The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
We no longer pass in a bitmap of rq_flag_bits bits to __btrfs_map_block.
It will always be a REQ_OP, or the btrfs specific REQ_GET_READ_MIRRORS,
so this drops the bit tests.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This should be the easier cases to convert btrfs to
bio_set_op_attrs/bio_op.
They are mostly just cut and replace type of changes.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This has callers of submit_bio/submit_bio_wait set the bio->bi_rw
instead of passing it in. This makes that use the same as
generic_make_request and how we set the other bio fields.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Fixed up fs/ext4/crypto.c
Signed-off-by: Jens Axboe <axboe@fb.com>
To prevent fuzzed filesystem images from panic the whole system,
we need various validation checks to refuse to mount such an image
if btrfs finds any invalid value during loading chunks, including
both sys_array and regular chunks.
Note that these checks may not be sufficient to cover all corner cases,
feel free to add more checks.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds validation checks for super_total_bytes, super_bytes_used and
super_stripesize, super_num_devices.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We set uptodate flag to pages in the temporary sys_array eb,
but do not clear the flag after free eb. As the special
btree inode may still hold a reference on those pages, the
uptodate flag can remain alive in them.
If btrfs_super_chunk_root has been intentionally changed to the
offset of this sys_array eb, reading chunk_root will read content
of sys_array and it will skip our beautiful checks in
btree_readpage_end_io_hook() because of
"pages of eb are uptodate => eb is uptodate"
This adds the 'clear uptodate' part to force it to read from disk.
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"The important part of this pull is Filipe's set of fixes for btrfs
device replacement. Filipe fixed a few issues seen on the list and a
number he found on his own"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: deal with duplciates during extent_map insertion in btrfs_get_extent
Btrfs: fix race between device replace and read repair
Btrfs: fix race between device replace and discard
Btrfs: fix race between device replace and chunk allocation
Btrfs: fix race setting block group back to RW mode during device replace
Btrfs: fix unprotected assignment of the left cursor for device replace
Btrfs: fix race setting block group readonly during device replace
Btrfs: fix race between device replace and block group removal
Btrfs: fix race between readahead and device replace/removal
We still need to call btrfs_end_transaction if we call btrfs_abort_transaction,
otherwise we hang and make me super grumpy. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While iterating and copying extents from the source device, the device
replace code keeps adjusting a left cursor that is used to make sure that
once we finish processing a device extent, any future writes to extents
from the corresponding block group will get into both the source and
target devices. This left cursor is also used for resuming the device
replace operation at mount time.
However using this left cursor to decide whether writes go into both
devices or only the source device is not enough to guarantee we don't
miss copying extents into the target device. There are two cases where
the current approach fails. The first one is related to when there are
holes in the device and they get allocated for new block groups while
the device replace operation is iterating the device extents (more on
this explained below). The second one is that when that loop over the
device extents finishes, we start dellaloc, wait for all ordered extents
and then commit the current transaction, we might have got new block
groups allocated that are now using a device extent that has an offset
greater then or equals to the value of the left cursor, in which case
writes to extents belonging to these new block groups will get issued
only to the source device.
