
(1) INVAL, JOIN -> SEARCH
(2) SET_SECURITY -> SETATTR
(3) REVOKE -> WRITE if SETATTR isn't already set
(4) CLEAR -> WRITE
Note that the value subsequently returned by KEYCTL_DESCRIBE may not match
the value set with KEYCTL_SETATTR.
=======
TESTING
=======
This passes the keyutils testsuite for all but a couple of tests:
(1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now
returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed
if the type doesn't have ->read(). You still can't actually read the
key.
(2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't
work as Other has been replaced with Everyone in the ACL.
Signed-off-by: David Howells <dhowells@redhat.com>
Create an ops variable to store tcon->ses->server->ops and cache
indirections and reduce code size a trivial bit.
$ size fs/cifs/cifsacl.o*
text data bss dec hex filename
5338 136 8 5482 156a fs/cifs/cifsacl.o.new
5371 136 8 5515 158b fs/cifs/cifsacl.o.old
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Steve French <smfrench@gmail.com>
New mount option "idsfromsid" indicates to cifs.ko that
it should try to retrieve the uid and gid owner fields
from special sids. This patch adds the code to parse the owner
sids in the ACL to see if they match, and if so populate the
uid and/or gid from them. This is faster than upcalling for
them and asking winbind, and is a fairly common case, and is
also helpful when cifs.upcall and idmapping is not configured.
Signed-off-by: Steve French <steve.french@primarydata.com>
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
Add a facility whereby proposed new links to be added to a keyring can be
vetted, permitting them to be rejected if necessary. This can be used to
block public keys from which the signature cannot be verified or for which
the signature verification fails. It could also be used to provide
blacklisting.
This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE.
To this end:
(1) A function pointer is added to the key struct that, if set, points to
the vetting function. This is called as:
int (*restrict_link)(struct key *keyring,
const struct key_type *key_type,
unsigned long key_flags,
const union key_payload *key_payload),
where 'keyring' will be the keyring being added to, key_type and
key_payload will describe the key being added and key_flags[*] can be
AND'ed with KEY_FLAG_TRUSTED.
[*] This parameter will be removed in a later patch when
KEY_FLAG_TRUSTED is removed.
The function should return 0 to allow the link to take place or an
error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the
link.
The pointer should not be set directly, but rather should be set
through keyring_alloc().
Note that if called during add_key(), preparse is called before this
method, but a key isn't actually allocated until after this function
is called.
(2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to
key_create_or_update() or key_instantiate_and_link() to bypass the
restriction check.
(3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring
with this restriction emplaced can be considered 'trustworthy' by
virtue of being in the keyring when that keyring is consulted.
(4) key_alloc() and keyring_alloc() take an extra argument that will be
used to set restrict_link in the new key. This ensures that the
pointer is set before the key is published, thus preventing a window
of unrestrictedness. Normally this argument will be NULL.
(5) As a temporary affair, keyring_restrict_trusted_only() is added. It
should be passed to keyring_alloc() as the extra argument instead of
setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in
a later patch with functions that look in the appropriate places for
authoritative keys.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Replace all __constant_foo to foo() except in smb2status.h (1700 lines to
update).
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Steve French <sfrench@samba.org>
Cc: Jeff Layton <jlayton@poochiereds.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A previous patch added a ->match_preparse() method to the key type. This is
allowed to override the function called by the iteration algorithm.
Therefore, we can just set a default that simply checks for an exact match of
the key description with the original criterion data and allow match_preparse
to override it as needed.
The key_type::match op is then redundant and can be removed, as can the
user_match() function.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
When mounting with smb2/smb3 (e.g. vers=2.1) and cifsacl mount option,
it was trying to get the mode by querying the acl over the cifs
rather than smb2 protocol. This patch makes that protocol
independent and makes cifsacl smb2 mounts return a more intuitive
operation not supported error (until we add a worker function
for smb2_get_acl).
