Commit Graph

19 Commits

Author SHA1 Message Date
David Howells 26aaeffcaf fscache, cachefiles: Add alternate API to use kiocb for read/write to cache
Add an alternate API by which the cache can be accessed through a kiocb,
doing async DIO, rather than using the current API that tells the cache
where all the pages are.

The new API is intended to be used in conjunction with the netfs helper
library.  A filesystem must pick one or the other and not mix them.

Filesystems wanting to use the new API must #define FSCACHE_USE_NEW_IO_API
before #including the header.  This prevents them from continuing to use
the old API at the same time as there are incompatibilities in how the
PG_fscache page bit is used.

Changes:
v6:
 - Provide a routine to shape a write so that the start and length can be
   aligned for DIO[3].

v4:
 - Use the vfs_iocb_iter_read/write() helpers[1]
 - Move initial definition of fscache_begin_read_operation() here.
 - Remove a commented-out line[2]
 - Combine ki->term_func calls in cachefiles_read_complete()[2].
 - Remove explicit NULL initialiser[2].
 - Remove extern on func decl[2].
 - Put in param names on func decl[2].
 - Remove redundant else[2].
 - Fill out the kdoc comment for fscache_begin_read_operation().
 - Rename fs/fscache/page2.c to io.c to match later patches.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-tested-by: Jeff Layton <jlayton@kernel.org>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-By: Marc Dionne <marc.dionne@auristor.com>
cc: Christoph Hellwig <hch@lst.de>
cc: linux-cachefs@redhat.com
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: ceph-devel@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/r/20210216102614.GA27555@lst.de/ [1]
Link: https://lore.kernel.org/r/20210216084230.GA23669@lst.de/ [2]
Link: https://lore.kernel.org/r/161781047695.463527.7463536103593997492.stgit@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/161118142558.1232039.17993829899588971439.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/161161037850.2537118.8819808229350326503.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/161340402057.1303470.8038373593844486698.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/161539545919.286939.14573472672781434757.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/161653801477.2770958.10543270629064934227.stgit@warthog.procyon.org.uk/ # v5
Link: https://lore.kernel.org/r/161789084517.6155.12799689829859169640.stgit@warthog.procyon.org.uk/ # v6
2021-04-23 10:14:32 +01:00
Thomas Gleixner b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00
David Howells a18feb5576 fscache: Add tracepoints
Add some tracepoints to fscache:

 (*) fscache_cookie - Tracks a cookie's usage count.

 (*) fscache_netfs - Logs registration of a network filesystem, including
     the pointer to the cookie allocated.

 (*) fscache_acquire - Logs cookie acquisition.

 (*) fscache_relinquish - Logs cookie relinquishment.

 (*) fscache_enable - Logs enablement of a cookie.

 (*) fscache_disable - Logs disablement of a cookie.

 (*) fscache_osm - Tracks execution of states in the object state machine.

and cachefiles:

 (*) cachefiles_ref - Tracks a cachefiles object's usage count.

 (*) cachefiles_lookup - Logs result of lookup_one_len().

 (*) cachefiles_mkdir - Logs result of vfs_mkdir().

 (*) cachefiles_create - Logs result of vfs_create().

 (*) cachefiles_unlink - Logs calls to vfs_unlink().

 (*) cachefiles_rename - Logs calls to vfs_rename().

 (*) cachefiles_mark_active - Logs an object becoming active.

 (*) cachefiles_wait_active - Logs a wait for an old object to be
     destroyed.

 (*) cachefiles_mark_inactive - Logs an object becoming inactive.

 (*) cachefiles_mark_buried - Logs the burial of an object.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-04 13:41:27 +01:00
Ingo Molnar 5dd43ce2f6 sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.

Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.

So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:

  include/linux/wait_bit.h  for types and APIs
  kernel/sched/wait_bit.c   for the implementation

Update all header dependencies.

This reduces the size of wait.h rather significantly, by about 30%.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:19:09 +02:00
Ingo Molnar ac6424b981 sched/wait: Rename wait_queue_t => wait_queue_entry_t
Rename:

	wait_queue_t		=>	wait_queue_entry_t

'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.

Start sorting this out by renaming it to 'wait_queue_entry_t'.

