Commit Graph

497 Commits

Author SHA1 Message Date
Naoya Horiguchi 7c7fd82556 mm: hwpoison: remove incorrect comments
dequeue_hwpoisoned_huge_page() can be called without page lock hold, so
let's remove incorrect comment.

The reason why the page lock is not really needed is that
dequeue_hwpoisoned_huge_page() checks page_huge_active() inside
hugetlb_lock, which allows us to avoid trying to dequeue a hugepage that
are just allocated but not linked to active list yet, even without
taking page lock.

Link: http://lkml.kernel.org/r/20160720092901.GA15995@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Zhan Chen <zhanc1@andrew.cmu.edu>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Linus Torvalds 6784725ab0 Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
 "Assorted cleanups and fixes.

  Probably the most interesting part long-term is ->d_init() - that will
  have a bunch of followups in (at least) ceph and lustre, but we'll
  need to sort the barrier-related rules before it can get used for
  really non-trivial stuff.

  Another fun thing is the merge of ->d_iput() callers (dentry_iput()
  and dentry_unlink_inode()) and a bunch of ->d_compare() ones (all
  except the one in __d_lookup_lru())"

* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
  fs/dcache.c: avoid soft-lockup in dput()
  vfs: new d_init method
  vfs: Update lookup_dcache() comment
  bdev: get rid of ->bd_inodes
  Remove last traces of ->sync_page
  new helper: d_same_name()
  dentry_cmp(): use lockless_dereference() instead of smp_read_barrier_depends()
  vfs: clean up documentation
  vfs: document ->d_real()
  vfs: merge .d_select_inode() into .d_real()
  unify dentry_iput() and dentry_unlink_inode()
  binfmt_misc: ->s_root is not going anywhere
  drop redundant ->owner initializations
  ufs: get rid of redundant checks
  orangefs: constify inode_operations
  missed comment updates from ->direct_IO() prototype change
  file_inode(f)->i_mapping is f->f_mapping
  trim fsnotify hooks a bit
  9p: new helper - v9fs_parent_fid()
  debugfs: ->d_parent is never NULL or negative
  ...
2016-07-28 12:59:05 -07:00
Linus Torvalds 0e06f5c0de Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - a few misc bits

 - ocfs2

 - most(?) of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (125 commits)
  thp: fix comments of __pmd_trans_huge_lock()
  cgroup: remove unnecessary 0 check from css_from_id()
  cgroup: fix idr leak for the first cgroup root
  mm: memcontrol: fix documentation for compound parameter
  mm: memcontrol: remove BUG_ON in uncharge_list
  mm: fix build warnings in <linux/compaction.h>
  mm, thp: convert from optimistic swapin collapsing to conservative
  mm, thp: fix comment inconsistency for swapin readahead functions
  thp: update Documentation/{vm/transhuge,filesystems/proc}.txt
  shmem: split huge pages beyond i_size under memory pressure
  thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE
  khugepaged: add support of collapse for tmpfs/shmem pages
  shmem: make shmem_inode_info::lock irq-safe
  khugepaged: move up_read(mmap_sem) out of khugepaged_alloc_page()
  thp: extract khugepaged from mm/huge_memory.c
  shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappings
  shmem: add huge pages support
  shmem: get_unmapped_area align huge page
  shmem: prepare huge= mount option and sysfs knob
  mm, rmap: account shmem thp pages
  ...
2016-07-26 19:55:54 -07:00
Aneesh Kumar K.V e77b0852b5 mm/mmu_gather: track page size with mmu gather and force flush if page size change
This allows an arch which needs to do special handing with respect to
different page size when flushing tlb to implement the same in mmu
gather.

Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Aneesh Kumar K.V 31d49da5ad mm/hugetlb: simplify hugetlb unmap
For hugetlb like THP (and unlike regular page), we do tlb flush after
dropping ptl.  Because of the above, we don't need to track force_flush
like we do now.  Instead we can simply call tlb_remove_page() which will
do the flush if needed.

No functionality change in this patch.

Link: http://lkml.kernel.org/r/1465049193-22197-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Linus Torvalds 015cd867e5 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
 "There are a couple of new things for s390 with this merge request:

   - a new scheduling domain "drawer" is added to reflect the unusual
     topology found on z13 machines.  Performance tests showed up to 8
     percent gain with the additional domain.

   - the new crc-32 checksum crypto module uses the vector-galois-field
     multiply and sum SIMD instruction to speed up crc-32 and crc-32c.

   - proper __ro_after_init support, this requires RO_AFTER_INIT_DATA in
     the generic vmlinux.lds linker script definitions.

   - kcov instrumentation support.  A prerequisite for that is the
     inline assembly basic block cleanup, which is the reason for the
     net/iucv/iucv.c change.

   - support for 2GB pages is added to the hugetlbfs backend.

  Then there are two removals:

   - the oprofile hardware sampling support is dead code and is removed.
     The oprofile user space uses the perf interface nowadays.

   - the ETR clock synchronization is removed, this has been superseeded
     be the STP clock synchronization.  And it always has been
     "interesting" code..

  And the usual bug fixes and cleanups"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (82 commits)
  s390/pci: Delete an unnecessary check before the function call "pci_dev_put"
  s390/smp: clean up a condition
  s390/cio/chp : Remove deprecated create_singlethread_workqueue
  s390/chsc: improve channel path descriptor determination
  s390/chsc: sanitize fmt check for chp_desc determination
  s390/cio: make fmt1 channel path descriptor optional
  s390/chsc: fix ioctl CHSC_INFO_CU command
  s390/cio/device_ops: fix kernel doc
  s390/cio: allow to reset channel measurement block
  s390/console: Make preferred console handling more consistent
  s390/mm: fix gmap tlb flush issues
  s390/mm: add support for 2GB hugepages
  s390: have unique symbol for __switch_to address
  s390/cpuinfo: show maximum thread id
  s390/ptrace: clarify bits in the per_struct
  s390: stack address vs thread_info
  s390: remove pointless load within __switch_to
  s390: enable kcov support
  s390/cpumf: use basic block for ecctr inline assembly
  s390/hypfs: use basic block for diag inline assembly
  ...
2016-07-26 12:22:51 -07:00
Hugh Dickins 5a49973d71 mm: thp: refix false positive BUG in page_move_anon_rmap()
The VM_BUG_ON_PAGE in page_move_anon_rmap() is more trouble than it's
worth: the syzkaller fuzzer hit it again.  It's still wrong for some THP
cases, because linear_page_index() was never intended to apply to
addresses before the start of a vma.

That's easily fixed with a signed long cast inside linear_page_index();
and Dmitry has tested such a patch, to verify the false positive.  But
why extend linear_page_index() just for this case? when the avoidance in
page_move_anon_rmap() has already grown ugly, and there's no reason for
the check at all (nothing else there is using address or index).

Remove address arg from page_move_anon_rmap(), remove VM_BUG_ON_PAGE,
remove CONFIG_DEBUG_VM PageTransHuge adjustment.

And one more thing: should the compound_head(page) be done inside or
outside page_move_anon_rmap()? It's usually pushed down to the lowest
level nowadays (and mm/memory.c shows no other explicit use of it), so I
think it's better done in page_move_anon_rmap() than by caller.

Fixes: 0798d3c022 ("mm: thp: avoid false positive VM_BUG_ON_PAGE in page_move_anon_rmap()")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1607120444540.12528@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Gerald Schaefer d08de8e2d8 s390/mm: add support for 2GB hugepages
This adds support for 2GB hugetlbfs pages on s390.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-07-06 08:46:43 +02:00
Al Viro b223f4e215 Merge branch 'd_real' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs into work.misc 2016-06-30 23:34:49 -04:00
Gerald Schaefer c8cc708a34 mm/hugetlb: clear compound_mapcount when freeing gigantic pages
While working on s390 support for gigantic hugepages I ran into the
following "Bad page state" warning when freeing gigantic pages:

  BUG: Bad page state in process bash  pfn:580001
  page:000003d116000040 count:0 mapcount:0 mapping:ffffffff00000000 index:0x0
  flags: 0x7fffc0000000000()
  page dumped because: non-NULL mapping

This is because page->compound_mapcount, which is part of a union with
page->mapping, is initialized with -1 in prep_compound_gigantic_page(),
and not cleared again during destroy_compound_gigantic_page().  Fix this
by clearing the compound_mapcount in destroy_compound_gigantic_page()
before clearing compound_head.

Interestingly enough, the warning will not show up on x86_64, although
this should not be architecture specific.  Apparently there is an
endianness issue, combined with the fact that the union contains both a
64 bit ->mapping pointer and a 32 bit atomic_t ->compound_mapcount as
members.  The resulting bogus page->mapping on x86_64 therefore contains
00000000ffffffff instead of ffffffff00000000 on s390, which will falsely
trigger the PageAnon() check in free_pages_prepare() because
page->mapping & PAGE_MAPPING_ANON is true on little-endian architectures
like x86_64 in this case (the page is not compound anymore,
->compound_head was already cleared before).  As a result, page->mapping
will be cleared before doing the checks in free_pages_check().

Not sure if the bogus "PageAnon() returning true" on x86_64 for the
first tail page of a gigantic page (at this stage) has other theoretical
implications, but they would also be fixed with this patch.