Note that a previous patch fixed getxattr/setxattr for the CIFSACL xattr
which would unconditionally call cifs_get_acl and cifs_set_acl (even when
mounted smb2). I made those protocol independent last week (new protocol
version operations "get_acl" and "set_acl" but did not add an
smb2_get_acl and smb2_set_acl yet so those now simply return EOPNOTSUPP
which at least is better than sending cifs requests on smb2 mount)
The previous patches did not fix the one remaining case though ie
mounting with "cifsacl" when getting mode from acl would unconditionally
end up calling "cifs_get_acl_from_fid" even for smb2 - so made that protocol
independent but to make that protocol independent had to make sure that the callers
were passing the protocol independent handle structure (cifs_fid) instead
of cifs specific _u16 network file handle (ie cifs_fid instead of cifs_fid->fid)
Now mount with smb2 and cifsacl mount options will return EOPNOTSUP (instead
of timing out) and a future patch will add smb2 operations (e.g. get_smb2_acl)
to enable this.
Signed-off-by: Steve French <smfrench@gmail.com>
The get/set ACL xattr support for CIFS ACLs attempts to send old
cifs dialect protocol requests even when mounted with SMB2 or later
dialects. Sending cifs requests on an smb2 session causes problems -
the server drops the session due to the illegal request.
This patch makes CIFS ACL operations protocol specific to fix that.
Attempting to query/set CIFS ACLs for SMB2 will now return
EOPNOTSUPP (until we add worker routines for sending query
ACL requests via SMB2) instead of sending invalid (cifs)
requests.
A separate followon patch will be needed to fix cifs_acl_to_fattr
(which takes a cifs specific u16 fid so can't be abstracted
to work with SMB2 until that is changed) and will be needed
to fix mount problems when "cifsacl" is specified on mount
with e.g. vers=2.1
Signed-off-by: Steve French <smfrench@gmail.com>
Reviewed-by: Shirish Pargaonkar <spargaonkar@suse.com>
CC: Stable <stable@kernel.org>
Rename CIFSSMBOpen to CIFS_open and make it take
cifs_open_parms structure as a parm.
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Steve French <smfrench@gmail.com>
It's not obvious from reading the macro names that these macros
are for debugging. Convert the names to a single more typical
kernel style cifs_dbg macro.
cERROR(1, ...) -> cifs_dbg(VFS, ...)
cFYI(1, ...) -> cifs_dbg(FYI, ...)
cFYI(DBG2, ...) -> cifs_dbg(NOISY, ...)
Move the terminating format newline from the macro to the call site.
Add CONFIG_CIFS_DEBUG function cifs_vfs_err to emit the
"CIFS VFS: " prefix for VFS messages.
Size is reduced ~ 1% when CONFIG_CIFS_DEBUG is set (default y)
$ size fs/cifs/cifs.ko*
text data bss dec hex filename
265245 2525 132 267902 4167e fs/cifs/cifs.ko.new
268359 2525 132 271016 422a8 fs/cifs/cifs.ko.old
Other miscellaneous changes around these conversions:
o Miscellaneous typo fixes
o Add terminating \n's to almost all formats and remove them
from the macros to be more kernel style like. A few formats
previously had defective \n's
o Remove unnecessary OOM messages as kmalloc() calls dump_stack
o Coalesce formats to make grep easier,
added missing spaces when coalescing formats
o Use %s, __func__ instead of embedded function name
o Removed unnecessary "cifs: " prefixes
o Convert kzalloc with multiply to kcalloc
o Remove unused cifswarn macro
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
This replaces calls to kmalloc followed by memcpy with a single call to
kmemdup. This was found via make coccicheck.
Signed-off-by: Silviu-Mihai Popescu <silviupopescu1990@gmail.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Update id_mode_to_cifs_acl to take a kuid_t and a kgid_t.
Replace NO_CHANGE_32 with INVALID_UID and INVALID_GID, and tests for
NO_CHANGE_32 with uid_valid and gid_valid.
Carefully unpack the value returned from request_key. memcpy the
value into the expected type. The convert the uid/gid into a
kuid/kgid. And then only if the result is a valid kuid or kgid update
fuid/fgid.