This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:18:27 +02:00
Ingo Molnar 5b825c3af1 sched/headers: Prepare to remove <linux/cred.h> inclusion from <linux/sched.h>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.

Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:31 +01:00
David Howells a818101d7b cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
An NULL-pointer dereference happens in cachefiles_mark_object_inactive()
when it tries to read i_blocks so that it can tell the cachefilesd daemon
how much space it's making available.

The problem is that cachefiles_drop_object() calls
cachefiles_mark_object_inactive() after calling cachefiles_delete_object()
because the object being marked active staves off attempts to (re-)use the
file at that filename until after it has been deleted.  This means that
d_inode is NULL by the time we come to try to access it.

To fix the problem, have the caller of cachefiles_mark_object_inactive()
supply the number of blocks freed up.

Without this, the following oops may occur:

BUG: unable to handle kernel NULL pointer dereference at 0000000000000098
IP: [<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
...
CPU: 11 PID: 527 Comm: kworker/u64:4 Tainted: G          I    ------------   3.10.0-470.el7.x86_64 #1
Hardware name: Hewlett-Packard HP Z600 Workstation/0B54h, BIOS 786G4 v03.19 03/11/2011
Workqueue: fscache_object fscache_object_work_func [fscache]
task: ffff880035edaf10 ti: ffff8800b77c0000 task.ti: ffff8800b77c0000
RIP: 0010:[<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
RSP: 0018:ffff8800b77c3d70  EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8800bf6cc400 RCX: 0000000000000034
RDX: 0000000000000000 RSI: ffff880090ffc710 RDI: ffff8800bf761ef8
RBP: ffff8800b77c3d88 R08: 2000000000000000 R09: 0090ffc710000000
R10: ff51005d2ff1c400 R11: 0000000000000000 R12: ffff880090ffc600
R13: ffff8800bf6cc520 R14: ffff8800bf6cc400 R15: ffff8800bf6cc498
FS:  0000000000000000(0000) GS:ffff8800bb8c0000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000098 CR3: 00000000019ba000 CR4: 00000000000007e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
 ffff880090ffc600 ffff8800bf6cc400 ffff8800867df140 ffff8800b77c3db0
 ffffffffa06c48cb ffff880090ffc600 ffff880090ffc180 ffff880090ffc658
 ffff8800b77c3df0 ffffffffa085d846 ffff8800a96b8150 ffff880090ffc600
Call Trace:
 [<ffffffffa06c48cb>] cachefiles_drop_object+0x6b/0xf0 [cachefiles]
 [<ffffffffa085d846>] fscache_drop_object+0xd6/0x1e0 [fscache]
 [<ffffffffa085d615>] fscache_object_work_func+0xa5/0x200 [fscache]
 [<ffffffff810a605b>] process_one_work+0x17b/0x470
 [<ffffffff810a6e96>] worker_thread+0x126/0x410
 [<ffffffff810a6d70>] ? rescuer_thread+0x460/0x460
 [<ffffffff810ae64f>] kthread+0xcf/0xe0
 [<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140
 [<ffffffff81695418>] ret_from_fork+0x58/0x90
 [<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140

The oopsing code shows:

	callq  0xffffffff810af6a0 <wake_up_bit>
	mov    0xf8(%r12),%rax
	mov    0x30(%rax),%rax
	mov    0x98(%rax),%rax   <---- oops here
	lock add %rax,0x130(%rbx)

where this is:

	d_backing_inode(object->dentry)->i_blocks

Fixes: a5b3a80b89 (CacheFiles: Provide read-and-reset release counters for cachefilesd)
Reported-by: Jianhong Yin <jiyin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-09-27 18:31:29 -04:00
David Howells a5b3a80b89 CacheFiles: Provide read-and-reset release counters for cachefilesd
Provide read-and-reset objects- and blocks-released counters for cachefilesd
to use to work out whether there's anything new that can be culled.

One of the problems cachefilesd has is that if all the objects in the cache
are pinned by inodes lying dormant in the kernel inode cache, there isn't
anything for it to cull.  In such a case, it just spins around walking the
filesystem tree and scanning for something to cull.  This eats up a lot of
CPU time.