Link: http://lkml.kernel.org/r/1466612719-5642-1-git-send-email-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Kirill A. Shutemov c17b1f4259 hugetlb: fix nr_pmds accounting with shared page tables
We account HugeTLB's shared page table to all processes who share it.
The accounting happens during huge_pmd_share().

If somebody populates pud entry under us, we should decrease pagetable's
refcount and decrease nr_pmds of the process.

By mistake, I increase nr_pmds again in this case.  :-/ It will lead to
"BUG: non-zero nr_pmds on freeing mm: 2" on process' exit.

Let's fix this by increasing nr_pmds only when we're sure that the page
table will be used.

Link: http://lkml.kernel.org/r/20160617122506.GC6534@node.shutemov.name
Fixes: dc6c9a35b6 ("mm: account pmd page tables to the process")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: zhongjiang <zhongjiang@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Mike Kravetz 67961f9db8 mm/hugetlb: fix huge page reserve accounting for private mappings
When creating a private mapping of a hugetlbfs file, it is possible to
unmap pages via ftruncate or fallocate hole punch.  If subsequent faults
repopulate these mappings, the reserve counts will go negative.  This is
because the code currently assumes all faults to private mappings will
consume reserves.  The problem can be recreated as follows:

 - mmap(MAP_PRIVATE) a file in hugetlbfs filesystem
 - write fault in pages in the mapping
 - fallocate(FALLOC_FL_PUNCH_HOLE) some pages in the mapping
 - write fault in pages in the hole

This will result in negative huge page reserve counts and negative
subpool usage counts for the hugetlbfs.  Note that this can also be
recreated with ftruncate, but fallocate is more straight forward.

This patch modifies the routines vma_needs_reserves and vma_has_reserves
to examine the reserve map associated with private mappings similar to
that for shared mappings.  However, the reserve map semantics for
private and shared mappings are very different.  This results in subtly
different code that is explained in the comments.

Link: http://lkml.kernel.org/r/1464720957-15698-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-09 14:23:11 -07:00
Al Viro 93c76a3d43 file_inode(f)->i_mapping is f->f_mapping
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-29 18:56:09 -04:00
Linus Torvalds 1f40c49570 libnvdimm for 4.7
1/ Device DAX for persistent memory:
    Device DAX is the device-centric analogue of Filesystem DAX
    (CONFIG_FS_DAX).  It allows memory ranges to be allocated and mapped
    without need of an intervening file system.  Device DAX is strict,
    precise and predictable.  Specifically this interface:
 
    a) Guarantees fault granularity with respect to a given page size
       (pte, pmd, or pud) set at configuration time.
 
    b) Enforces deterministic behavior by being strict about what fault
       scenarios are supported.
 
    Persistent memory is the first target, but the mechanism is also
    targeted for exclusive allocations of performance/feature differentiated
    memory ranges.
 
 2/ Support for the HPE DSM (device specific method) command formats.
    This enables management of these first generation devices until a
    unified DSM specification materializes.
 
 3/ Further ACPI 6.1 compliance with support for the common dimm
    identifier format.
 
 4/ Various fixes and cleanups across the subsystem.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY
 diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v
 oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV
 TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+
 6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo
 g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/
 w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ
 u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6
 yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm
 v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s
 v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk
 KT1lAk6tjWBOGAHc5Ji7
 =Y3Xv
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The bulk of this update was stabilized before the merge window and
  appeared in -next.  The "device dax" implementation was revised this
  week in response to review feedback, and to address failures detected
  by the recently expanded ndctl unit test suite.

  Not included in this pull request are two dax topic branches (dax
  error handling, and dax radix-tree locking).  These topics were
  deferred to get a few more days of -next integration testing, and to
  coordinate a branch baseline with Ted and the ext4 tree.  Vishal and
  Ross will send the error handling and locking topics respectively in
  the next few days.

  This branch has received a positive build result from the kbuild robot
  across 226 configs.

  Summary:

   - Device DAX for persistent memory: Device DAX is the device-centric
     analogue of Filesystem DAX (CONFIG_FS_DAX).  It allows memory
     ranges to be allocated and mapped without need of an intervening
     file system.  Device DAX is strict, precise and predictable.
     Specifically this interface:

      a) Guarantees fault granularity with respect to a given page size
         (pte, pmd, or pud) set at configuration time.

      b) Enforces deterministic behavior by being strict about what
         fault scenarios are supported.

     Persistent memory is the first target, but the mechanism is also
     targeted for exclusive allocations of performance/feature
     differentiated memory ranges.

   - Support for the HPE DSM (device specific method) command formats.
     This enables management of these first generation devices until a
     unified DSM specification materializes.

   - Further ACPI 6.1 compliance with support for the common dimm
     identifier format.

   - Various fixes and cleanups across the subsystem"

* tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits)
  libnvdimm, dax: fix deletion
  libnvdimm, dax: fix alignment validation
  libnvdimm, dax: autodetect support
  libnvdimm: release ida resources
  Revert "block: enable dax for raw block devices"
  /dev/dax, core: file operations and dax-mmap
  /dev/dax, pmem: direct access to persistent memory
  libnvdimm: stop requiring a driver ->remove() method
  libnvdimm, dax: record the specified alignment of a dax-device instance
  libnvdimm, dax: reserve space to store labels for device-dax
  libnvdimm, dax: introduce device-dax infrastructure
  nfit: add sysfs dimm 'family' and 'dsm_mask' attributes
  tools/testing/nvdimm: ND_CMD_CALL support
  nfit: disable vendor specific commands
  nfit: export subsystem ids as attributes
  nfit: fix format interface code byte order per ACPI6.1
  nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism
  nfit, libnvdimm: clarify "commands" vs "_DSMs"
  libnvdimm: increase max envelope size for ioctl
  acpi/nfit: Add sysfs "id" for NVDIMM ID
  ...
2016-05-23 11:18:01 -07:00
Dan Williams dee4107924 /dev/dax, core: file operations and dax-mmap
The "Device DAX" core enables dax mappings of performance / feature
differentiated memory.  An open mapping or file handle keeps the backing
struct device live, but new mappings are only possible while the device
is enabled.   Faults are handled under rcu_read_lock to synchronize
with the enabled state of the device.

Similar to the filesystem-dax case the backing memory may optionally
have struct page entries.  However, unlike fs-dax there is no support
for private mappings, or mappings that are not backed by media (see
use of zero-page in fs-dax).

Mappings are always guaranteed to match the alignment of the dax_region.
If the dax_region is configured to have a 2MB alignment, all mappings
are guaranteed to be backed by a pmd entry.  Contrast this determinism
with the fs-dax case where pmd mappings are opportunistic.  If userspace
attempts to force a misaligned mapping, the driver will fail the mmap
attempt.  See dax_dev_check_vma() for other scenarios that are rejected,
like MAP_PRIVATE mappings.

Cc: Hannes Reinecke <hare@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-05-20 22:02:55 -07:00
Joonsoo Kim f44b2dda8b mm/hugetlb: add same zone check in pfn_range_valid_gigantic()
This patchset deals with some problematic sites that iterate pfn ranges.

There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to take care of this overlapping when iterating pfn
range.

I audit many iterating sites that uses pfn_valid(), pfn_valid_within(),
zone_start_pfn and etc.  and others looks safe to me.  This is a
preparation step for a new CMA implementation, ZONE_CMA
(https://lkml.org/lkml/2015/2/12/95), because it would be easily
overlapped with other zones.  But, zone overlap check is also needed for
the general case so I send it separately.

This patch (of 5):

alloc_gigantic_page() uses alloc_contig_range() and this requires that
the requested range is in a single zone.  To satisfy this requirement,
add this check to pfn_range_valid_gigantic().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton 54f18d3526 mm/hugetlb.c: use first_memory_node
Instead of open-coding it.

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vaishali Thakkar 9fee021d15 mm/hugetlb: introduce hugetlb_bad_size()
When any unsupported hugepage size is specified, 'hugepagesz=' and
'hugepages=' should be ignored during command line parsing until any
supported hugepage size is found.  But currently incorrect number of
hugepages are allocated when unsupported size is specified as it fails
to ignore the 'hugepages=' command.

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'hugepagesz=256M hugepages=X'.
After boot, dmesg output shows that X number of hugepages of the size 2M
is pre-allocated instead of 0.

So, to handle such command line options, introduce new routine
hugetlb_bad_size.  The routine hugetlb_bad_size sets the global variable
parsed_valid_hugepagesz.  We are using parsed_valid_hugepagesz to save
the state when unsupported hugepagesize is found so that we can ignore
the 'hugepages=' parameters after that and then reset the variable when
supported hugepage size is found.

The routine hugetlb_bad_size can be called while setting 'hugepagesz='
parameter in an architecture specific code.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mike Kravetz 09a95e29cb mm/hugetlb: optimize minimum size (min_size) accounting
It was observed that minimum size accounting associated with the
hugetlbfs min_size mount option may not perform optimally and as
expected.  As huge pages/reservations are released from the filesystem
and given back to the global pools, they are reserved for subsequent
filesystem use as long as the subpool reserved count is less than
subpool minimum size.  It does not take into account used pages within
the filesystem.  The filesystem size limits are not exceeded and this is
technically not a bug.  However, better behavior would be to wait for
the number of used pages/reservations associated with the filesystem to
drop below the minimum size before taking reservations to satisfy
minimum size.