Cc: Steve French <smfrench@gmail.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
keyring_alloc has been updated to take a kuid_t and kgid_t so
pass GLOBAL_ROOT_UID instead of 0 for the uid and GLOBAL_ROOT_GID
instead of 0 for the gid.
Cc: Steve French <smfrench@gmail.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The assumption that sizeof(uid_t) is the same as sizeof(gid_t) is
completely reasonable but since we can verify the condition at
compile time.
Cc: Steve French <smfrench@gmail.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull security subsystem updates from James Morris:
"A quiet cycle for the security subsystem with just a few maintenance
updates."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
Smack: create a sysfs mount point for smackfs
Smack: use select not depends in Kconfig
Yama: remove locking from delete path
Yama: add RCU to drop read locking
drivers/char/tpm: remove tasklet and cleanup
KEYS: Use keyring_alloc() to create special keyrings
KEYS: Reduce initial permissions on keys
KEYS: Make the session and process keyrings per-thread
seccomp: Make syscall skipping and nr changes more consistent
key: Fix resource leak
keys: Fix unreachable code
KEYS: Add payload preparsing opportunity prior to key instantiate or update
The authority fields are supposed to be represented by a single 48-bit
value. It's also supposed to represent the value as hex if it's equal to
or greater than 2^32. This is documented in MS-DTYP, section 2.4.2.1.
Also, fix up the max string length to account for this fix.
Acked-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
A SID could potentially be embedded inside of payload.value if there are
no subauthorities, and the arch has 8 byte pointers. Allow for that
possibility there.
While we're at it, rephrase the "embedding" check in terms of
key->payload to allow for the possibility that the union might change
size in the future.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
It was hardcoded to 192 bytes, which was not enough when the max number
of subauthorities went to 15. Redefine this constant in terms of sizeof
the structs involved, and rename it for better clarity.
While we're at it, remove a couple more unused constants from cifsacl.h.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Now that we aren't so rigid about the length of the key being passed
in, we need to be a bit more rigorous about checking the length of
the actual data against the claimed length (a'la num_subauths field).
Check for the case where userspace sends us a seemingly valid key
with a num_subauths field that goes beyond the end of the array. If
that happens, return -EIO and invalidate the key.
Also change the other places where we check for malformed keys in this
code to invalidate the key as well.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
The cifs.idmap keytype always allocates memory to hold the payload from
userspace. In the common case where we're translating a SID to a UID or
GID, we're allocating memory to hold something that's less than or equal
to the size of a pointer.
When the payload is the same size as a pointer or smaller, just store
it in the payload.value union member instead. That saves us an extra
allocation on the sid_to_id upcall.
Note that we have to take extra care to check the datalen when we
go to dereference the .data pointer in the union, but the callers
now check that as a matter of course anyway.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
The cifs.idmap handling code currently causes the kernel to cache the
data from userspace twice. It first looks in a rbtree to see if there is
a matching entry for the given id. If there isn't then it calls
request_key which then checks its cache and then calls out to userland
if it doesn't have one. If the userland program establishes a mapping
and downcalls with that info, it then gets cached in the keyring and in
this rbtree.
Aside from the double memory usage and the performance penalty in doing
all of these extra copies, there are some nasty bugs in here too. The
code declares four rbtrees and spinlocks to protect them, but only seems
to use two of them. The upshot is that the same tree is used to hold
(eg) uid:sid and sid:uid mappings. The comparitors aren't equipped to
deal with that.
I think we'd be best off to remove a layer of caching in this code. If
this was originally done for performance reasons, then that really seems
like a premature optimization.
This patch does that -- it removes the rbtrees and the locks that
protect them and simply has the code do a request_key call on each call
into sid_to_id and id_to_sid. This greatly simplifies this code and
should roughly halve the memory utilization from using the idmapping
code.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
...and make those symbols static in cifsacl.c. Nothing outside
of that file refers to them.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
The format specifiers are for signed values, but these are unsigned.
Given that '-' is a delimiter between fields, I don't think you'd get
what you'd expect if you got a value here that would overflow the sign
bit.