By telling cachefilesd if there have been any releases, the daemon can
sleep until there is the possibility of something to do.

cachefilesd finds this information by the following means:

 (1) When the control fd is read, the kernel presents a list of values of
     interest.  "freleased=N" and "breleased=N" are added to this list to
     indicate the number of files released and number of blocks released
     since the last read call.  At this point the counters are reset.

 (2) POLLIN is signalled if the number of files released becomes greater
     than 0.

Note that by 'released' it just means that the kernel has released its
interest in those files for the moment, not necessarily that the files
should be deleted from the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-02-01 12:30:10 -05:00
Mel Gorman 71baba4b92 mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep.  Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep.  The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake.  As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags.  This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
David Howells 182d919b84 FS-Cache: Count culled objects and objects rejected due to lack of space
Count the number of objects that get culled by the cache backend and the
number of objects that the cache backend declines to instantiate due to lack
of space in the cache.

These numbers are made available through /proc/fs/fscache/stats

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jeff.layton@primarydata.com>
2015-02-24 10:05:27 +00:00
Fabian Frederick 6ff66ac77a fs/cachefiles: add missing \n to kerror conversions
Commit 0227d6abb3 ("fs/cachefiles: replace kerror by pr_err") didn't
include newline featuring in original kerror definition

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reported-by: David Howells <dhowells@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: <stable@vger.kernel.org>	[3.16.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-26 08:10:35 -07:00
Fabian Frederick 0227d6abb3 fs/cachefiles: replace kerror by pr_err
Also add pr_fmt in internal.h

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:14 -07:00
Fabian Frederick 4e1eb88305 FS/CACHEFILES: convert printk to pr_foo()
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:14 -07:00
David Howells 5002d7bef8 CacheFiles: Implement interface to check cache consistency
Implement the FS-Cache interface to check the consistency of a cache object in
CacheFiles.

Original-author: Hongyi Jia <jiayisuse@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hongyi Jia <jiayisuse@gmail.com>
cc: Milosz Tanski <milosz@adfin.com>
2013-09-06 09:17:30 +01:00
David Howells 5f4f9f4af1 CacheFiles: Downgrade the requirements passed to the allocator
Downgrade the requirements passed to the allocator in the gfp flags parameter.
FS-Cache/CacheFiles can handle OOM conditions simply by aborting the attempt to
store an object or a page in the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 21:58:25 +00:00
David Howells 12fdff3fc2 Add a dummy printk function for the maintenance of unused printks
Add a dummy printk function for the maintenance of unused printks through gcc
format checking, and also so that side-effect checking is maintained too.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-12 09:51:35 -07:00
David Howells c61ea31dac CacheFiles: Fix occasional EIO on call to vfs_unlink()
Fix an occasional EIO returned by a call to vfs_unlink():

	[ 4868.465413] CacheFiles: I/O Error: Unlink failed
	[ 4868.465444] FS-Cache: Cache cachefiles stopped due to I/O error
	[ 4947.320011] CacheFiles: File cache on md3 unregistering
	[ 4947.320041] FS-Cache: Withdrawing cache "mycache"
	[ 5127.348683] FS-Cache: Cache "mycache" added (type cachefiles)
	[ 5127.348716] CacheFiles: File cache on md3 registered
	[ 7076.871081] CacheFiles: I/O Error: Unlink failed
	[ 7076.871130] FS-Cache: Cache cachefiles stopped due to I/O error
	[ 7116.780891] CacheFiles: File cache on md3 unregistering
	[ 7116.780937] FS-Cache: Withdrawing cache "mycache"
	[ 7296.813394] FS-Cache: Cache "mycache" added (type cachefiles)
	[ 7296.813432] CacheFiles: File cache on md3 registered

What happens is this:

 (1) A cached NFS file is seen to have become out of date, so NFS retires the
     object and immediately acquires a new object with the same key.

 (2) Retirement of the old object is done asynchronously - so the lookup/create
     to generate the new object may be done first.

     This can be a problem as the old object and the new object must exist at
     the same point in the backing filesystem (i.e. they must have the same
     pathname).

 (3) The lookup for the new object sees that a backing file already exists,
     checks to see whether it is valid and sees that it isn't.  It then deletes
     that file and creates a new one on disk.

 (4) The retirement phase for the old file is then performed.  It tries to
     delete the dentry it has, but ext4_unlink() returns -EIO because the inode
     attached to that dentry no longer matches the inode number associated with
     the filename in the parent directory.