An optimization is also made to the hugepage_subpool_get_pages() routine
which is called when pages/reservations are allocated.  This does not
change behavior, but simply avoids the accounting if all reservations
have already been taken (subpool reserved count == 0).

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton 0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Kirill A. Shutemov 09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Joe Perches 598d80914e mm: convert pr_warning to pr_warn
There are a mixture of pr_warning and pr_warn uses in mm.  Use pr_warn
consistently.

Miscellanea:

 - Coalesce formats
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Jan Stancek 86613628b3 mm/hugetlb: use EOPNOTSUPP in hugetlb sysctl handlers
Replace ENOTSUPP with EOPNOTSUPP.  If hugepages are not supported, this
value is propagated to userspace.  EOPNOTSUPP is part of uapi and is
widely supported by libc libraries.

It gives nicer message to user, rather than:

  # cat /proc/sys/vm/nr_hugepages
  cat: /proc/sys/vm/nr_hugepages: Unknown error 524

And also LTP's proc01 test was failing because this ret code (524)
was unexpected:

  proc01      1  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages: errno=???(524): Unknown error 524
  proc01      2  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages_mempolicy: errno=???(524): Unknown error 524
  proc01      3  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_overcommit_hugepages: errno=???(524): Unknown error 524

Signed-off-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Geoffrey Thomas 910154d520 mm/hugetlb: hugetlb_no_page: rate-limit warning message
The warning message "killed due to inadequate hugepage pool" simply
indicates that SIGBUS was sent, not that the process was forcibly killed.
If the process has a signal handler installed does not fix the problem,
this message can rapidly spam the kernel log.

On my amd64 dev machine that does not have hugepages configured, I can
reproduce the repeated warnings easily by setting vm.nr_hugepages=2 (i.e.,
4 megabytes of huge pages) and running something that sets a signal
handler and forks, like

  #include <sys/mman.h>
  #include <signal.h>
  #include <stdlib.h>
  #include <unistd.h>

  sig_atomic_t counter = 10;
  void handler(int signal)
  {
      if (counter-- == 0)
         exit(0);
  }

  int main(void)
  {
      int status;
      char *addr = mmap(NULL, 4 * 1048576, PROT_READ | PROT_WRITE,
              MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
      if (addr == MAP_FAILED) {perror("mmap"); return 1;}
      *addr = 'x';
      switch (fork()) {
         case -1:
            perror("fork"); return 1;
         case 0:
            signal(SIGBUS, handler);
            *addr = 'x';
            break;
         default:
            *addr = 'x';
            wait(&status);
            if (WIFSIGNALED(status)) {
               psignal(WTERMSIG(status), "child");
            }
            break;
      }
  }

Signed-off-by: Geoffrey Thomas <geofft@ldpreload.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Vaishali Thakkar f8b74815a4 mm/hugetlb.c: fix incorrect proc nr_hugepages value
Currently incorrect default hugepage pool size is reported by proc
nr_hugepages when number of pages for the default huge page size is
specified twice.

When multiple huge page sizes are supported, /proc/sys/vm/nr_hugepages
indicates the current number of pre-allocated huge pages of the default
size.  Basically /proc/sys/vm/nr_hugepages displays default_hstate->
max_huge_pages and after boot time pre-allocation, max_huge_pages should
equal the number of pre-allocated pages (nr_hugepages).

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'default_hugepagesz=1G
hugepages=X hugepagesz=2M hugepages=Y hugepagesz=1G hugepages=Z'.  After
boot, 'cat /proc/sys/vm/nr_hugepages' and 'sysctl -a | grep hugepages'
returns the value X.  However, dmesg output shows that Z huge pages were
pre-allocated.

So, the root cause of the problem here is that the global variable
default_hstate_max_huge_pages is set if a default huge page size is
specified (directly or indirectly) on the command line.  After the command
line processing in hugetlb_init, if default_hstate_max_huge_pages is set,
the value is assigned to default_hstae.max_huge_pages.  However,
default_hstate.max_huge_pages may have already been set based on the
number of pre-allocated huge pages of default_hstate size.

The solution to this problem is if hstate->max_huge_pages is already set
then it should not set as a result of global max_huge_pages value.
Basically if the value of the variable hugepages is set multiple times on
a command line for a specific supported hugepagesize then proc layer
should consider the last specified value.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 16:23:24 -08:00
Vlastimil Babka 080fe2068e mm, hugetlb: don't require CMA for runtime gigantic pages
Commit 944d9fec8d ("hugetlb: add support for gigantic page allocation
at runtime") has added the runtime gigantic page allocation via
alloc_contig_range(), making this support available only when CONFIG_CMA
is enabled.  Because it doesn't depend on MIGRATE_CMA pageblocks and the
associated infrastructure, it is possible with few simple adjustments to
require only CONFIG_MEMORY_ISOLATION instead of full CONFIG_CMA.

After this patch, alloc_contig_range() and related functions are
available and used for gigantic pages with just CONFIG_MEMORY_ISOLATION
enabled.  Note CONFIG_CMA selects CONFIG_MEMORY_ISOLATION.  This allows
supporting runtime gigantic pages without the CMA-specific checks in
page allocator fastpaths.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Mike Kravetz b4330afbed mm/hugetlb: fix gigantic page initialization/allocation
Attempting to preallocate 1G gigantic huge pages at boot time with
"hugepagesz=1G hugepages=1" on the kernel command line will prevent
booting with the following:

  kernel BUG at mm/hugetlb.c:1218!

When mapcount accounting was reworked, the setting of
compound_mapcount_ptr in prep_compound_gigantic_page was overlooked.  As
a result, the validation of mapcount in free_huge_page fails.

The "BUG_ON" checks in free_huge_page were also changed to
"VM_BUG_ON_PAGE" to assist with debugging.

Fixes: 53f9263bab ("mm: rework mapcount accounting to enable 4k mapping of THPs")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Kirill A. Shutemov 53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov ddc58f27f9 mm: drop tail page refcounting
Tail page refcounting is utterly complicated and painful to support.

It uses ->_mapcount on tail pages to store how many times this page is
pinned.  get_page() bumps ->_mapcount on tail page in addition to
->_count on head.  This information is required by split_huge_page() to
be able to distribute pins from head of compound page to tails during
the split.

We will need ->_mapcount to account PTE mappings of subpages of the
compound page.  We eliminate need in current meaning of ->_mapcount in
tail pages by forbidding split entirely if the page is pinned.

The only user of tail page refcounting is THP which is marked BROKEN for
now.

Let's drop all this mess.  It makes get_page() and put_page() much
simpler.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov d281ee6145 rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound
page.  It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.

The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.

[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov de09d31dd3 page-flags: define PG_reserved behavior on compound pages
As far as I can see there's no users of PG_reserved on compound pages.
Let's use PF_NO_COMPOUND here.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Paul Gortmaker 3e89e1c5ea hugetlb: make mm and fs code explicitly non-modular
The Kconfig currently controlling compilation of this code is:

config HUGETLBFS
        bool "HugeTLB file system support"

...meaning that it currently is not being built as a module by anyone.

Lets remove the modular code that is essentially orphaned, so that when
reading the driver there is no doubt it is builtin-only.

Since module_init translates to device_initcall in the non-modular case,
the init ordering gets moved to earlier levels when we use the more
appropriate initcalls here.

Originally I had the fs part and the mm part as separate commits, just
by happenstance of the nature of how I detected these non-modular use
cases.  But that can possibly introduce regressions if the patch merge
ordering puts the fs part 1st -- as the 0-day testing reported a splat
at mount time.

Investigating with "initcall_debug" showed that the delta was
init_hugetlbfs_fs being called _before_ hugetlb_init instead of after.  So
both the fs change and the mm change are here together.

In addition, it worked before due to luck of link order, since they were
both in the same initcall category.  So we now have the fs part using
fs_initcall, and the mm part using subsys_initcall, which puts it one
bucket earlier.  It now passes the basic sanity test that failed in
earlier 0-day testing.

We delete the MODULE_LICENSE tag and capture that information at the top
of the file alongside author comments, etc.

We don't replace module.h with init.h since the file already has that.
Also note that MODULE_ALIAS is a no-op for non-modular code.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reported-by: kernel test robot <ying.huang@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Mike Kravetz dbe409e4f5 mm/hugetlb.c: fix resv map memory leak for placeholder entries
Dmitry Vyukov reported the following memory leak

unreferenced object 0xffff88002eaafd88 (size 32):
  comm "a.out", pid 5063, jiffies 4295774645 (age 15.810s)
  hex dump (first 32 bytes):
    28 e9 4e 63 00 88 ff ff 28 e9 4e 63 00 88 ff ff  (.Nc....(.Nc....
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
     kmalloc include/linux/slab.h:458
     region_chg+0x2d4/0x6b0 mm/hugetlb.c:398
     __vma_reservation_common+0x2c3/0x390 mm/hugetlb.c:1791
     vma_needs_reservation mm/hugetlb.c:1813
     alloc_huge_page+0x19e/0xc70 mm/hugetlb.c:1845
     hugetlb_no_page mm/hugetlb.c:3543
     hugetlb_fault+0x7a1/0x1250 mm/hugetlb.c:3717
     follow_hugetlb_page+0x339/0xc70 mm/hugetlb.c:3880
     __get_user_pages+0x542/0xf30 mm/gup.c:497
     populate_vma_page_range+0xde/0x110 mm/gup.c:919
     __mm_populate+0x1c7/0x310 mm/gup.c:969
     do_mlock+0x291/0x360 mm/mlock.c:637
     SYSC_mlock2 mm/mlock.c:658
     SyS_mlock2+0x4b/0x70 mm/mlock.c:648

Dmitry identified a potential memory leak in the routine region_chg,
where a region descriptor is not free'ed on an error path.

