A poisoned or migrated hugepage is stored as a swap entry in the page
tables. On architectures that support hugepages consisting of
contiguous page table entries (such as on arm64) this leads to ambiguity
in determining the page table entry to return in huge_pte_offset() when
a poisoned entry is encountered.
Let's remove the ambiguity by adding a size parameter to convey
additional information about the requested address. Also fixup the
definition/usage of huge_pte_offset() throughout the tree.
Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE)
Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1b028f784e introduced two mmap() bases for 32-bit syscalls and for
64-bit syscalls. The mmap() code in x86 was modified to handle the
separation, but the patch series missed to update the hugetlb code.
As a consequence a 32bit application mapping a file on hugetlbfs uses the
64-bit mmap base for address space allocation, which fails.
Adjust the hugetlb mapping code to use the proper bases depending on the
syscall invocation mode (64-bit or compat).
[ tglx: Massaged changelog and switched from asm/compat.h to linux/compat.h ]
Fixes: commit 1b028f784e ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()")
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: 0x7f454c46@gmail.com
Cc: linux-mm@kvack.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20170314114126.9280-1-dsafonov@virtuozzo.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We are going to split more MM APIs out of <linux/sched.h>, which
will have to be picked up from a couple of .c files.
The APIs that we are going to move are:
arch_pick_mmap_layout()
arch_get_unmapped_area()
arch_get_unmapped_area_topdown()
mm_update_next_owner()
Include the header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 944d9fec8d ("hugetlb: add support for gigantic page allocation
at runtime") has added the runtime gigantic page allocation via
alloc_contig_range(), making this support available only when CONFIG_CMA
is enabled. Because it doesn't depend on MIGRATE_CMA pageblocks and the
associated infrastructure, it is possible with few simple adjustments to
require only CONFIG_MEMORY_ISOLATION instead of full CONFIG_CMA.
After this patch, alloc_contig_range() and related functions are
available and used for gigantic pages with just CONFIG_MEMORY_ISOLATION
enabled. Note CONFIG_CMA selects CONFIG_MEMORY_ISOLATION. This allows
supporting runtime gigantic pages without the CMA-specific checks in
page allocator fastpaths.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migrating hugepages and hwpoisoned hugepages are considered as non-present
hugepages, and they are referenced via migration entries and hwpoison
entries in their page table slots.
This behavior causes race condition because pmd_huge() doesn't tell
non-huge pages from migrating/hwpoisoned hugepages. follow_page_mask() is
one example where the kernel would call follow_page_pte() for such
hugepage while this function is supposed to handle only normal pages.
To avoid this, this patch makes pmd_huge() return true when pmd_none() is
true *and* pmd_present() is false. We don't have to worry about mixing up
non-present pmd entry with normal pmd (pointing to leaf level pte entry)
because pmd_present() is true in normal pmd.
The same race condition could happen in (x86-specific) gup_pmd_range(),
where this patch simply adds pmd_present() check instead of pmd_huge().
This is because gup_pmd_range() is fast path. If we have non-present
hugepage in this function, we will go into gup_huge_pmd(), then return 0
at flag mask check, and finally fall back to the slow path.
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m. The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.
For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as
default.
As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.
In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.
One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL. This means that we need
arch-specific implementation which returns NULL. This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.
Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
is true when follow_huge_pmd() can be called (note that pmd_huge() has
the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
code. This patch forces these archs use PMD_MASK, but it's OK because
they are identical in both archs.
In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
PTE_ORDER is always 0, so these are identical.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 944d9fec8d ("hugetlb: add support for gigantic page
allocation at runtime") we can allocate 1G pages at runtime if CMA is
enabled.
Let's register 1G pages into hugetlb even if the user hasn't requested
them explicitly at boot time with hugepagesz=1G.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently hugepage migration is available for all archs which support
pmd-level hugepage, but testing is done only for x86_64 and there're
bugs for other archs. So to avoid breaking such archs, this patch
limits the availability strictly to x86_64 until developers of other
archs get interested in enabling this feature.
Simply disabling hugepage migration on non-x86_64 archs is not enough to
fix the reported problem where sys_move_pages() hits the BUG_ON() in
follow_page(FOLL_GET), so let's fix this by checking if hugepage
migration is supported in vma_migratable().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Matthew noticed that hugetlb mappings don't participate in ASLR on x86-64:
% for i in `seq 3`; do
> tools/testing/selftests/vm/map_hugetlb | grep address
> done
Returned address is 0x2aaaaac00000
Returned address is 0x2aaaaac00000
Returned address is 0x2aaaaac00000
/proc/PID/maps entries for the mapping are always the same
(except inode number):
2aaaaac00000-2aaabac00000 rw-p 00000000 00:0c 8200 /anon_hugepage (deleted)
2aaaaac00000-2aaabac00000 rw-p 00000000 00:0c 256 /anon_hugepage (deleted)
2aaaaac00000-2aaabac00000 rw-p 00000000 00:0c 7180 /anon_hugepage (deleted)
The reason is the generic hugetlb_get_unmapped_area() function
which is used on x86-64. It doesn't support randomization and
use bottom-up unmapped area lookup, instead of usual top-down
on x86-64.
x86 has arch-specific hugetlb_get_unmapped_area(), but it's used
only on x86-32.