The trace below shows this quite well.

	[md5sum] ==> __fscache_relinquish_cookie(ffff88002d12fb58{NFS.fh,ffff88002ce62100},1)
	[md5sum] ==> __fscache_acquire_cookie({NFS.server},{NFS.fh},ffff88002ce62100)

NFS has retired the old cookie and asked for a new one.

	[kslowd] ==> fscache_object_state_machine({OBJ52,OBJECT_ACTIVE,24})
	[kslowd] <== fscache_object_state_machine() [->OBJECT_DYING]
	[kslowd] ==> fscache_object_state_machine({OBJ53,OBJECT_INIT,0})
	[kslowd] <== fscache_object_state_machine() [->OBJECT_LOOKING_UP]
	[kslowd] ==> fscache_object_state_machine({OBJ52,OBJECT_DYING,24})
	[kslowd] <== fscache_object_state_machine() [->OBJECT_RECYCLING]

The old object (OBJ52) is going through the terminal states to get rid of it,
whilst the new object - (OBJ53) - is coming into being.

	[kslowd] ==> fscache_object_state_machine({OBJ53,OBJECT_LOOKING_UP,0})
	[kslowd] ==> cachefiles_walk_to_object({ffff88003029d8b8},OBJ53,@68,)
	[kslowd] lookup '@68'
	[kslowd] next -> ffff88002ce41bd0 positive
	[kslowd] advance
	[kslowd] lookup 'Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA'
	[kslowd] next -> ffff8800369faac8 positive

The new object has looked up the subdir in which the file would be in (getting
dentry ffff88002ce41bd0) and then looked up the file itself (getting dentry
ffff8800369faac8).

	[kslowd] validate 'Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA'
	[kslowd] ==> cachefiles_bury_object(,'@68','Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA')
	[kslowd] remove ffff8800369faac8 from ffff88002ce41bd0
	[kslowd] unlink stale object
	[kslowd] <== cachefiles_bury_object() = 0

It then checks the file's xattrs to see if it's valid.  NFS says that the
auxiliary data indicate the file is out of date (obvious to us - that's why NFS
ditched the old version and got a new one).  CacheFiles then deletes the old
file (dentry ffff8800369faac8).

	[kslowd] redo lookup
	[kslowd] lookup 'Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA'
	[kslowd] next -> ffff88002cd94288 negative
	[kslowd] create -> ffff88002cd94288{ffff88002cdaf238{ino=148247}}

CacheFiles then redoes the lookup and gets a negative result in a new dentry
(ffff88002cd94288) which it then creates a file for.

	[kslowd] ==> cachefiles_mark_object_active(,OBJ53)
	[kslowd] <== cachefiles_mark_object_active() = 0
	[kslowd] === OBTAINED_OBJECT ===
	[kslowd] <== cachefiles_walk_to_object() = 0 [148247]
	[kslowd] <== fscache_object_state_machine() [->OBJECT_AVAILABLE]

The new object is then marked active and the state machine moves to the
available state - at which point NFS can start filling the object.

	[kslowd] ==> fscache_object_state_machine({OBJ52,OBJECT_RECYCLING,20})
	[kslowd] ==> fscache_release_object()
	[kslowd] ==> cachefiles_drop_object({OBJ52,2})
	[kslowd] ==> cachefiles_delete_object(,OBJ52{ffff8800369faac8})

The old object, meanwhile, goes on with being retired.  If allocation occurs
first, cachefiles_delete_object() has to wait for dir->d_inode->i_mutex to
become available before it can continue.

	[kslowd] ==> cachefiles_bury_object(,'@68','Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA')
	[kslowd] remove ffff8800369faac8 from ffff88002ce41bd0
	[kslowd] unlink stale object
	EXT4-fs warning (device sda6): ext4_unlink: Inode number mismatch in unlink (148247!=148193)
	CacheFiles: I/O Error: Unlink failed
	FS-Cache: Cache cachefiles stopped due to I/O error

CacheFiles then tries to delete the file for the old object, but the dentry it
has (ffff8800369faac8) no longer points to a valid inode for that directory
entry, and so ext4_unlink() returns -EIO when de->inode does not match i_ino.