However, the root cause for the above memory leak resides in region_del.
In this specific case, a "placeholder" entry is created in region_chg.
The associated page allocation fails, and the placeholder entry is left
in the reserve map.  This is "by design" as the entry should be deleted
when the map is released.  The bug is in the region_del routine which is
used to delete entries within a specific range (and when the map is
released).  region_del did not handle the case where a placeholder entry
exactly matched the start of the range range to be deleted.  In this
case, the entry would not be deleted and leaked.  The fix is to take
these special placeholder entries into account in region_del.

The region_chg error path leak is also fixed.

Fixes: feba16e25a ("mm/hugetlb: add region_del() to delete a specific range of entries")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Naoya Horiguchi 0d777df5d8 mm: hugetlb: call huge_pte_alloc() only if ptep is null
Currently at the beginning of hugetlb_fault(), we call huge_pte_offset()
and check whether the obtained *ptep is a migration/hwpoison entry or
not.  And if not, then we get to call huge_pte_alloc().  This is racy
because the *ptep could turn into migration/hwpoison entry after the
huge_pte_offset() check.  This race results in BUG_ON in
huge_pte_alloc().

We don't have to call huge_pte_alloc() when the huge_pte_offset()
returns non-NULL, so let's fix this bug with moving the code into else
block.

Note that the *ptep could turn into a migration/hwpoison entry after
this block, but that's not a problem because we have another
!pte_present check later (we never go into hugetlb_no_page() in that
case.)

Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>	[2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Naoya Horiguchi a88c769548 mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
When dequeue_huge_page_vma() in alloc_huge_page() fails, we fall back on
alloc_buddy_huge_page() to directly create a hugepage from the buddy
allocator.

In that case, however, if alloc_buddy_huge_page() succeeds we don't
decrement h->resv_huge_pages, which means that successful
hugetlb_fault() returns without releasing the reserve count.  As a
result, subsequent hugetlb_fault() might fail despite that there are
still free hugepages.

This patch simply adds decrementing code on that code path.

I reproduced this problem when testing v4.3 kernel in the following situation:
 - the test machine/VM is a NUMA system,
 - hugepage overcommiting is enabled,
 - most of hugepages are allocated and there's only one free hugepage
   which is on node 0 (for example),
 - another program, which calls set_mempolicy(MPOL_BIND) to bind itself to
   node 1, tries to allocate a hugepage,
 - the allocation should fail but the reserve count is still hold.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Naoya Horiguchi d15c7c0932 hugetlb: trivial comment fix
Recently alloc_buddy_huge_page() was renamed to __alloc_buddy_huge_page(),
so let's sync comments.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-10 16:32:11 -08:00
Kirill A. Shutemov d00181b96e mm: use 'unsigned int' for page order
Let's try to be consistent about data type of page order.

[sfr@canb.auug.org.au: fix build (type of pageblock_order)]
[hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Kirill A. Shutemov 1d798ca3f1 mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:

	CPU0					CPU1

isolate_migratepages_block()
  page_count()
    compound_head()
      !!PageTail() == true
					put_page()
					  tail->first_page = NULL
      head = tail->first_page
					alloc_pages(__GFP_COMP)
					   prep_compound_page()
					     tail->first_page = head
					     __SetPageTail(p);
      !!PageTail() == true
    <head == NULL dereferencing>

The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.

We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.

The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.

The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.

hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.

The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.

That means page->compound_head shares storage space with:

 - page->lru.next;
 - page->next;
 - page->rcu_head.next;

That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.

page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().

[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Kirill A. Shutemov f1e61557f0 mm: pack compound_dtor and compound_order into one word in struct page
The patch halves space occupied by compound_dtor and compound_order in
struct page.

For compound_order, it's trivial long -> short conversion.

For get_compound_page_dtor(), we now use hardcoded table for destructor
lookup and store its index in the struct page instead of direct pointer
to destructor. It shouldn't be a big trouble to maintain the table: we
have only two destructor and NULL currently.

This patch free up one word in tail pages for reuse. This is preparation
for the next patch.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Eric B Munson de60f5f10c mm: introduce VM_LOCKONFAULT
The cost of faulting in all memory to be locked can be very high when
working with large mappings.  If only portions of the mapping will be used
this can incur a high penalty for locking.

For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well).  For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).

This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in.  The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED.  Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.

Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer.  Prior to this patch it was used to
mean that the VMA for a fault was locked.  This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA.  FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.

Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Dave Hansen e0ec90ee7e mm, hugetlbfs: optimize when NUMA=n
My recent patch "mm, hugetlb: use memory policy when available" added some
bloat to hugetlb.o.  This patch aims to get some of the bloat back,
especially when NUMA is not in play.

It does this with an implicit #ifdef and marking some things static that
should have been static in my first patch.  It also makes the warnings
only VM_WARN_ON()s.  They were responsible for a pretty big chunk of the
bloat.

Doing this gets our NUMA=n text size back to a wee bit _below_ where we
started before the original patch.

It also shaves a bit of space off the NUMA=y case, but not much.
Enforcing the mempolicy definitely takes some text and it's hard to avoid.

size(1) output:

   text	   data	    bss	    dec	    hex	filename
  30745	   3433	   2492	  36670	   8f3e	hugetlb.o.nonuma.baseline
  31305	   3755	   2492	  37552	   92b0	hugetlb.o.nonuma.patch1
  30713	   3433	   2492	  36638	   8f1e	hugetlb.o.nonuma.patch2 (this patch)
  25235	    473	  41276	  66984	  105a8	hugetlb.o.numa.baseline
  25715	    475	  41276	  67466	  1078a	hugetlb.o.numa.patch1
  25491	    473	  41276	  67240	  106a8	hugetlb.o.numa.patch2 (this patch)

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Dave Hansen 099730d674 mm, hugetlb: use memory policy when available
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'.  They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.

This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.

The code in question is this:

> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
>         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
>         if (!page) {
>                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);

dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
 But, it only grabs _existing_ huge pages from the huge page pool.  If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.

Almost everybody preallocates huge pages.  That's probably why nobody has
ever noticed this.  Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.

The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator.  It's fairly straightforward plumbing.  This
has been lightly tested.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Alexander Kuleshov b4e289a6a6 mm/hugetlb: make node_hstates array static
There are no users of the node_hstates array outside of the
mm/hugetlb.c. So let's make it static.

Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Naoya Horiguchi 5d317b2b65 mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status
Currently there's no easy way to get per-process usage of hugetlb pages,
which is inconvenient because userspace applications which use hugetlb
typically want to control their processes on the basis of how much memory
(including hugetlb) they use.  So this patch simply provides easy access
to the info via /proc/PID/status.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Joern Engel <joern@logfs.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Mel Gorman 2f84a8990e mm: hugetlbfs: skip shared VMAs when unmapping private pages to satisfy a fault
SunDong reported the following on

  https://bugzilla.kernel.org/show_bug.cgi?id=103841

	I think I find a linux bug, I have the test cases is constructed. I
	can stable recurring problems in fedora22(4.0.4) kernel version,
	arch for x86_64.  I construct transparent huge page, when the parent
	and child process with MAP_SHARE, MAP_PRIVATE way to access the same
	huge page area, it has the opportunity to lead to huge page copy on
	write failure, and then it will munmap the child corresponding mmap
	area, but then the child mmap area with VM_MAYSHARE attributes, child
	process munmap this area can trigger VM_BUG_ON in set_vma_resv_flags
	functions (vma - > vm_flags & VM_MAYSHARE).

There were a number of problems with the report (e.g.  it's hugetlbfs that
triggers this, not transparent huge pages) but it was fundamentally
correct in that a VM_BUG_ON in set_vma_resv_flags() can be triggered that
looks like this

	 vma ffff8804651fd0d0 start 00007fc474e00000 end 00007fc475e00000
	 next ffff8804651fd018 prev ffff8804651fd188 mm ffff88046b1b1800
	 prot 8000000000000027 anon_vma           (null) vm_ops ffffffff8182a7a0
	 pgoff 0 file ffff88106bdb9800 private_data           (null)
	 flags: 0x84400fb(read|write|shared|mayread|maywrite|mayexec|mayshare|dontexpand|hugetlb)
	 ------------
	 kernel BUG at mm/hugetlb.c:462!
	 SMP
	 Modules linked in: xt_pkttype xt_LOG xt_limit [..]
	 CPU: 38 PID: 26839 Comm: map Not tainted 4.0.4-default #1
	 Hardware name: Dell Inc. PowerEdge R810/0TT6JF, BIOS 2.7.4 04/26/2012
	 set_vma_resv_flags+0x2d/0x30

The VM_BUG_ON is correct because private and shared mappings have
different reservation accounting but the warning clearly shows that the
VMA is shared.