Let's use arch-specific hugetlb_get_unmapped_area() on x86-64
too. That adds ASLR and switches hugetlb mappings to use top-down
unmapped area lookup:
% for i in `seq 3`; do
> tools/testing/selftests/vm/map_hugetlb | grep address
> done
Returned address is 0x7f4f08a00000
Returned address is 0x7fdda4200000
Returned address is 0x7febe0000000
/proc/PID/maps entries:
7f4f08a00000-7f4f18a00000 rw-p 00000000 00:0c 1168 /anon_hugepage (deleted)
7fdda4200000-7fddb4200000 rw-p 00000000 00:0c 7092 /anon_hugepage (deleted)
7febe0000000-7febf0000000 rw-p 00000000 00:0c 7183 /anon_hugepage (deleted)
Unmapped area lookup policy for hugetlb mappings is consistent
with normal mappings now -- the only difference is alignment
requirements for huge pages.
libhugetlbfs test-suite didn't detect any regressions with the
patch applied (although it shows few failures on my machine
regardless the patch).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/20131119131750.EA45CE0090@blue.fi.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently hugepage migration works well only for pmd-based hugepages
(mainly due to lack of testing,) so we had better not enable migration of
other levels of hugepages until we are ready for it.
Some users of hugepage migration (mbind, move_pages, and migrate_pages) do
page table walk and check pud/pmd_huge() there, so they are safe. But the
other users (softoffline and memory hotremove) don't do this, so without
this patch they can try to migrate unexpected types of hugepages.
To prevent this, we introduce hugepage_migration_support() as an
architecture dependent check of whether hugepage are implemented on a pmd
basis or not. And on some architecture multiple sizes of hugepages are
available, so hugepage_migration_support() also checks hugepage size.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
huge_pte_alloc, huge_pte_offset and follow_huge_p[mu]d have
already been copied over to mm.
This patch removes the x86 copies of these functions and activates
the general ones by enabling:
CONFIG_ARCH_WANT_GENERAL_HUGETLB
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
The huge_pmd_share code has been copied over to mm/hugetlb.c to
make it accessible to other architectures.
Remove the x86 copy of the huge_pmd_share code and enable the
ARCH_WANT_HUGE_PMD_SHARE config flag. That way we reference the
general one.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Update the i386 hugetlb_get_unmapped_area function to make use of
vm_unmapped_area() instead of implementing a brute force search.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement an interval tree as a replacement for the VMA prio_tree. The
algorithms are similar to lib/interval_tree.c; however that code can't be
directly reused as the interval endpoints are not explicitly stored in the
VMA. So instead, the common algorithm is moved into a template and the
details (node type, how to get interval endpoints from the node, etc) are
filled in using the C preprocessor.
Once the interval tree functions are available, using them as a
replacement to the VMA prio tree is a relatively simple, mechanical job.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each page mapped in a process's address space must be correctly
accounted for in _mapcount. Normally the rules for this are
straightforward but hugetlbfs page table sharing is different. The page
table pages at the PMD level are reference counted while the mapcount
remains the same.
If this accounting is wrong, it causes bugs like this one reported by
Larry Woodman:
kernel BUG at mm/filemap.c:135!
invalid opcode: 0000 [#1] SMP
CPU 22
Modules linked in: bridge stp llc sunrpc binfmt_misc dcdbas microcode pcspkr acpi_pad acpi]
Pid: 18001, comm: mpitest Tainted: G W 3.3.0+ #4 Dell Inc. PowerEdge R620/07NDJ2
RIP: 0010:[<ffffffff8112cfed>] [<ffffffff8112cfed>] __delete_from_page_cache+0x15d/0x170
Process mpitest (pid: 18001, threadinfo ffff880428972000, task ffff880428b5cc20)
Call Trace:
delete_from_page_cache+0x40/0x80
truncate_hugepages+0x115/0x1f0
hugetlbfs_evict_inode+0x18/0x30
evict+0x9f/0x1b0
iput_final+0xe3/0x1e0
iput+0x3e/0x50
d_kill+0xf8/0x110
dput+0xe2/0x1b0
__fput+0x162/0x240
During fork(), copy_hugetlb_page_range() detects if huge_pte_alloc()
shared page tables with the check dst_pte == src_pte. The logic is if
the PMD page is the same, they must be shared. This assumes that the
sharing is between the parent and child. However, if the sharing is
with a different process entirely then this check fails as in this
diagram:
parent
|
------------>pmd
src_pte----------> data page
^
other--------->pmd--------------------|
^
child-----------|
dst_pte
For this situation to occur, it must be possible for Parent and Other to
have faulted and failed to share page tables with each other. This is
possible due to the following style of race.