For the first case where the current approach of using a left cursor
fails, consider the source device currently has the following layout:
[ extent bg A ] [ hole, unallocated space ] [extent bg B ]
3Gb 4Gb 5Gb
While we are iterating the device extents from the source device using
the commit root of the device tree, the following happens:
CPU 1 CPU 2
<we are at transaction N>
scrub_enumerate_chunks()
--> searches the device tree for
extents belonging to the source
device using the device tree's
commit root
--> 1st iteration finds extent belonging to
block group A
--> sets block group A to RO mode
(btrfs_inc_block_group_ro)
--> sets cursor left to found_key.offset
which is 3Gb
--> scrub_chunk() starts
copies all allocated extents from
block group's A stripe at source
device into target device
btrfs_alloc_chunk()
--> allocates device extent
in the range [4Gb, 5Gb[
from the source device for
a new block group C
extent allocated from block
group C for a direct IO,
buffered write or btree node/leaf
extent is written to, perhaps
in response to a writepages()
call from the VM or directly
through direct IO
the write is made only against
the source device and not against
the target device because the
extent's offset is in the interval
[4Gb, 5Gb[ which is larger then
the value of cursor_left (3Gb)
--> scrub_chunks() finishes
--> updates left cursor from 3Gb to
4Gb
--> btrfs_dec_block_group_ro() sets
block group A back to RW mode
<we are still at transaction N>
--> 2nd iteration finds extent belonging to
block group B - it did not find the new
extent in the range [4Gb, 5Gb[ for block
group C because we are using the device
tree's commit root or even because the
block group's items are not all yet
inserted in the respective btrees, that is,
the block group is still attached to some
transaction handle's new_bgs list and
btrfs_create_pending_block_groups() was
not called yet against that transaction
handle, so the device extent items were
not yet inserted into the devices tree
<we are still at transaction N>
--> so we end not copying anything from the newly
allocated device extent from the source device
to the target device
So fix this by making __btrfs_map_block() always redirect writes to the
target device as well, independently of the left cursor's value. With
this change the left cursor is now used only for the purpose of tracking
progress and allow a mount operation to resume a device replace.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When it's finishing, the device replace code iterates all extent maps
representing block group and for each one that has a stripe that refers
to the source device, it replaces its device with the target device.
However when it replaces the source device with the target device it,
the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID),
only after its ID is changed to match the one from the source device.
This leads to races with the chunk removal code that can temporarly see
a device with an ID of 0ULL and then attempt to use that ID to remove
items from the device tree and fail, causing a transaction abort:
[ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished
[ 9238.594377] ------------[ cut here ]------------
[ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs]
[ 9238.594403] BTRFS: Transaction aborted (error 1)
[ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se
rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl
oppy [last unloaded: btrfs]
[ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1
[ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 9238.594421] 0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0
[ 9238.594422] 0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18
[ 9238.594423] 0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0
[ 9238.594424] Call Trace:
[ 9238.594428] [<ffffffff8126b42c>] dump_stack+0x67/0x90
[ 9238.594430] [<ffffffff81052b14>] __warn+0xc2/0xdd
[ 9238.594432] [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53
[ 9238.594434] [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188
[ 9238.594450] [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs]
[ 9238.594452] [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc
[ 9238.594464] [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs]
[ 9238.594476] [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs]
[ 9238.594489] [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs]
[ 9238.594490] [<ffffffff8106f403>] kthread+0xd4/0xdc
[ 9238.594494] [<ffffffff8149e242>] ret_from_fork+0x22/0x40
[ 9238.594495] [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286
[ 9238.594496] ---[ end trace 183efbe50275f059 ]---
The sequence of steps leading to this is like the following:
CPU 1 CPU 2
btrfs_dev_replace_finishing()
at this point
dev_replace->tgtdev->devid ==
BTRFS_DEV_REPLACE_DEVID (0ULL)
...
btrfs_start_transaction()
btrfs_commit_transaction()
btrfs_delete_unused_bgs()
btrfs_remove_chunk()
looks up for the extent map
corresponding to the chunk
lock_chunks() (chunk_mutex)
check_system_chunk()
unlock_chunks() (chunk_mutex)
locks fs_info->chunk_mutex
btrfs_dev_replace_update_device_in_mapping_tree()
--> iterates fs_info->mapping_tree and
replaces the device in every extent
map's map->stripes[] with
dev_replace->tgtdev, which still has
an id of 0ULL (BTRFS_DEV_REPLACE_DEVID)
iterates over all stripes from
the extent map
--> calls btrfs_free_dev_extent()
passing it the target device
that still has an ID of 0ULL
--> btrfs_free_dev_extent() fails
--> aborts current transaction
finishes setting up the target device,
namely it sets tgtdev->devid to the value
of srcdev->devid (which is necessarily > 0)
frees the srcdev
unlocks fs_info->chunk_mutex
So fix this by taking the device list mutex while processing the stripes
for the chunk's extent map. This is similar to the race between device
replace and block group creation that was fixed by commit 50460e3718
("Btrfs: fix race when finishing dev replace leading to transaction abort").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Pull btrfs cleanups and fixes from Chris Mason:
"We have another round of fixes and a few cleanups.