When a private COW fails to allocate a new page then only the process
that created the VMA gets the page -- all the children unmap the page.
If the children access that data in the future then they get killed.

The problem is that the same file is mapped shared and private.  During
the COW, the allocation fails, the VMAs are traversed to unmap the other
private pages but a shared VMA is found and the bug is triggered.  This
patch identifies such VMAs and skips them.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: SunDong <sund_sky@126.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-01 21:42:35 -04:00
Vlastimil Babka 96db800f5d mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise.  In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.

The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").

Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.

To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage.  Both functions get described in comments.

It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly.  The number of users would be small
anyway.

Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead.  This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.

Both differences will be rectified by the next patch.

To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers.  Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz 70c3547e36 hugetlbfs: add hugetlbfs_fallocate()
This is based on the shmem version, but it has diverged quite a bit.  We
have no swap to worry about, nor the new file sealing.  Add
synchronication via the fault mutex table to coordinate page faults,
fallocate allocation and fallocate hole punch.

What this allows us to do is move physical memory in and out of a
hugetlbfs file without having it mapped.  This also gives us the ability
to support MADV_REMOVE since it is currently implemented using
fallocate().  MADV_REMOVE lets madvise() remove pages from the middle of
a hugetlbfs file, which wasn't possible before.

hugetlbfs fallocate only operates on whole huge pages.

Based on code by Dave Hansen.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz ab76ad540a hugetlbfs: New huge_add_to_page_cache helper routine
Currently, there is only a single place where hugetlbfs pages are added
to the page cache.  The new fallocate code be adding a second one, so
break the functionality out into its own helper.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz d85f69b0b5 mm/hugetlb: alloc_huge_page handle areas hole punched by fallocate
Areas hole punched by fallocate will not have entries in the
region/reserve map.  However, shared mappings with min_size subpool
reservations may still have reserved pages.  alloc_huge_page needs to
handle this special case and do the proper accounting.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz 1fb1b0e9ef mm/hugetlb: vma_has_reserves() needs to handle fallocate hole punch
In vma_has_reserves(), the current assumption is that reserves are
always present for shared mappings.  However, this will not be the case
with fallocate hole punch.  When punching a hole, the present page will
be deleted as well as the region/reserve map entry (and hence any
reservation).  vma_has_reserves is passed "chg" which indicates whether
or not a region/reserve map is present.  Use this to determine if
reserves are actually present or were removed via hole punch.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz b5cec28d36 hugetlbfs: truncate_hugepages() takes a range of pages
Modify truncate_hugepages() to take a range of pages (start, end)
instead of simply start.  If an end value of LLONG_MAX is passed, the
current "truncate" functionality is maintained.  Existing callers are
modified to pass LLONG_MAX as end of range.  By keying off end ==
LLONG_MAX, the routine behaves differently for truncate and hole punch.
Page removal is now synchronized with page allocation via faults by
using the fault mutex table.  The hole punch case can experience the
rare region_del error and must handle accordingly.

Add the routine hugetlb_fix_reserve_counts to fix up reserve counts in
the case where region_del returns an error.

Since the routine handles more than just the truncate case, it is
renamed to remove_inode_hugepages().  To be consistent, the routine
truncate_huge_page() is renamed remove_huge_page().

Downstream of remove_inode_hugepages(), the routine
hugetlb_unreserve_pages() is also modified to take a range of pages.
hugetlb_unreserve_pages is modified to detect an error from region_del and
pass it back to the caller.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz c672c7f29f mm/hugetlb: expose hugetlb fault mutex for use by fallocate
hugetlb page faults are currently synchronized by the table of mutexes
(htlb_fault_mutex_table).  fallocate code will need to synchronize with
the page fault code when it allocates or deletes pages.  Expose
interfaces so that fallocate operations can be synchronized with page
faults.  Minor name changes to be more consistent with other global
hugetlb symbols.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz feba16e25a mm/hugetlb: add region_del() to delete a specific range of entries
fallocate hole punch will want to remove a specific range of pages.  The
existing region_truncate() routine deletes all region/reserve map
entries after a specified offset.  region_del() will provide this same
functionality if the end of region is specified as LONG_MAX.  Hence,
region_del() can replace region_truncate().

Unlike region_truncate(), region_del() can return an error in the rare
case where it can not allocate memory for a region descriptor.  This
ONLY happens in the case where an existing region must be split.
Current callers passing LONG_MAX as end of range will never experience
this error and do not need to deal with error handling.  Future callers
of region_del() (such as fallocate hole punch) will need to handle this
error.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz 5e9113731a mm/hugetlb: add cache of descriptors to resv_map for region_add
hugetlbfs is used today by applications that want a high degree of
control over huge page usage.  Often, large hugetlbfs files are used to
map a large number huge pages into the application processes.  The
applications know when page ranges within these large files will no
longer be used, and ideally would like to release them back to the
subpool or global pools for other uses.  The fallocate() system call
provides an interface for preallocation and hole punching within files.
This patch set adds fallocate functionality to hugetlbfs.

fallocate hole punch will want to remove a specific range of pages.
When pages are removed, their associated entries in the region/reserve
map will also be removed.  This will break an assumption in the
region_chg/region_add calling sequence.  If a new region descriptor must
be allocated, it is done as part of the region_chg processing.  In this
way, region_add can not fail because it does not need to attempt an
allocation.

To prepare for fallocate hole punch, create a "cache" of descriptors
that can be used by region_add if necessary.  region_chg will ensure
there are sufficient entries in the cache.  It will be necessary to
track the number of in progress add operations to know a sufficient
number of descriptors reside in the cache.  A new routine region_abort
is added to adjust this in progress count when add operations are
aborted.  vma_abort_reservation is also added for callers creating
reservations with vma_needs_reservation/vma_commit_reservation.

[akpm@linux-foundation.org: fix typo in comment, use more cols]
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Nicholas Krause 559ec2f8fd mm/hugetlb.c: make vma_has_reserves() return bool
This makes vma_has_reserves() return bool due to this particular function
only returning either one or zero as its return value.

Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Nicholas Krause 31aafb45f4 mm/hugetlb.c: make vma_shareable() return bool
This makes vma_shareable() return bool now due to this particular function
only ever returning either one or zero as its return value.

Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Dominik Dingel 8408427e6b mm/hugetlb: remove unused arch hook prepare/release_hugepage
With s390 dropping support for emulated hugepages, the last user of
arch_prepare_hugepage and arch_release_hugepage is gone.

Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 17:00:35 -07:00
Mike Kravetz 33039678c8 mm/hugetlb: handle races in alloc_huge_page and hugetlb_reserve_pages
alloc_huge_page and hugetlb_reserve_pages use region_chg to calculate the
number of pages which will be added to the reserve map.  Subpool and
global reserve counts are adjusted based on the output of region_chg.
Before the pages are actually added to the reserve map, these routines
could race and add fewer pages than expected.  If this happens, the
subpool and global reserve counts are not correct.

Compare the number of pages actually added (region_add) to those expected
to added (region_chg).  If fewer pages are actually added, this indicates
a race and adjust counters accordingly.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Mike Kravetz cf3ad20bfe mm/hugetlb: compute/return the number of regions added by region_add()
Modify region_add() to keep track of regions(pages) added to the reserve
map and return this value.  The return value can be compared to the return
value of region_chg() to determine if the map was modified between calls.

Make vma_commit_reservation() also pass along the return value of
region_add().  In the normal case, we want vma_commit_reservation to
return the same value as the preceding call to vma_needs_reservation.
Create a common __vma_reservation_common routine to help keep the special
case return values in sync

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Mike Kravetz 1dd308a7b4 mm/hugetlb: document the reserve map/region tracking routines
While working on hugetlbfs fallocate support, I noticed the following race
in the existing code.  It is unlikely that this race is hit very often in
the current code.  However, if more functionality to add and remove pages
to hugetlbfs mappings (such as fallocate) is added the likelihood of
hitting this race will increase.

alloc_huge_page and hugetlb_reserve_pages use information from the reserve
map to determine if there are enough available huge pages to complete the
operation, as well as adjust global reserve and subpool usage counts.  The
order of operations is as follows:

- call region_chg() to determine the expected change based on reserve map
- determine if enough resources are available for this operation
- adjust global counts based on the expected change
- call region_add() to update the reserve map

The issue is that reserve map could change between the call to region_chg
and region_add.  In this case, the counters which were adjusted based on
the output of region_chg will not be correct.

In order to hit this race today, there must be an existing shared hugetlb
mmap created with the MAP_NORESERVE flag.  A page fault to allocate a huge
page via this mapping must occur at the same another task is mapping the
same region without the MAP_NORESERVE flag.

The patch set does not prevent the race from happening.  Rather, it adds
simple functionality to detect when the race has occurred.  If a race is
detected, then the incorrect counts are adjusted.

Review comments pointed out the need for documentation of the existing
region/reserve map routines.  This patch set also adds documentation in
this area.

