This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This semantic was already true for atomic operations within the kernel,
and this change makes it true for the fast atomic syscalls (__NR_cmpxchg
and __NR_atomic_update) as well. Previously, user-space had to use
the fast atomic syscalls exclusively to update memory, since raw stores
could lose a race with the atomic update code even when the atomic update
hadn't actually modified the value.
With this change, we no longer write back the value to memory if it
hasn't changed. This allows certain types of idioms in user space to
work as expected, e.g. "atomic exchange" to acquire a spinlock, followed
by a raw store of zero to release the lock.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This support is required for CONFIG_KEYS, NFSv4 kernel DNS, etc.
The change is slightly more complex than the minimal thing, since
I took advantage of having to go into the assembly code to just
move a bunch of stuff into C code: specifically, the schedule(),
do_async_page_fault(), do_signal(), and single_step_once() support,
in addition to the TIF_NOTIFY_RESUME support.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
The Tilera architecture traditionally supports 64KB page sizes
to improve TLB utilization and improve performance when the
hardware is being used primarily to run a single application.
For more generic server scenarios, it can be beneficial to run
with 4KB page sizes, so this commit allows that to be specified
(by modifying the arch/tile/include/hv/pagesize.h header).
As part of this change, we also re-worked the PTE management
slightly so that PTE writes all go through a __set_pte() function
where we can do some additional validation. The set_pte_order()
function was eliminated since the "order" argument wasn't being used.
One bug uncovered was in the PCI DMA code, which wasn't properly
flushing the specified range. This was benign with 64KB pages,
but with 4KB pages we were getting some larger flushes wrong.
The per-cpu memory reservation code also needed updating to
conform with the newer percpu stuff; before it always chose 64KB,
and that was always correct, but with 4KB granularity we now have
to pay closer attention and reserve the amount of memory that will
be requested when the percpu code starts allocating.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This is a grab bag of changes with no actual change to generated code.
This includes whitespace and comment typos, plus a couple of stale
comments being removed.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
The problem was that this could lead to IPIs being disabled during
the softirq processing after a hypervisor downcall (e.g. for I/O),
since both IPI and device interrupts use the INCTRL_1 downcall mechanism.
When this happened at the wrong time, it could lead to deadlock.
Luckily, we were already maintaining the per-interrupt state we need,
and using it in the proper way in the hypervisor, so all we had to do
was to change Linux to stop blocking downcall interrupts for the entire
length of the downcall. (Now they're blocked while we're executing the
downcall routine itself, but not while we're executing any subsequent
softirq routines.) The hypervisor is doing a very small amount of
work it no longer needs to do (masking INTCTRL_1 on entry to the client
interrupt routine), but doing so means that older versions of Tile Linux
will continue to work with a current hypervisor, so that seems reasonable.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
The current tile rt_sigreturn() syscall pattern uses the common idiom
of loading up pt_regs with all the saved registers from the time of
the signal, then anticipating the fact that we will clobber the ABI
"return value" register (r0) as we return from the syscall by setting
the rt_sigreturn return value to whatever random value was in the pt_regs
for r0.
However, this breaks in our 64-bit kernel when running "compat" tasks,
since we always sign-extend the "return value" register to properly
handle returned pointers that are in the upper 2GB of the 32-bit compat
address space. Doing this to the sigreturn path then causes occasional
random corruption of the 64-bit r0 register.
Instead, we stop doing the crazy "load the return-value register"
hack in sigreturn. We already have some sigreturn-specific assembly
code that we use to pass the pt_regs pointer to C code. We extend that
code to also set the link register to point to a spot a few instructions
after the usual syscall return address so we don't clobber the saved r0.
Now it no longer matters what the rt_sigreturn syscall returns, and the
pt_regs structure can be cleanly and completely reloaded.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This is not quite the complete support, since we're not yet shipping
intvec_64.S, but it is the support relevant to the set of files we are
currently shipping, and makes it easier to track changes between
our internal sources and our public GIT repository.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
While not a port to KVM (yet), this change modifies the kernel
to be able to build either at PL1 or at PL2 with a suitable
config switch. Pushing up this change avoids handling branch
merge issues going forward with the KVM work.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Previously we were using -1023, which is fine for normal syscall
error returns, but the common value in use for other platforms
is -4095, and one Tilera-specific driver does use values in the
-1100 range, so tickled this bug.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
With this change we now include <asm-generic/syscalls.h> into the "tile"
version of the header. To take full advantage of the prototypes there,
we also change our naming convention for "struct pt_regs *" syscalls so
that, e.g., _sys_execve() is the "true" syscall entry, which sets the
appropriate register to point to the pt_regs before calling sys_execve().
While doing this I realized I no longer needed the fork and vfork
entry point stubs, since those functions aren't in the generic
syscall ABI, so I removed them as well.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This "bpt_code" instruction was killed off in our development line a while
ago (the actual definition of bpt_code that is used is in kernel/traps.c)
but I didn't push it for 2.6.36 because it seemed harmless and I didn't
want to try to push more than absolutely necessary.
However, we recently fixed a bug in our gcc that had been causing
"-gdwarf2" not to be passed to the assembler, and passing this flag causes
an erroneous assembler failure in the presence of code in a data section,
sometimes. While we'd like to track down the bug in the assembler,
we'd also like to make sure 2.6.36 builds with the current toolchain,
so I'm removing this dead code as well.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Until now, the tile architecture ABI for syscall return has just been
that r0 holds the return value, and an error is only signalled like it is
for kernel code, with a negative small number.
However, this means that in multiple places in userspace we end up writing
the same three-cycle idiom that tests for a small negative number for
error. It seems cleaner to instead move that code into the kernel, and
set r1 to hold zero on success or errno on failure; previously, r1 was
just zeroed on return from the kernel (to avoid leaking kernel state).
This way a single conditional branch after the syscall is sufficient
to test for the failure case. The number of cycles taken is the same,
but the error-checking code is in just one place, so total code size is
smaller, and random userspace syscall code is easier to understand.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This network (the "UDN") connects all the cpus on the chip in a
wormhole-routed dynamic network. Subrectangles of the chip can
be allocated by a "create" ioctl on /dev/hardwall, and then to access the
UDN in that rectangle, tasks must perform an "activate" ioctl on that
same file object after affinitizing themselves to a single cpu in
the region. Sending a wormhole-routed message that tries to leave
that subrectangle causes all activated tasks to receive a SIGILL
(just as they would if they tried to access the UDN without first
activating themselves to a hardwall rectangle).
The original submission of this code to LKML had the driver
instantiated under /proc/tile/hardwall. Now we just use a character
device for this, conventionally /dev/hardwall. Some futures planning
for the TILE-Gx chip suggests that we may want to have other types of
devices that share the general model of "bind a task to a cpu, then
'activate' a file descriptor on a pseudo-device that gives access to
some hardware resource". As such, we are using a device rather
than, for example, a syscall, to set up and activate this code.
As part of this change, the compat_ptr() declaration was fixed and used
to pass the compat_ioctl argument to the normal ioctl. So far we limit
compat code to 2GB, so the difference between zero-extend and sign-extend
(the latter being correct, eventually) had been overlooked.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
This change is the core kernel support for TILEPro and TILE64 chips.
No driver support (except the console driver) is included yet.
This includes the relevant Linux headers in asm/; the low-level
low-level "Tile architecture" headers in arch/, which are
shared with the hypervisor, etc., and are build-system agnostic;
and the relevant hypervisor headers in hv/.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Reviewed-by: Paul Mundt <lethal@linux-sh.org>