Commit Graph

10 Commits

Author SHA1 Message Date
Rob Herring 92871b94a5 ARM: 7855/1: Add check for Cortex-A15 errata 798181 ECO
The work-around for A15 errata 798181 is not needed if appropriate ECO
fixes have been applied to r3p2 and earlier core revisions. This can be
checked by reading REVIDR register bits 4 and 9. If only bit 4 is set,
then the IPI broadcast can be skipped.

Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-10-29 11:06:13 +00:00
Will Deacon 2c813980c6 ARM: tlb: don't perform inner-shareable invalidation for local BP ops
Now that the ASID allocator doesn't require inner-shareable maintenance,
we can convert the local_bp_flush_all function to perform only
non-shareable flushing, in a similar manner to the TLB invalidation
routines.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2013-08-12 12:25:44 +01:00
Will Deacon f0915781bd ARM: tlb: don't perform inner-shareable invalidation for local TLB ops
Inner-shareable TLB invalidation is typically more expensive than local
(non-shareable) invalidation, so performing the broadcasting for
local_flush_tlb_* operations is a waste of cycles and needlessly
clobbers entries in the TLBs of other CPUs.

This patch introduces __flush_tlb_* versions for many of the TLB
invalidation functions, which only respect inner-shareable variants of
the invalidation instructions when presented with the TLB_V7_UIS_FULL
flag. The local version is also inlined to prevent SMP_ON_UP kernels
from missing flushes, where the __flush variant would be called with
the UP flags.

This gains us around 0.5% in hackbench scores for a dual-core A15, but I
would expect this to improve as more cores (and clusters) are added to
the equation.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Albin Tonnerre <Albin.Tonnerre@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2013-08-12 12:25:44 +01:00
Fabio Estevam 1f49856bb0 ARM: 7789/1: Do not run dummy_flush_tlb_a15_erratum() on non-Cortex-A15
Commit 93dc688 (ARM: 7684/1: errata: Workaround for Cortex-A15 erratum 798181 (TLBI/DSB operations)) causes the following undefined instruction error on a mx53 (Cortex-A8):

Internal error: Oops - undefined instruction: 0 [#1] SMP ARM
CPU: 0 PID: 275 Comm: modprobe Not tainted 3.11.0-rc2-next-20130722-00009-g9b0f371 #881
task: df46cc00 ti: df48e000 task.ti: df48e000
PC is at check_and_switch_context+0x17c/0x4d0
LR is at check_and_switch_context+0xdc/0x4d0

This problem happens because check_and_switch_context() calls dummy_flush_tlb_a15_erratum() without checking if we are really running on a Cortex-A15 or not.

To avoid this issue, only call dummy_flush_tlb_a15_erratum() inside
check_and_switch_context() if erratum_a15_798181() returns true, which means that we are really running on a Cortex-A15.

Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-07-26 12:02:09 +01:00
Marc Zyngier 0d0752bca1 ARM: 7769/1: Cortex-A15: fix erratum 798181 implementation
Looking into the active_asids array is not enough, as we also need
to look into the reserved_asids array (they both represent processes
that are currently running).

Also, not holding the ASID allocator lock is racy, as another CPU
could schedule that process and trigger a rollover, making the erratum
workaround miss an IPI.

Exposing this outside of context.c is a little ugly on the side, so
let's define a new entry point that the erratum workaround can call
to obtain the cpumask.

Cc: <stable@vger.kernel.org> # 3.9
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-06-24 15:27:35 +01:00
Catalin Marinas 3eb0be3042 ARM: 7703/1: Disable preemption in broadcast_tlb*_a15_erratum()
Commit 93dc688 (ARM: 7684/1: errata: Workaround for Cortex-A15 erratum
798181 (TLBI/DSB operations)) introduces calls to smp_processor_id() and
smp_call_function_many() with preemption enabled. This patch disables
preemption and also optimises the smp_processor_id() call in
broadcast_tlb_mm_a15_erratum(). The broadcast_tlb_a15_erratum() function
is changed to use smp_call_function() which disables preemption.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Geoff Levand <geoff@infradead.org>
Reported-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-04-25 13:15:15 +01:00
Catalin Marinas 93dc68876b ARM: 7684/1: errata: Workaround for Cortex-A15 erratum 798181 (TLBI/DSB operations)
On Cortex-A15 (r0p0..r3p2) the TLBI/DSB are not adequately shooting down
all use of the old entries. This patch implements the erratum workaround
which consists of:

1. Dummy TLBIMVAIS and DSB on the CPU doing the TLBI operation.
2. Send IPI to the CPUs that are running the same mm (and ASID) as the
   one being invalidated (or all the online CPUs for global pages).
3. CPU receiving the IPI executes a DMB and CLREX (part of the exception
   return code already).

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-04-03 16:45:49 +01:00
Will Deacon 862c588f06 ARM: 7660/1: tlb: add branch predictor maintenance operations
The ARM architecture requires explicit branch predictor maintenance
when updating an instruction stream for a given virtual address. In
reality, this isn't so much of a burden because the branch predictor
is flushed during the cache maintenance required to make the new
instructions visible to the I-side of the processor.

However, there are still some cases where explicit flushing is required,
so add a local_bp_flush_all operation to deal with this.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-03-03 22:54:15 +00:00
Gilad Ben-Yossef 3fc498f165 smp: introduce a generic on_each_cpu_mask() function
We have lots of infrastructure in place to partition multi-core systems
such that we have a group of CPUs that are dedicated to specific task:
cgroups, scheduler and interrupt affinity, and cpuisol= boot parameter.
Still, kernel code will at times interrupt all CPUs in the system via IPIs
for various needs.  These IPIs are useful and cannot be avoided
altogether, but in certain cases it is possible to interrupt only specific
CPUs that have useful work to do and not the entire system.

This patch set, inspired by discussions with Peter Zijlstra and Frederic
Weisbecker when testing the nohz task patch set, is a first stab at trying
to explore doing this by locating the places where such global IPI calls
are being made and turning the global IPI into an IPI for a specific group
of CPUs.  The purpose of the patch set is to get feedback if this is the
right way to go for dealing with this issue and indeed, if the issue is
even worth dealing with at all.  Based on the feedback from this patch set
I plan to offer further patches that address similar issue in other code
paths.

This patch creates an on_each_cpu_mask() and on_each_cpu_cond()
infrastructure API (the former derived from existing arch specific
versions in Tile and Arm) and uses them to turn several global IPI
invocation to per CPU group invocations.

Core kernel:

on_each_cpu_mask() calls a function on processors specified by cpumask,
which may or may not include the local processor.

You must not call this function with disabled interrupts or from a
hardware interrupt handler or from a bottom half handler.

arch/arm:

Note that the generic version is a little different then the Arm one:

1. It has the mask as first parameter
2. It calls the function on the calling CPU with interrupts disabled,
   but this should be OK since the function is called on the other CPUs
   with interrupts disabled anyway.

arch/tile:

The API is the same as the tile private one, but the generic version
also calls the function on the with interrupts disabled in UP case

This is OK since the function is called on the other CPUs
with interrupts disabled.

Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Sasha Levin <levinsasha928@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.org>
Cc: Kosaki Motohiro <kosaki.motohiro@gmail.com>
Cc: Milton Miller <miltonm@bga.com>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 17:14:35 -07:00
Russell King 03b505eae6 ARM: SMP: split out software TLB maintainence broadcasting
smp.c is becoming too large, so split out the TLB maintainence
broadcasting into a separate smp_tlb.c file.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-12-20 15:09:17 +00:00