	[kslowd] <== cachefiles_bury_object() = -5
	[kslowd] <== cachefiles_delete_object() = -5
	[kslowd] <== fscache_object_state_machine() [->OBJECT_DEAD]
	[kslowd] ==> fscache_object_state_machine({OBJ53,OBJECT_AVAILABLE,0})
	[kslowd] <== fscache_object_state_machine() [->OBJECT_ACTIVE]

(Note that the above trace includes extra information beyond that produced by
the upstream code).

The fix is to note when an object that is being retired has had its object
deleted preemptively by a replacement object that is being created, and to
skip the second removal attempt in such a case.

Reported-by: Greg M <gregm@servu.net.au>
Reported-by: Mark Moseley <moseleymark@gmail.com>
Reported-by: Romain DEGEZ <romain.degez@smartjog.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-11 10:07:53 -07:00
David Howells 911e690e70 CacheFiles: Fixup renamed filenames in comments in internal.h
Fix up renamed filenames in comments in fs/cachefiles/internal.h.

Originally, the files were all called cf-xxx.c, but they got renamed to
just xxx.c.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-27 10:20:13 -07:00
David Howells 9ae326a690 CacheFiles: A cache that backs onto a mounted filesystem
Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
backing store for the cache.

CacheFiles uses a userspace daemon to do some of the cache management - such as
reaping stale nodes and culling.  This is called cachefilesd and lives in
/sbin.  The source for the daemon can be downloaded from:

	http://people.redhat.com/~dhowells/cachefs/cachefilesd.c

And an example configuration from:

	http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf

The filesystem and data integrity of the cache are only as good as those of the
filesystem providing the backing services.  Note that CacheFiles does not
attempt to journal anything since the journalling interfaces of the various
filesystems are very specific in nature.

CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon.  Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence.  The daemon
opens this and sends commands down it to control the cache.

CacheFiles is currently limited to a single cache.

CacheFiles attempts to maintain at least a certain percentage of free space on
the filesystem, shrinking the cache by culling the objects it contains to make
space if necessary - see the "Cache Culling" section.  This means it can be
placed on the same medium as a live set of data, and will expand to make use of
spare space and automatically contract when the set of data requires more
space.

============
REQUIREMENTS
============

The use of CacheFiles and its daemon requires the following features to be
available in the system and in the cache filesystem:

	- dnotify.

	- extended attributes (xattrs).

	- openat() and friends.

	- bmap() support on files in the filesystem (FIBMAP ioctl).

	- The use of bmap() to detect a partial page at the end of the file.

It is strongly recommended that the "dir_index" option is enabled on Ext3
filesystems being used as a cache.

=============
CONFIGURATION
=============

The cache is configured by a script in /etc/cachefilesd.conf.  These commands
set up cache ready for use.  The following script commands are available:

 (*) brun <N>%
 (*) bcull <N>%
 (*) bstop <N>%
 (*) frun <N>%
 (*) fcull <N>%
 (*) fstop <N>%

	Configure the culling limits.  Optional.  See the section on culling
	The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.

	The commands beginning with a 'b' are file space (block) limits, those
	beginning with an 'f' are file count limits.

 (*) dir <path>

	Specify the directory containing the root of the cache.  Mandatory.

 (*) tag <name>

	Specify a tag to FS-Cache to use in distinguishing multiple caches.
	Optional.  The default is "CacheFiles".

 (*) debug <mask>

	Specify a numeric bitmask to control debugging in the kernel module.
	Optional.  The default is zero (all off).  The following values can be
	OR'd into the mask to collect various information:

		1	Turn on trace of function entry (_enter() macros)
		2	Turn on trace of function exit (_leave() macros)
		4	Turn on trace of internal debug points (_debug())

	This mask can also be set through sysfs, eg:

		echo 5 >/sys/modules/cachefiles/parameters/debug

==================
STARTING THE CACHE
==================

The cache is started by running the daemon.  The daemon opens the cache device,
configures the cache and tells it to begin caching.  At that point the cache
binds to fscache and the cache becomes live.

The daemon is run as follows:

	/sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]

The flags are:

 (*) -d

	Increase the debugging level.  This can be specified multiple times and
	is cumulative with itself.

 (*) -s

	Send messages to stderr instead of syslog.

 (*) -n

	Don't daemonise and go into background.