I have a fix for short returns from btrfs_copy_from_user, which
finally nails down a very hard to find regression we added in v4.6.
Dave is pushing around gfp parameters, mostly to cleanup internal apis
and make it a little more consistent.
The rest are smaller fixes, and one speelling fixup patch"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (22 commits)
Btrfs: fix handling of faults from btrfs_copy_from_user
btrfs: fix string and comment grammatical issues and typos
btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
Btrfs: fix unexpected return value of fiemap
Btrfs: free sys_array eb as soon as possible
btrfs: sink gfp parameter to convert_extent_bit
btrfs: make state preallocation more speculative in __set_extent_bit
btrfs: untangle gotos a bit in convert_extent_bit
btrfs: untangle gotos a bit in __clear_extent_bit
btrfs: untangle gotos a bit in __set_extent_bit
btrfs: sink gfp parameter to set_record_extent_bits
btrfs: sink gfp parameter to set_extent_new
btrfs: sink gfp parameter to set_extent_defrag
btrfs: sink gfp parameter to set_extent_delalloc
btrfs: sink gfp parameter to clear_extent_dirty
btrfs: sink gfp parameter to clear_record_extent_bits
btrfs: sink gfp parameter to clear_extent_bits
btrfs: sink gfp parameter to set_extent_bits
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
While reading sys_chunk_array in superblock, btrfs creates a temporary
extent buffer. Since we don't use it after finishing reading
sys_chunk_array, we don't need to keep it in memory.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This has our merge window series of cleanups and fixes. These target
a wide range of issues, but do include some important fixes for
qgroups, O_DIRECT, and fsync handling. Jeff Mahoney moved around a
few definitions to make them easier for userland to consume.
Also whiteout support is included now that issues with overlayfs have
been cleared up.
I have one more fix pending for page faults during btrfs_copy_from_user,
but I wanted to get this bulk out the door first"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (90 commits)
btrfs: fix memory leak during RAID 5/6 device replacement
Btrfs: add semaphore to synchronize direct IO writes with fsync
Btrfs: fix race between block group relocation and nocow writes
Btrfs: fix race between fsync and direct IO writes for prealloc extents
Btrfs: fix number of transaction units for renames with whiteout
Btrfs: pin logs earlier when doing a rename exchange operation
Btrfs: unpin logs if rename exchange operation fails
Btrfs: fix inode leak on failure to setup whiteout inode in rename
btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
Btrfs: pin log earlier when renaming
Btrfs: unpin log if rename operation fails
Btrfs: don't do unnecessary delalloc flushes when relocating
Btrfs: don't wait for unrelated IO to finish before relocation
Btrfs: fix empty symlink after creating symlink and fsync parent dir
Btrfs: fix for incorrect directory entries after fsync log replay
btrfs: build fixup for qgroup_account_snapshot
btrfs: qgroup: Fix qgroup accounting when creating snapshot
Btrfs: fix fspath error deallocation
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
btrfs_map_block can go horribly wrong in the face of fs corruption, lets agree
to not be assholes and panic at any possible chance things are all fucked up.
Signed-off-by: Josef Bacik <jbacik@fb.com>
[ removed type casts ]
Signed-off-by: David Sterba <dsterba@suse.com>
The struct 'map_lookup' uses type int for @stripe_len, while
btrfs_chunk_stripe_len() can return a u64 value, and it may end up with
@stripe_len being undefined value and it can lead to 'divide error' in
__btrfs_map_block().
This changes 'map_lookup' to use type u64 for stripe_len, also right now
we only use BTRFS_STRIPE_LEN for stripe_len, so this adds a valid checker for
BTRFS_STRIPE_LEN.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ folded division fix to scrub_raid56_parity ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we don't allow the user to try and rebalance to a dup profile
on a multi-device filesystem. In most cases, this is a perfectly sensible
restriction as raid1 uses the same amount of space and provides better
protection.
However, when reshaping a multi-device filesystem down to a single device
filesystem, this requires the user to convert metadata and system chunks
to single profile before deleting devices, and then convert again to dup,
which leaves a period of time where metadata integrity is reduced.