This patch (of 3):

This is a documentation only patch and does not modify any code.
Descriptions of the routines used for reserve map/region tracking are
added.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Naoya Horiguchi 641844f561 mm/hugetlb: introduce minimum hugepage order
Currently the initial value of order in dissolve_free_huge_page is 64 or
32, which leads to the following warning in static checker:

  mm/hugetlb.c:1203 dissolve_free_huge_pages()
  warn: potential right shift more than type allows '9,18,64'

This is a potential risk of infinite loop, because 1 << order (== 0) is used
in for-loop like this:

  for (pfn =3D start_pfn; pfn < end_pfn; pfn +=3D 1 << order)
      ...

So this patch fixes it by using global minimum_order calculated at boot time.

    text    data     bss     dec     hex filename
   28313     469   84236  113018   1b97a mm/hugetlb.o
   28256     473   84236  112965   1b945 mm/hugetlb.o (patched)

Fixes: c8721bbbdd ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:42 -07:00
Zhang Zhen e81f2d2237 mm/hugetlb: reduce arch dependent code about huge_pmd_unshare
Currently we have many duplicates in definitions of huge_pmd_unshare.  In
all architectures this function just returns 0 when
CONFIG_ARCH_WANT_HUGE_PMD_SHARE is N.

This patch puts the default implementation in mm/hugetlb.c and lets these
architectures use the common code.

Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Yang <James.Yang@freescale.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:41 -07:00
Naoya Horiguchi 7e1f049efb mm: hugetlb: cleanup using paeg_huge_active()
Now we have an easy access to hugepages' activeness, so existing helpers to
get the information can be cleaned up.

[akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
Naoya Horiguchi bcc5422230 mm: hugetlb: introduce page_huge_active
We are not safe from calling isolate_huge_page() on a hugepage
concurrently, which can make the victim hugepage in invalid state and
results in BUG_ON().

The root problem of this is that we don't have any information on struct
page (so easily accessible) about hugepages' activeness.  Note that
hugepages' activeness means just being linked to
hstate->hugepage_activelist, which is not the same as normal pages'
activeness represented by PageActive flag.

Normal pages are isolated by isolate_lru_page() which prechecks PageLRU
before isolation, so let's do similarly for hugetlb with a new
paeg_huge_active().

set/clear_page_huge_active() should be called within hugetlb_lock.  But
hugetlb_cow() and hugetlb_no_page() don't do this, being justified because
in these functions set_page_huge_active() is called right after the
hugepage is allocated and no other thread tries to isolate it.

[akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/, make it return bool]
[fengguang.wu@intel.com: set_page_huge_active() can be static]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
Mike Kravetz 7ca02d0ae5 hugetlbfs: accept subpool min_size mount option and setup accordingly
Make 'min_size=<value>' be an option when mounting a hugetlbfs.  This
option takes the same value as the 'size' option.  min_size can be
specified without specifying size.  If both are specified, min_size must
be less that or equal to size else the mount will fail.  If min_size is
specified, then at mount time an attempt is made to reserve min_size
pages.  If the reservation fails, the mount fails.  At umount time, the
reserved pages are released.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Mike Kravetz 1c5ecae3a9 hugetlbfs: add minimum size accounting to subpools
The same routines that perform subpool maximum size accounting
hugepage_subpool_get/put_pages() are modified to also perform minimum size
accounting.  When a delta value is passed to these routines, calculate how
global reservations must be adjusted to maintain the subpool minimum size.
 The routines now return this global reserve count adjustment.  This
global reserve count adjustment is then passed to the global accounting
routine hugetlb_acct_memory().

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00
Mike Kravetz c6a918200c hugetlbfs: add minimum size tracking fields to subpool structure
hugetlbfs allocates huge pages from the global pool as needed.  Even if
the global pool contains a sufficient number pages for the filesystem size
at mount time, those global pages could be grabbed for some other use.  As
a result, filesystem huge page allocations may fail due to lack of pages.

Applications such as a database want to use huge pages for performance
reasons.  hugetlbfs filesystem semantics with ownership and modes work
well to manage access to a pool of huge pages.  However, the application
would like some reasonable assurance that allocations will not fail due to
a lack of huge pages.  At application startup time, the application would
like to configure itself to use a specific number of huge pages.  Before
starting, the application can check to make sure that enough huge pages
exist in the system global pools.  However, there are no guarantees that
those pages will be available when needed by the application.  What the
application wants is exclusive use of a subset of huge pages.

Add a new hugetlbfs mount option 'min_size=<value>' to indicate that the
specified number of pages will be available for use by the filesystem.  At
mount time, this number of huge pages will be reserved for exclusive use
of the filesystem.  If there is not a sufficient number of free pages, the
mount will fail.  As pages are allocated to and freeed from the
filesystem, the number of reserved pages is adjusted so that the specified
minimum is maintained.

This patch (of 4):

Add a field to the subpool structure to indicate the minimimum number of
huge pages to always be used by this subpool.  This minimum count includes
allocated pages as well as reserved pages.  If the minimum number of pages
for the subpool have not been allocated, pages are reserved up to this
minimum.  An additional field (rsv_hpages) is used to track the number of
pages reserved to meet this minimum size.  The hstate pointer in the
subpool is convenient to have when reserving and unreserving the pages.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00
David Rientjes 02057967b5 mm, hugetlb: abort __get_user_pages if current has been oom killed
If __get_user_pages() is faulting a significant number of hugetlb pages,
usually as the result of mmap(MAP_LOCKED), it can potentially allocate a
very large amount of memory.

If the process has been oom killed, this will cause a lot of memory to
potentially deplete memory reserves.

In the same way that commit 4779280d1e ("mm: make get_user_pages()
interruptible") aborted for pending SIGKILLs when faulting non-hugetlb
memory, based on the premise of commit 462e00cc71 ("oom: stop
allocating user memory if TIF_MEMDIE is set"), hugetlb page faults now
terminate when the process has been oom killed.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:06 -07:00
Gerald Schaefer 9753412701 mm/hugetlb: use pmd_page() in follow_huge_pmd()
Commit 61f77eda9b ("mm/hugetlb: reduce arch dependent code around
follow_huge_*") broke follow_huge_pmd() on s390, where pmd and pte
layout differ and using pte_page() on a huge pmd will return wrong
results.  Using pmd_page() instead fixes this.

All architectures that were touched by that commit have pmd_page()
defined, so this should not break anything on other architectures.

Fixes: 61f77eda "mm/hugetlb: reduce arch dependent code around follow_huge_*"
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.cz>, Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:48:56 -07:00
David Rientjes 44fc80573c mm, hugetlb: close race when setting PageTail for gigantic pages
Now that gigantic pages are dynamically allocatable, care must be taken to
ensure that p->first_page is valid before setting PageTail.

If this isn't done, then it is possible to race and have compound_head()
return NULL.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:07 -07:00
Kirill A. Shutemov dc6c9a35b6 mm: account pmd page tables to the process
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup.  The trick is to allocate a lot of PMD page tables.  Linux
kernel doesn't account PMD tables to the process, only PTE.

The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low.  oom_score for the process will be 0.

	#include <errno.h>
	#include <stdio.h>
	#include <stdlib.h>
	#include <unistd.h>
	#include <sys/mman.h>
	#include <sys/prctl.h>

	#define PUD_SIZE (1UL << 30)
	#define PMD_SIZE (1UL << 21)

	#define NR_PUD 130000

	int main(void)
	{
		char *addr = NULL;
		unsigned long i;

		prctl(PR_SET_THP_DISABLE);
		for (i = 0; i < NR_PUD ; i++) {
			addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
					MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
			if (addr == MAP_FAILED) {
				perror("mmap");
				break;
			}
			*addr = 'x';
			munmap(addr, PMD_SIZE);
			mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
					MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
			if (addr == MAP_FAILED)
				perror("re-mmap"), exit(1);
		}
		printf("PID %d consumed %lu KiB in PMD page tables\n",
				getpid(), i * 4096 >> 10);
		return pause();
	}

The patch addresses the issue by account PMD tables to the process the
same way we account PTE.

The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:

 - HugeTLB can share PMD page tables. The patch handles by accounting
   the table to all processes who share it.

 - x86 PAE pre-allocates few PMD tables on fork.

 - Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
   check on exit(2).

Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded).  As with nr_ptes we use per-mm counter.  The
counter value is used to calculate baseline for badness score by
oom-killer.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Naoya Horiguchi 9fbc1f635f mm/hugetlb: add migration entry check in __unmap_hugepage_range
If __unmap_hugepage_range() tries to unmap the address range over which
hugepage migration is on the way, we get the wrong page because pte_page()
doesn't work for migration entries.  This patch simply clears the pte for
migration entries as we do for hwpoison entries.

Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org>	[2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Naoya Horiguchi a8bda28d87 mm/hugetlb: add migration/hwpoisoned entry check in hugetlb_change_protection
There is a race condition between hugepage migration and
change_protection(), where hugetlb_change_protection() doesn't care about
migration entries and wrongly overwrites them.  That causes unexpected
results like kernel crash.  HWPoison entries also can cause the same
problem.

This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this
function to do proper actions.

Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org>	[2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Naoya Horiguchi 0f792cf949 mm/hugetlb: fix getting refcount 0 page in hugetlb_fault()
When running the test which causes the race as shown in the previous patch,
we can hit the BUG "get_page() on refcount 0 page" in hugetlb_fault().

This race happens when pte turns into migration entry just after the first
check of is_hugetlb_entry_migration() in hugetlb_fault() passed with false.
To fix this, we need to check pte_present() again after huge_ptep_get().