 (*) -f <configfile>

	Use an alternative configuration file rather than the default one.

===============
THINGS TO AVOID
===============

Do not mount other things within the cache as this will cause problems.  The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.

Do not create, rename or unlink files and directories in the cache whilst the
cache is active, as this may cause the state to become uncertain.

Renaming files in the cache might make objects appear to be other objects (the
filename is part of the lookup key).

Do not change or remove the extended attributes attached to cache files by the
cache as this will cause the cache state management to get confused.

Do not create files or directories in the cache, lest the cache get confused or
serve incorrect data.

Do not chmod files in the cache.  The module creates things with minimal
permissions to prevent random users being able to access them directly.

=============
CACHE CULLING
=============

The cache may need culling occasionally to make space.  This involves
discarding objects from the cache that have been used less recently than
anything else.  Culling is based on the access time of data objects.  Empty
directories are culled if not in use.

Cache culling is done on the basis of the percentage of blocks and the
percentage of files available in the underlying filesystem.  There are six
"limits":

 (*) brun
 (*) frun

     If the amount of free space and the number of available files in the cache
     rises above both these limits, then culling is turned off.

 (*) bcull
 (*) fcull

     If the amount of available space or the number of available files in the
     cache falls below either of these limits, then culling is started.

 (*) bstop
 (*) fstop

     If the amount of available space or the number of available files in the
     cache falls below either of these limits, then no further allocation of
     disk space or files is permitted until culling has raised things above
     these limits again.

These must be configured thusly:

	0 <= bstop < bcull < brun < 100
	0 <= fstop < fcull < frun < 100

Note that these are percentages of available space and available files, and do
_not_ appear as 100 minus the percentage displayed by the "df" program.

The userspace daemon scans the cache to build up a table of cullable objects.
These are then culled in least recently used order.  A new scan of the cache is
started as soon as space is made in the table.  Objects will be skipped if
their atimes have changed or if the kernel module says it is still using them.

===============
CACHE STRUCTURE
===============

The CacheFiles module will create two directories in the directory it was
given:

 (*) cache/

 (*) graveyard/

The active cache objects all reside in the first directory.  The CacheFiles
kernel module moves any retired or culled objects that it can't simply unlink
to the graveyard from which the daemon will actually delete them.

The daemon uses dnotify to monitor the graveyard directory, and will delete
anything that appears therein.

The module represents index objects as directories with the filename "I..." or
"J...".  Note that the "cache/" directory is itself a special index.

Data objects are represented as files if they have no children, or directories
if they do.  Their filenames all begin "D..." or "E...".  If represented as a
directory, data objects will have a file in the directory called "data" that
actually holds the data.

Special objects are similar to data objects, except their filenames begin
"S..." or "T...".

If an object has children, then it will be represented as a directory.
Immediately in the representative directory are a collection of directories
named for hash values of the child object keys with an '@' prepended.  Into
this directory, if possible, will be placed the representations of the child
objects:

	INDEX     INDEX      INDEX                             DATA FILES
	========= ========== ================================= ================
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry

If the key is so long that it exceeds NAME_MAX with the decorations added on to
it, then it will be cut into pieces, the first few of which will be used to
make a nest of directories, and the last one of which will be the objects
inside the last directory.  The names of the intermediate directories will have
'+' prepended:

	J1223/@23/+xy...z/+kl...m/Epqr

Note that keys are raw data, and not only may they exceed NAME_MAX in size,
they may also contain things like '/' and NUL characters, and so they may not
be suitable for turning directly into a filename.

To handle this, CacheFiles will use a suitably printable filename directly and
"base-64" encode ones that aren't directly suitable.  The two versions of
object filenames indicate the encoding:

	OBJECT TYPE	PRINTABLE	ENCODED
	===============	===============	===============
	Index		"I..."		"J..."
	Data		"D..."		"E..."
	Special		"S..."		"T..."

Intermediate directories are always "@" or "+" as appropriate.

Each object in the cache has an extended attribute label that holds the object
type ID (required to distinguish special objects) and the auxiliary data from
the netfs.  The latter is used to detect stale objects in the cache and update
or retire them.

Note that CacheFiles will erase from the cache any file it doesn't recognise or
any file of an incorrect type (such as a FIFO file or a device file).