This patch removes the single-device-only restriction from converting to
dup profile to remove this potential data integrity reduction.
Signed-off-by: Austin S. Hemmelgarn <ahferroin7@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Creates helper fucntion as needed by the device delete
and replace operations. Also now it checks if the next
device being assigned is an active device.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Yauhen reported in the ML that s_bdev is null at mount, and
s_bdev gets updated to some device when missing device is
replaced, as because bdev is null for missing device, things
gets matched up. Fix this by checking if s_bdev is set. I
didn't want to completely remove updating s_bdev because
the future multi device support at vfs layer may need it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reported-by: Yauhen Kharuzhy <yauhen.kharuzhy@zavadatar.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For clarity how we are going to find the device, let's call it a device
specifier, devspec for short. Also rename the arguments that are a
leftover from previous function purpose.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We should avoid duplicating the device constraints, let's use the
btrfs_raid_array in btrfs_check_raid_min_devices.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before this patch, btrfs_check_raid_min_devices would do an off-by-one
check of the constraints and not the miminmum check, as its name
suggests. This is not a problem if the only caller is device remove, but
would be confusing for others.
Add an argument with the exact number and let the caller(s) decide if
this needs any adjustments, like when device replace is running.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Underscores are for special functions, use the full prefix for better
stacktrace recognition.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Optimize check for stale device to only be checked when there is device
added or changed. If there is no update to the device, there is no need
to call btrfs_free_stale_device().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This introduces new ioctl BTRFS_IOC_RM_DEV_V2, which uses enhanced struct
btrfs_ioctl_vol_args_v2 to carry devid as an user argument.
The patch won't delete the old ioctl interface and so kernel remains
backward compatible with user land progs.
Test case/script:
echo "0 $(blockdev --getsz /dev/sdf) linear /dev/sdf 0" | dmsetup create bad_disk
mkfs.btrfs -f -d raid1 -m raid1 /dev/sdd /dev/sde /dev/mapper/bad_disk
mount /dev/sdd /btrfs
dmsetup suspend bad_disk
echo "0 $(blockdev --getsz /dev/sdf) error /dev/sdf 0" | dmsetup load bad_disk
dmsetup resume bad_disk
echo "bad disk failed. now deleting/replacing"
btrfs dev del 3 /btrfs
echo $?
btrfs fi show /btrfs
umount /btrfs
btrfs-show-super /dev/sdd | egrep num_device
dmsetup remove bad_disk
wipefs -a /dev/sdf
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reported-by: Martin <m_btrfs@ml1.co.uk>
[ adjust messages, s/disk/device/ ]
Signed-off-by: David Sterba <dsterba@suse.com>
With the previous patches now the btrfs_scratch_superblocks() is ready to
be used in btrfs_rm_device() so use it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ use GFP_KERNEL ]
Signed-off-by: David Sterba <dsterba@suse.com>
The operation of device replace and device delete follows same steps upto
some depth with in btrfs kernel, however they don't share codes. This
enhancement will help replace and delete to share codes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_rm_device() has a section of the code which can be replaced
btrfs_find_device_by_user_input()
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The patch renames btrfs_dev_replace_find_srcdev() to
btrfs_find_device_by_user_input() and moves it to volumes.c, so that
delete device can use it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__check_raid_min_device() which was pealed from btrfs_rm_device()
maintianed its original code to show the block move. This patch cleans up
__check_raid_min_device().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
move a section of btrfs_rm_device() code to check for min number of the
devices into the function __check_raid_min_devices()
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A part of code from btrfs_scan_one_device() is moved to a new function
btrfs_read_disk_super(), so that former function looks cleaner. (In this
process it also moves the code which ensures null terminating label). So
this creates easy opportunity to merge various duplicate codes on read
disk super. Earlier attempt to merge duplicate codes highlighted that
there were some issues for which there are duplicate codes (to read disk
super), however it was not clear what was the issue. So until we figure
that out, its better to keep them in a separate functions.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ use GFP_KERNEL, PAGE_CACHE_ removal related fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
Now we force to create empty block group to keep data profile alive,
however, in the below example, we eventually get an empty block group
while we're trying to get more space for other types (metadata/system),
- Before,
block group "A": size=2G, used=1.2G
block group "B": size=2G, used=512M
- After "btrfs balance start -dusage=50 mount_point",
block group "A": size=2G, used=(1.2+0.5)G
block group "C": size=2G, used=0
Since there is no data in block group C, it won't be deleted
automatically and we have to get the unused 2G until the next mount.