This patch also reorders taking ptl and doing pte_page(), because
pte_page() should be done in ptl.  Due to this reordering, we need use
trylock_page() in page != pagecache_page case to respect locking order.

Fixes: 66aebce747 ("hugetlb: fix race condition in hugetlb_fault()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org>	[3.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Naoya Horiguchi e66f17ff71 mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing.  This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.

This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.

This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned.  So the caller must be changed to
properly handle the returned tail pages.

We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.

Here is the reproducer:

  $ cat movepages.c
  #include <stdio.h>
  #include <stdlib.h>
  #include <numaif.h>

  #define ADDR_INPUT      0x700000000000UL
  #define HPS             0x200000
  #define PS              0x1000

  int main(int argc, char *argv[]) {
          int i;
          int nr_hp = strtol(argv[1], NULL, 0);
          int nr_p  = nr_hp * HPS / PS;
          int ret;
          void **addrs;
          int *status;
          int *nodes;
          pid_t pid;

          pid = strtol(argv[2], NULL, 0);
          addrs  = malloc(sizeof(char *) * nr_p + 1);
          status = malloc(sizeof(char *) * nr_p + 1);
          nodes  = malloc(sizeof(char *) * nr_p + 1);

          while (1) {
                  for (i = 0; i < nr_p; i++) {
                          addrs[i] = (void *)ADDR_INPUT + i * PS;
                          nodes[i] = 1;
                          status[i] = 0;
                  }
                  ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
                                        MPOL_MF_MOVE_ALL);
                  if (ret == -1)
                          err("move_pages");

                  for (i = 0; i < nr_p; i++) {
                          addrs[i] = (void *)ADDR_INPUT + i * PS;
                          nodes[i] = 0;
                          status[i] = 0;
                  }
                  ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
                                        MPOL_MF_MOVE_ALL);
                  if (ret == -1)
                          err("move_pages");
          }
          return 0;
  }

  $ cat hugepage.c
  #include <stdio.h>
  #include <sys/mman.h>
  #include <string.h>

  #define ADDR_INPUT      0x700000000000UL
  #define HPS             0x200000

  int main(int argc, char *argv[]) {
          int nr_hp = strtol(argv[1], NULL, 0);
          char *p;

          while (1) {
                  p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
                           MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
                  if (p != (void *)ADDR_INPUT) {
                          perror("mmap");
                          break;
                  }
                  memset(p, 0, nr_hp * HPS);
                  munmap(p, nr_hp * HPS);
          }
  }

  $ sysctl vm.nr_hugepages=40
  $ ./hugepage 10 &
  $ ./movepages 10 $(pgrep -f hugepage)

Fixes: e632a938d9 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Naoya Horiguchi cbef8478be mm/hugetlb: pmd_huge() returns true for non-present hugepage
Migrating hugepages and hwpoisoned hugepages are considered as non-present
hugepages, and they are referenced via migration entries and hwpoison
entries in their page table slots.

This behavior causes race condition because pmd_huge() doesn't tell
non-huge pages from migrating/hwpoisoned hugepages.  follow_page_mask() is
one example where the kernel would call follow_page_pte() for such
hugepage while this function is supposed to handle only normal pages.

To avoid this, this patch makes pmd_huge() return true when pmd_none() is
true *and* pmd_present() is false.  We don't have to worry about mixing up
non-present pmd entry with normal pmd (pointing to leaf level pte entry)
because pmd_present() is true in normal pmd.

The same race condition could happen in (x86-specific) gup_pmd_range(),
where this patch simply adds pmd_present() check instead of pmd_huge().
This is because gup_pmd_range() is fast path.  If we have non-present
hugepage in this function, we will go into gup_huge_pmd(), then return 0
at flag mask check, and finally fall back to the slow path.

Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org>	[2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Naoya Horiguchi 61f77eda9b mm/hugetlb: reduce arch dependent code around follow_huge_*
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m.  The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.

For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL).  So this patch sets returning ERR_PTR(-EINVAL) as
default.

As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.

In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.

One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL.  This means that we need
arch-specific implementation which returns NULL.  This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.

Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
  patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
  is true when follow_huge_pmd() can be called (note that pmd_huge() has
  the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
  code. This patch forces these archs use PMD_MASK, but it's OK because
  they are identical in both archs.
  In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
  In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
  PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
  PTE_ORDER is always 0, so these are identical.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Andrey Ryabinin 753162cd84 mm: hugetlb: fix type of hugetlb_treat_as_movable variable
hugetlb_treat_as_movable declared as unsigned long, but
proc_dointvec() used for parsing it:

static struct ctl_table vm_table[] = {
...
        {
                .procname	= "hugepages_treat_as_movable",
                .data		= &hugepages_treat_as_movable,
                .maxlen		= sizeof(int),
                .mode		= 0644,
                .proc_handler	= proc_dointvec,
        },

This seems harmless, but it's better to use int type here.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Linus Torvalds 988adfdffd Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "Highlights:

   - AMD KFD driver merge

     This is the AMD HSA interface for exposing a lowlevel interface for
     GPGPU use.  They have an open source userspace built on top of this
     interface, and the code looks as good as it was going to get out of
     tree.

   - Initial atomic modesetting work

     The need for an atomic modesetting interface to allow userspace to
     try and send a complete set of modesetting state to the driver has
     arisen, and been suffering from neglect this past year.  No more,
     the start of the common code and changes for msm driver to use it
     are in this tree.  Ongoing work to get the userspace ioctl finished
     and the code clean will probably wait until next kernel.

   - DisplayID 1.3 and tiled monitor exposed to userspace.

     Tiled monitor property is now exposed for userspace to make use of.

   - Rockchip drm driver merged.

   - imx gpu driver moved out of staging

  Other stuff:

   - core:
        panel - MIPI DSI + new panels.
        expose suggested x/y properties for virtual GPUs

   - i915:
        Initial Skylake (SKL) support
        gen3/4 reset work
        start of dri1/ums removal
        infoframe tracking
        fixes for lots of things.

   - nouveau:
        tegra k1 voltage support
        GM204 modesetting support
        GT21x memory reclocking work

   - radeon:
        CI dpm fixes
        GPUVM improvements
        Initial DPM fan control

   - rcar-du:
        HDMI support added
        removed some support for old boards
        slave encoder driver for Analog Devices adv7511

   - exynos:
        Exynos4415 SoC support

   - msm:
        a4xx gpu support
        atomic helper conversion

   - tegra:
        iommu support
        universal plane support
        ganged-mode DSI support

   - sti:
        HDMI i2c improvements

   - vmwgfx:
        some late fixes.

   - qxl:
        use suggested x/y properties"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
  drm: sti: fix module compilation issue
  drm/i915: save/restore GMBUS freq across suspend/resume on gen4
  drm: sti: correctly cleanup CRTC and planes
  drm: sti: add HQVDP plane
  drm: sti: add cursor plane
  drm: sti: enable auxiliary CRTC
  drm: sti: fix delay in VTG programming
  drm: sti: prepare sti_tvout to support auxiliary crtc
  drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
  drm: sti: fix hdmi avi infoframe
  drm: sti: remove event lock while disabling vblank
  drm: sti: simplify gdp code
  drm: sti: clear all mixer control
  drm: sti: remove gpio for HDMI hot plug detection
  drm: sti: allow to change hdmi ddc i2c adapter
  drm/doc: Document drm_add_modes_noedid() usage
  drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
  drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
  drm: Zero out DRM object memory upon cleanup
  drm/i915/bdw: Fix the write setting up the WIZ hashing mode
  ...
2014-12-15 15:52:01 -08:00
Luiz Capitulino 7d9ca0004f hugetlb: hugetlb_register_all_nodes(): add __init marker
This function is only called during initialization.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Luiz Capitulino df994ead54 hugetlb: alloc_bootmem_huge_page(): use IS_ALIGNED()
No reason to duplicate the code of an existing macro.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Davidlohr Bueso c8c06efa8b mm: convert i_mmap_mutex to rwsem
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting
similar data, one for file backed pages and the other for anon memory.  To
this end, this lock can also be a rwsem.  In addition, there are some
important opportunities to share the lock when there are no tree
modifications.

This conversion is straightforward.  For now, all users take the write
lock.

[sfr@canb.auug.org.au: update fremap.c]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:45 -08:00
Davidlohr Bueso 83cde9e8ba mm: use new helper functions around the i_mmap_mutex
Convert all open coded mutex_lock/unlock calls to the
i_mmap_[lock/unlock]_write() helpers.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:45 -08:00
Linus Torvalds 2756d373a3 Merge branch 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup update from Tejun Heo:
 "cpuset got simplified a bit.  cgroup core got a fix on unified
  hierarchy and grew some effective css related interfaces which will be
  used for blkio support for writeback IO traffic which is currently
  being worked on"

* 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: implement cgroup_get_e_css()
  cgroup: add cgroup_subsys->css_e_css_changed()
  cgroup: add cgroup_subsys->css_released()
  cgroup: fix the async css offline wait logic in cgroup_subtree_control_write()
  cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write()
  cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask()
  cpuset: lock vs unlock typo
  cpuset: simplify cpuset_node_allowed API
  cpuset: convert callback_mutex to a spinlock
2014-12-11 18:57:19 -08:00
Hillf Danton 569f48b858 mm: hugetlb: fix __unmap_hugepage_range()
First, after flushing TLB, we have no need to scan pte from start again.
Second, before bail out loop, the address is forwarded one step.