==========================
SECURITY MODEL AND SELINUX
==========================

CacheFiles is implemented to deal properly with the LSM security features of
the Linux kernel and the SELinux facility.

One of the problems that CacheFiles faces is that it is generally acting on
behalf of a process, and running in that process's context, and that includes a
security context that is not appropriate for accessing the cache - either
because the files in the cache are inaccessible to that process, or because if
the process creates a file in the cache, that file may be inaccessible to other
processes.

The way CacheFiles works is to temporarily change the security context (fsuid,
fsgid and actor security label) that the process acts as - without changing the
security context of the process when it the target of an operation performed by
some other process (so signalling and suchlike still work correctly).

When the CacheFiles module is asked to bind to its cache, it:

 (1) Finds the security label attached to the root cache directory and uses
     that as the security label with which it will create files.  By default,
     this is:

	cachefiles_var_t

 (2) Finds the security label of the process which issued the bind request
     (presumed to be the cachefilesd daemon), which by default will be:

	cachefilesd_t

     and asks LSM to supply a security ID as which it should act given the
     daemon's label.  By default, this will be:

	cachefiles_kernel_t

     SELinux transitions the daemon's security ID to the module's security ID
     based on a rule of this form in the policy.

	type_transition <daemon's-ID> kernel_t : process <module's-ID>;

     For instance:

	type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;

The module's security ID gives it permission to create, move and remove files
and directories in the cache, to find and access directories and files in the
cache, to set and access extended attributes on cache objects, and to read and
write files in the cache.

The daemon's security ID gives it only a very restricted set of permissions: it
may scan directories, stat files and erase files and directories.  It may
not read or write files in the cache, and so it is precluded from accessing the
data cached therein; nor is it permitted to create new files in the cache.

There are policy source files available in:

	http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2

and later versions.  In that tarball, see the files:

	cachefilesd.te
	cachefilesd.fc
	cachefilesd.if

They are built and installed directly by the RPM.

If a non-RPM based system is being used, then copy the above files to their own
directory and run:

	make -f /usr/share/selinux/devel/Makefile
	semodule -i cachefilesd.pp

You will need checkpolicy and selinux-policy-devel installed prior to the
build.

By default, the cache is located in /var/fscache, but if it is desirable that
it should be elsewhere, than either the above policy files must be altered, or
an auxiliary policy must be installed to label the alternate location of the
cache.

For instructions on how to add an auxiliary policy to enable the cache to be
located elsewhere when SELinux is in enforcing mode, please see:

	/usr/share/doc/cachefilesd-*/move-cache.txt

When the cachefilesd rpm is installed; alternatively, the document can be found
in the sources.

==================
A NOTE ON SECURITY
==================

CacheFiles makes use of the split security in the task_struct.  It allocates
its own task_security structure, and redirects current->act_as to point to it
when it acts on behalf of another process, in that process's context.

The reason it does this is that it calls vfs_mkdir() and suchlike rather than
bypassing security and calling inode ops directly.  Therefore the VFS and LSM
may deny the CacheFiles access to the cache data because under some
circumstances the caching code is running in the security context of whatever
process issued the original syscall on the netfs.

Furthermore, should CacheFiles create a file or directory, the security
parameters with that object is created (UID, GID, security label) would be
derived from that process that issued the system call, thus potentially
preventing other processes from accessing the cache - including CacheFiles's
cache management daemon (cachefilesd).

What is required is to temporarily override the security of the process that
issued the system call.  We can't, however, just do an in-place change of the
security data as that affects the process as an object, not just as a subject.
This means it may lose signals or ptrace events for example, and affects what
the process looks like in /proc.

So CacheFiles makes use of a logical split in the security between the
objective security (task->sec) and the subjective security (task->act_as).  The
objective security holds the intrinsic security properties of a process and is
never overridden.  This is what appears in /proc, and is what is used when a
process is the target of an operation by some other process (SIGKILL for
example).

The subjective security holds the active security properties of a process, and
may be overridden.  This is not seen externally, and is used whan a process
acts upon another object, for example SIGKILLing another process or opening a
file.

LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
for CacheFiles to run in a context of a specific security label, or to create
files and directories with another security label.

This documentation is added by the patch to:

	Documentation/filesystems/caching/cachefiles.txt

Signed-Off-By: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:41 +01:00