Balance itself just moves data and doesn't remove data, so it's safe
to not create such a empty block group if we already have data
allocated in other block groups.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_std_error() handles errors, puts FS into readonly mode
(as of now). So its good idea to rename it to btrfs_handle_fs_error().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Xfstests btrfs/011 complains about a deadlock warning,
[ 1226.649039] =========================================================
[ 1226.649039] [ INFO: possible irq lock inversion dependency detected ]
[ 1226.649039] 4.1.0+ #270 Not tainted
[ 1226.649039] ---------------------------------------------------------
[ 1226.652955] kswapd0/46 just changed the state of lock:
[ 1226.652955] (&delayed_node->mutex){+.+.-.}, at: [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1226.652955] (&fs_info->dev_replace.lock){+.+.+.}
and interrupts could create inverse lock ordering between them.
[ 1226.652955]
other info that might help us debug this:
[ 1226.652955] Chain exists of:
&delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock
[ 1226.652955] Possible interrupt unsafe locking scenario:
[ 1226.652955] CPU0 CPU1
[ 1226.652955] ---- ----
[ 1226.652955] lock(&fs_info->dev_replace.lock);
[ 1226.652955] local_irq_disable();
[ 1226.652955] lock(&delayed_node->mutex);
[ 1226.652955] lock(&found->groups_sem);
[ 1226.652955] <Interrupt>
[ 1226.652955] lock(&delayed_node->mutex);
[ 1226.652955]
*** DEADLOCK ***
Commit 084b6e7c76 ("btrfs: Fix a lockdep warning when running xfstest.") tried
to fix a similar one that has the exactly same warning, but with that, we still
run to this.
The above lock chain comes from
btrfs_commit_transaction
->btrfs_run_delayed_items
...
->__btrfs_update_delayed_inode
...
->__btrfs_cow_block
...
->find_free_extent
->cache_block_group
->load_free_space_cache
->btrfs_readpages
->submit_one_bio
...
->__btrfs_map_block
->btrfs_dev_replace_lock
However, with high memory pressure, tasks which hold dev_replace.lock can
be interrupted by kswapd and then kswapd is intended to release memory occupied
by superblock, inodes and dentries, where we may call evict_inode, and it comes
to
[ 1226.652955] [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] [<ffffffff81459e74>] btrfs_remove_delayed_node+0x24/0x30
[ 1226.652955] [<ffffffff8140c5fe>] btrfs_evict_inode+0x34e/0x700
delayed_node->mutex may be acquired in __btrfs_release_delayed_node(), and it leads
to a ABBA deadlock.
To fix this, we can use "blocking rwlock" used in the case of extent_buffer, but
things are simpler here since we only needs read's spinlock to blocking lock.
With this, btrfs/011 no more produces warnings in dmesg.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Old code used bbio->raid_map to determine whether in raid56
write/recover operation, because we didn't't have bbio->map_type.
Now we have direct way for this condition, rid of using
the function-relative data, and make the code more readable.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
1: Adjust condition in loop to make less TAB
2: Move btrfs_put_bbio()'s line for combine, and makes logic clean.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Enhance chunk validation:
1) Num_stripes
We already have such check but it's only in super block sys chunk
array.
Now check all on-disk chunks.
2) Chunk logical
It should be aligned to sector size.
This behavior should be *DOUBLE CHECKED* for 64K sector size like
PPC64 or AArch64.
Maybe we can found some hidden bugs.
3) Chunk length
Same as chunk logical, should be aligned to sector size.
4) Stripe length
It should be power of 2.
5) Chunk type
Any bit out of TYPE_MAS | PROFILE_MASK is invalid.