The version and authority fields are 8 bit values so use a "hh" length
modifier there. The subauths are 32 bit values, so there's no need to
use a "l" length modifier there.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
According to several places on the Internet and the samba winbind code,
this is hard limited to 15 in windows, not 5. This does balloon out
the allocation of each by 40 bytes, but I don't see any alternative.
Also, rename it to SID_MAX_SUB_AUTHORITIES to match the alleged name
of this constant in the windows header files
Finally, rename SIDLEN to SID_STRING_MAX, fix the value to reflect
the change to SID_MAX_SUB_AUTHORITIES and document how it was
determined.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
...and lift the restriction in id_to_sid upcall that the size must be
at least as big as a full cifs_sid.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
..nothing outside of cifsacl.c calls it. Also fix the incorrect
comment on the function. It returns 0 when they match.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
...instead of hardcoding in '5' and '6' all over the place.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Add a label we can goto on error, and get rid of some excess indentation.
Also move to kernel-style comments.
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
The userspace cifs.idmap program generally works with the wbclient libs
to generate binary SIDs in userspace. That program defines the struct
that holds these values as having a max of 15 subauthorities. The kernel
idmapping code however limits that value to 5.
When the kernel copies those values around though, it doesn't sanity
check the num_subauths value handed back from userspace or from the
server. It's possible therefore for userspace to hand us back a bogus
num_subauths value (or one that's valid, but greater than 5) that could
cause the kernel to walk off the end of the cifs_sid->sub_auths array.
Fix this by defining a new routine for copying sids and using that in
all of the places that copy it. If we end up with a sid that's longer
than expected then this approach will just lop off the "extra" subauths,
but that's basically what the code does today already. Better approaches
might be to fix this code to reject SIDs with >5 subauths, or fix it
to handle the subauths array dynamically.
At the same time, change the kernel to check the length of the data
returned by userspace. If it's shorter than struct cifs_sid, reject it
and return -EIO. If that happens we'll end up with fields that are
basically uninitialized.
Long term, it might make sense to redefine cifs_sid using a flexarray at
the end, to allow for variable-length subauth lists, and teach the code
to handle the case where the subauths array being passed in from
userspace is shorter than 5 elements.
Note too, that I don't consider this a security issue since you'd need
a compromised cifs.idmap program. If you have that, you can do all sorts
of nefarious stuff. Still, this is probably reasonable for stable.
Cc: stable@kernel.org
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Pull module signing support from Rusty Russell:
"module signing is the highlight, but it's an all-over David Howells frenzy..."
Hmm "Magrathea: Glacier signing key". Somebody has been reading too much HHGTTG.
* 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (37 commits)
X.509: Fix indefinite length element skip error handling
X.509: Convert some printk calls to pr_devel
asymmetric keys: fix printk format warning
MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking
MODSIGN: Make mrproper should remove generated files.
MODSIGN: Use utf8 strings in signer's name in autogenerated X.509 certs
MODSIGN: Use the same digest for the autogen key sig as for the module sig
MODSIGN: Sign modules during the build process
MODSIGN: Provide a script for generating a key ID from an X.509 cert
MODSIGN: Implement module signature checking
MODSIGN: Provide module signing public keys to the kernel
MODSIGN: Automatically generate module signing keys if missing
MODSIGN: Provide Kconfig options
MODSIGN: Provide gitignore and make clean rules for extra files
MODSIGN: Add FIPS policy
module: signature checking hook
X.509: Add a crypto key parser for binary (DER) X.509 certificates
MPILIB: Provide a function to read raw data into an MPI
X.509: Add an ASN.1 decoder
X.509: Add simple ASN.1 grammar compiler
...
Give the key type the opportunity to preparse the payload prior to the
instantiation and update routines being called. This is done with the
provision of two new key type operations:
int (*preparse)(struct key_preparsed_payload *prep);
void (*free_preparse)(struct key_preparsed_payload *prep);
If the first operation is present, then it is called before key creation (in
the add/update case) or before the key semaphore is taken (in the update and
instantiate cases). The second operation is called to clean up if the first
was called.
preparse() is given the opportunity to fill in the following structure:
struct key_preparsed_payload {
char *description;
void *type_data[2];
void *payload;
const void *data;
size_t datalen;
size_t quotalen;
};
Before the preparser is called, the first three fields will have been cleared,
the payload pointer and size will be stored in data and datalen and the default
quota size from the key_type struct will be stored into quotalen.