PROC A PROC B
copy_hugetlb_page_range copy_hugetlb_page_range
src_pte == huge_pte_offset src_pte == huge_pte_offset
!src_pte so no sharing !src_pte so no sharing
(time passes)
hugetlb_fault hugetlb_fault
huge_pte_alloc huge_pte_alloc
huge_pmd_share huge_pmd_share
LOCK(i_mmap_mutex)
find nothing, no sharing
UNLOCK(i_mmap_mutex)
LOCK(i_mmap_mutex)
find nothing, no sharing
UNLOCK(i_mmap_mutex)
pmd_alloc pmd_alloc
LOCK(instantiation_mutex)
fault
UNLOCK(instantiation_mutex)
LOCK(instantiation_mutex)
fault
UNLOCK(instantiation_mutex)
These two processes are not poing to the same data page but are not
sharing page tables because the opportunity was missed. When either
process later forks, the src_pte == dst pte is potentially insufficient.
As the check falls through, the wrong PTE information is copied in
(harmless but wrong) and the mapcount is bumped for a page mapped by a
shared page table leading to the BUG_ON.
This patch addresses the issue by moving pmd_alloc into huge_pmd_share
which guarantees that the shared pud is populated in the same critical
section as pmd. This also means that huge_pte_offset test in
huge_pmd_share is serialized correctly now which in turn means that the
success of the sharing will be higher as the racing tasks see the pud
and pmd populated together.
Race identified and changelog written mostly by Mel Gorman.
{akpm@linux-foundation.org: attempt to make the huge_pmd_share() comment comprehensible, clean up coding style]
Reported-by: Larry Woodman <lwoodman@redhat.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After looking up the vma which covers or follows the cached search
address, the following condition is always true:
!prev_vma || (addr >= prev_vma->vm_end)
so we can stop checking the previous VMA altogether.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Search again only if some holes may be skipped in the first pass.
[akpm@linux-foundation.org: clean up crazy compound definition]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that test-compiling this file on x86-64 doesn't really
help, because much of it is x86-32-specific. And so I hadn't noticed
the slightly over-eager removal of the 'r' from 'addr' variable despite
thinking I had tested it.
Signed-off-by: Linus "oopsie" Torvalds <torvalds@linux-foundation.org>
Several users of "find_vma_prev()" were not in fact interested in the
previous vma if there was no primary vma to be found either. And in
those cases, we're much better off just using the regular "find_vma()",
and then "prev" can be looked up by just checking vma->vm_prev.
The find_vma_prev() semantics are fairly subtle (see Mikulas' recent
commit 83cd904d271b: "mm: fix find_vma_prev"), and the whole "return
prev by reference" means that it generates worse code too.
Thus this "let's avoid using this inconvenient and clearly too subtle
interface when we don't really have to" patch.
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straightforward conversion of i_mmap_lock to a mutex.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They were generated by 'codespell' and then manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: trivial@kernel.org
LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302
On x86 and x86-64, it is possible that page tables are shared beween
shared mappings backed by hugetlbfs. As part of this,
page_table_shareable() checks a pair of vma->vm_flags and they must match
if they are to be shared. All VMA flags are taken into account, including
VM_LOCKED.
The problem is that VM_LOCKED is cleared on fork(). When a process with a
shared memory segment forks() to exec() a helper, there will be shared
VMAs with different flags. The impact is that the shared segment is
sometimes considered shareable and other times not, depending on what
process is checking.
What happens is that the segment page tables are being shared but the
count is inaccurate depending on the ordering of events. As the page
tables are freed with put_page(), bad pmd's are found when some of the
children exit. The hugepage counters also get corrupted and the Total and
Free count will no longer match even when all the hugepage-backed regions
are freed. This requires a reboot of the machine to "fix".
This patch addresses the problem by comparing all flags except VM_LOCKED
when deciding if pagetables should be shared or not for hugetlbfs-backed
mapping.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <starlight@binnacle.cx>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an hugepagesz=... option similar to IA64, PPC etc. to x86-64.
This finally allows to select GB pages for hugetlbfs in x86 now that all
the infrastructure is in place.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straight forward extensions for huge pages located in the PUD instead of
PMDs.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of this patchset is to support multiple hugetlb page sizes. This
is achieved by introducing a new struct hstate structure, which
encapsulates the important hugetlb state and constants (eg. huge page
size, number of huge pages currently allocated, etc).
The hstate structure is then passed around the code which requires these
fields, they will do the right thing regardless of the exact hstate they
are operating on.
This patch adds the hstate structure, with a single global instance of it
(default_hstate), and does the basic work of converting hugetlb to use the
hstate.
Future patches will add more hstate structures to allow for different
hugetlbfs mounts to have different page sizes.
[akpm@linux-foundation.org: coding-style fixes]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The first page of the compound page is determined in follow_huge_addr()
but then PageCompound() only checks if the page is part of a compound page.
PageHead() allows checking if this is indeed the first page of the
compound.
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Convert macros into inline functions, for better type-checking.
This patch required a little bit of fiddling with headers in order to
make __(pte|pmd)_free_tlb inline rather than macros.
asm-generic/tlb.h includes asm/pgalloc.h, though it doesn't directly
use any pgalloc definitions. I removed this include to avoid an
include cycle, but it may cause secondary compile failures by things
depending on the indirect inclusion; arch/x86/mm/hugetlbpage.c was one
such place; there may be others.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>