Signed-off-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Vladimir Davydov 344736f29b cpuset: simplify cpuset_node_allowed API
Current cpuset API for checking if a zone/node is allowed to allocate
from looks rather awkward. We have hardwall and softwall versions of
cpuset_node_allowed with the softwall version doing literally the same
as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags.
If it isn't, the softwall version may check the given node against the
enclosing hardwall cpuset, which it needs to take the callback lock to
do.

Such a distinction was introduced by commit 02a0e53d82 ("cpuset:
rework cpuset_zone_allowed api"). Before, we had the only version with
the __GFP_HARDWALL flag determining its behavior. The purpose of the
commit was to avoid sleep-in-atomic bugs when someone would mistakenly
call the function without the __GFP_HARDWALL flag for an atomic
allocation. The suffixes introduced were intended to make the callers
think before using the function.

However, since the callback lock was converted from mutex to spinlock by
the previous patch, the softwall check function cannot sleep, and these
precautions are no longer necessary.

So let's simplify the API back to the single check.

Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-10-27 11:15:27 -04:00
Sasha Levin 81d1b09c6b mm: convert a few VM_BUG_ON callers to VM_BUG_ON_VMA
Trivially convert a few VM_BUG_ON calls to VM_BUG_ON_VMA to extract
more information when they trigger.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:57 -04:00
Li Zhong d017763931 mm: fix potential infinite loop in dissolve_free_huge_pages()
It is possible for some platforms, such as powerpc to set HPAGE_SHIFT to
0 to indicate huge pages not supported.

When this is the case, hugetlbfs could be disabled during boot time:
hugetlbfs: disabling because there are no supported hugepage sizes

Then in dissolve_free_huge_pages(), order is kept maximum (64 for
64bits), and the for loop below won't end: for (pfn = start_pfn; pfn <
end_pfn; pfn += 1 << order)

As suggested by Naoya, below fix checks hugepages_supported() before
calling dissolve_free_huge_pages().

[rientjes@google.com: no legitimate reason to call dissolve_free_huge_pages() when !hugepages_supported()]
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:21 -07:00
David Rientjes ed4d4902eb mm, hugetlb: remove hugetlb_zero and hugetlb_infinity
They are unnecessary: "zero" can be used in place of "hugetlb_zero" and
passing extra2 == NULL is equivalent to infinity.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
David Rientjes 238d3c13f0 mm, hugetlb: generalize writes to nr_hugepages
Three different interfaces alter the maximum number of hugepages for an
hstate:

 - /proc/sys/vm/nr_hugepages for global number of hugepages of the default
   hstate,

 - /sys/kernel/mm/hugepages/hugepages-X/nr_hugepages for global number of
   hugepages for a specific hstate, and

 - /sys/kernel/mm/hugepages/hugepages-X/nr_hugepages/mempolicy for number of
   hugepages for a specific hstate over the set of allowed nodes.

Generalize the code so that a single function handles all of these
writes instead of duplicating the code in two different functions.

This decreases the number of lines of code, but also reduces the size of
.text by about half a percent since set_max_huge_pages() can be inlined.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
Davidlohr Bueso ad4404a226 mm,hugetlb: simplify error handling in hugetlb_cow()
When returning from hugetlb_cow(), we always (1) put back the refcount
for each referenced page -- always 'old', and 'new' if allocation was
successful.  And (2) retake the page table lock right before returning,
as the callers expects.  This logic can be simplified and encapsulated,
as proposed in this patch.  In addition to cleaner code, we also shave a
few bytes off the instruction text:

   text    data     bss     dec     hex filename
  28399     462   41328   70189   1122d mm/hugetlb.o-baseline
  28367     462   41328   70157   1120d mm/hugetlb.o-patched

Passes libhugetlbfs testcases.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
Davidlohr Bueso 2f4612af43 mm,hugetlb: make unmap_ref_private() return void
This function always returns 1, thus no need to check return value in
hugetlb_cow().  By doing so, we can get rid of the unnecessary WARN_ON
call.  While this logic perhaps existed as a way of identifying future
unmap_ref_private() mishandling, reality is it serves no apparent
purpose.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
Atsushi Kumagai 8f1d26d0e5 kexec: export free_huge_page to VMCOREINFO
PG_head_mask was added into VMCOREINFO to filter huge pages in b3acc56bfe
("kexec: save PG_head_mask in VMCOREINFO"), but makedumpfile still need
another symbol to filter *hugetlbfs* pages.

If a user hope to filter user pages, makedumpfile tries to exclude them by
checking the condition whether the page is anonymous, but hugetlbfs pages
aren't anonymous while they also be user pages.

We know it's possible to detect them in the same way as PageHuge(),
so we need the start address of free_huge_page():

    int PageHuge(struct page *page)
    {
            if (!PageCompound(page))
                    return 0;

            page = compound_head(page);
            return get_compound_page_dtor(page) == free_huge_page;
    }

For that reason, this patch changes free_huge_page() into public
to export it to VMCOREINFO.

Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-07-30 17:16:13 -07:00
Naoya Horiguchi 0253d634e0 mm: hugetlb: fix copy_hugetlb_page_range()
Commit 4a705fef98 ("hugetlb: fix copy_hugetlb_page_range() to handle
migration/hwpoisoned entry") changed the order of
huge_ptep_set_wrprotect() and huge_ptep_get(), which leads to breakage
in some workloads like hugepage-backed heap allocation via libhugetlbfs.
This patch fixes it.

The test program for the problem is shown below:

  $ cat heap.c
  #include <unistd.h>
  #include <stdlib.h>
  #include <string.h>

  #define HPS 0x200000

  int main() {
  	int i;
  	char *p = malloc(HPS);
  	memset(p, '1', HPS);
  	for (i = 0; i < 5; i++) {
  		if (!fork()) {
  			memset(p, '2', HPS);
  			p = malloc(HPS);
  			memset(p, '3', HPS);
  			free(p);
  			return 0;
  		}
  	}
  	sleep(1);
  	free(p);
  	return 0;
  }

  $ export HUGETLB_MORECORE=yes ; export HUGETLB_NO_PREFAULT= ; hugectl --heap ./heap

Fixes 4a705fef98 ("hugetlb: fix copy_hugetlb_page_range() to handle
migration/hwpoisoned entry"), so is applicable to -stable kernels which
include it.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Guillaume Morin <guillaume@morinfr.org>
Suggested-by: Guillaume Morin <guillaume@morinfr.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>	[2.6.37+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-07-23 15:10:55 -07:00
Naoya Horiguchi 4a705fef98 hugetlb: fix copy_hugetlb_page_range() to handle migration/hwpoisoned entry
There's a race between fork() and hugepage migration, as a result we try
to "dereference" a swap entry as a normal pte, causing kernel panic.
The cause of the problem is that copy_hugetlb_page_range() can't handle
"swap entry" family (migration entry and hwpoisoned entry) so let's fix
it.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: <stable@vger.kernel.org>	[2.6.37+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:43 -07:00
Naoya Horiguchi 100873d7a7 hugetlb: rename hugepage_migration_support() to ..._supported()
We already have a function named hugepages_supported(), and the similar
name hugepage_migration_support() is a bit unconfortable, so let's rename
it hugepage_migration_supported().

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:12 -07:00
Jianyu Zhan 8f34af6f93 mm, hugetlb: move the error handle logic out of normal code path
alloc_huge_page() now mixes normal code path with error handle logic.
This patches move out the error handle logic, to make normal code path
more clean and redue code duplicate.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Acked-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:10 -07:00
Luiz Capitulino 944d9fec8d hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order.  This is so because HugeTLB allocates hugepages via the
buddy allocator.  Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.

However, boottime allocation has at least two serious problems.  First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.

This commit solves both issues by adding support for allocating gigantic
pages during runtime.  It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.

For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:

 # echo 2 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

And to free them all:

 # echo 0 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator.  To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region.  When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation.  For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region.  When one is found, it's allocated by alloc_contig_range().

One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by.  The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script.  Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.

It's also important to note the following:

 1. Gigantic pages allocated at boottime by the hugepages= command-line
    option can be freed at runtime just fine

 2. This commit adds support for gigantic pages only to x86_64. The
    reason is that I don't have access to nor experience with other archs.
    The code is arch indepedent though, so it should be simple to add
    support to different archs

 3. I didn't add support for hugepage overcommit, that is allocating
    a gigantic page on demand when
   /proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
   think it's reasonable to do the hard and long work required for
   allocating a gigantic page at fault time. But it should be simple
   to add this if wanted

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino 1cac6f2c07 hugetlb: move helpers up in the file
Next commit will add new code which will want to call
for_each_node_mask_to_alloc() macro.  Move it, its buddy
for_each_node_mask_to_free() and their dependencies up in the file so the
new code can use them.  This is just code movement, no logic change.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino a7407a27c2 hugetlb: update_and_free_page(): don't clear PG_reserved bit
Hugepages pages never get the PG_reserved bit set, so don't clear it.

However, note that if the bit gets mistakenly set free_pages_check() will
catch it.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00