The preparser may parse the payload in any way it likes and may store data in
the type_data[] and payload fields for use by the instantiate() and update()
ops.
The preparser may also propose a description for the key by attaching it as a
string to the description field. This can be used by passing a NULL or ""
description to the add_key() system call or the key_create_or_update()
function. This cannot work with request_key() as that required the description
to tell the upcall about the key to be created.
This, for example permits keys that store PGP public keys to generate their own
name from the user ID and public key fingerprint in the key.
The instantiate() and update() operations are then modified to look like this:
int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
int (*update)(struct key *key, struct key_preparsed_payload *prep);
and the new payload data is passed in *prep, whether or not it was preparsed.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Use keyring_alloc() to create special keyrings now that it has a permissions
parameter rather than using key_alloc() + key_instantiate_and_link().
Also document and export keyring_alloc() so that modules can use it too.
Signed-off-by: David Howells <dhowells@redhat.com>
This is help us to extend the code for future protocols that can use
another fid mechanism (as SMB2 that has it divided into two parts:
persistent and violatile).
Also rename variables and refactor the code around the changes.
Reviewed-by: Jeff Layton <jlayton@samba.org>
Signed-off-by: Pavel Shilovsky <pshilovsky@samba.org>
Signed-off-by: Steve French <smfrench@gmail.com>
Give the key type the opportunity to preparse the payload prior to the
instantiation and update routines being called. This is done with the
provision of two new key type operations:
int (*preparse)(struct key_preparsed_payload *prep);
void (*free_preparse)(struct key_preparsed_payload *prep);
If the first operation is present, then it is called before key creation (in
the add/update case) or before the key semaphore is taken (in the update and
instantiate cases). The second operation is called to clean up if the first
was called.
preparse() is given the opportunity to fill in the following structure:
struct key_preparsed_payload {
char *description;
void *type_data[2];
void *payload;
const void *data;
size_t datalen;
size_t quotalen;
};
Before the preparser is called, the first three fields will have been cleared,
the payload pointer and size will be stored in data and datalen and the default
quota size from the key_type struct will be stored into quotalen.
The preparser may parse the payload in any way it likes and may store data in
the type_data[] and payload fields for use by the instantiate() and update()
ops.
The preparser may also propose a description for the key by attaching it as a
string to the description field. This can be used by passing a NULL or ""
description to the add_key() system call or the key_create_or_update()
function. This cannot work with request_key() as that required the description
to tell the upcall about the key to be created.
This, for example permits keys that store PGP public keys to generate their own
name from the user ID and public key fingerprint in the key.
The instantiate() and update() operations are then modified to look like this:
int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
int (*update)(struct key *key, struct key_preparsed_payload *prep);
and the new payload data is passed in *prep, whether or not it was preparsed.
Signed-off-by: David Howells <dhowells@redhat.com>
Those macros add a newline on their own, so there's not any need to
embed one in the message itself.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
The kernel contains some special internal keyrings, for instance the DNS
resolver keyring :
2a93faf1 I----- 1 perm 1f030000 0 0 keyring .dns_resolver: empty
It would occasionally be useful to allow the contents of such keyrings to be
flushed by root (cache invalidation).
Allow a flag to be set on a keyring to mark that someone possessing the
sysadmin capability can clear the keyring, even without normal write access to
the keyring.
Set this flag on the special keyrings created by the DNS resolver, the NFS
identity mapper and the CIFS identity mapper.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
On 32 bit systems num_aces * sizeof(struct cifs_ace *) could overflow
leading to a smaller ppace buffer than we expected.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Jeff Layton <jlayton@samba.org>
Signed-off-by: Steve French <smfrench@gmail.com>