With all these much restrict rules, several fuzzed image reported in
mail list should no longer cause kernel panic.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The recent change titled "Btrfs: Check metadata redundancy on balance"
(already in linux-next) left a typo in a message for users:
metatdata -> metadata.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
I managed to trigger this:
| INFO: trying to register non-static key.
| the code is fine but needs lockdep annotation.
| turning off the locking correctness validator.
| CPU: 1 PID: 781 Comm: systemd-gpt-aut Not tainted 4.4.0-rt2+ #14
| Hardware name: ARM-Versatile Express
| [<80307cec>] (dump_stack)
| [<80070e98>] (__lock_acquire)
| [<8007184c>] (lock_acquire)
| [<80287800>] (btrfs_ioctl)
| [<8012a8d4>] (do_vfs_ioctl)
| [<8012ac14>] (SyS_ioctl)
so I think that btrfs_device_data_ordered_init() is not invoked behind
a macro somewhere.
Fixes: 7cc8e58d53 ("Btrfs: fix unprotected device's variants on 32bits machine")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Overloading extent_map->bdev to struct map_lookup * might have started out
as a means to an end, but it's a pattern that's used all over the place
now. Let's get rid of the casting and just add a union instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As of the 4.3 kernel release, the fitrim ioctl can now discard any region
of a disk that is not allocated to any chunk/block group, including the
first megabyte which is used for our primary superblock and by the boot
loader (grub for example).
Fix this by not allowing to trim/discard any region in the device starting
with an offset not greater than min(alloc_start_mount_option, 1Mb), just
as it was not possible before 4.3.
A reproducer test case for xfstests follows.
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
cd /
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
# Write to the [0, 64Kb[ and [68Kb, 1Mb[ ranges of the device. These ranges are
# reserved for a boot loader to use (GRUB for example) and btrfs should never
# use them - neither for allocating metadata/data nor should trim/discard them.
# The range [64Kb, 68Kb[ is used for the primary superblock of the filesystem.
$XFS_IO_PROG -c "pwrite -S 0xfd 0 64K" $SCRATCH_DEV | _filter_xfs_io
$XFS_IO_PROG -c "pwrite -S 0xfd 68K 956K" $SCRATCH_DEV | _filter_xfs_io
# Now mount the filesystem and perform a fitrim against it.
_scratch_mount
_require_batched_discard $SCRATCH_MNT
$FSTRIM_PROG $SCRATCH_MNT
# Now unmount the filesystem and verify the content of the ranges was not
# modified (no trim/discard happened on them).
_scratch_unmount
echo "Content of the ranges [0, 64Kb] and [68Kb, 1Mb[ after fitrim:"
od -t x1 -N $((64 * 1024)) $SCRATCH_DEV
od -t x1 -j $((68 * 1024)) -N $((956 * 1024)) $SCRATCH_DEV
status=0
exit
Reported-by: Vincent Petry <PVince81@yahoo.fr>
Reported-by: Andrei Borzenkov <arvidjaar@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=109341
Fixes: 499f377f49 (btrfs: iterate over unused chunk space in FITRIM)
Cc: stable@vger.kernel.org # 4.3+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When converting a filesystem via balance check that metadata mode
is at least as redundant as the data mode. For example give warning
when:
-dconvert=raid1 -mconvert=single
Signed-off-by: Sam Tygier <samtygier@yahoo.co.uk>
[ minor message reformatting ]
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can handle the special case of num_stripes == 0 directly inside
btrfs_read_sys_array. The BUG_ON in btrfs_chunk_item_size is there to
catch other unhandled cases where we fail to validate external data.
A crafted or corrupted image crashes at mount time:
BTRFS: device fsid 9006933e-2a9a-44f0-917f-514252aeec2c devid 1 transid 7 /dev/loop0
BTRFS info (device loop0): disk space caching is enabled
BUG: failure at fs/btrfs/ctree.h:337/btrfs_chunk_item_size()!
Kernel panic - not syncing: BUG!
CPU: 0 PID: 313 Comm: mount Not tainted 4.2.5-00657-ge047887-dirty #25
Stack:
637af890 60062489 602aeb2e 604192ba
60387961 00000011 637af8a0 6038a835
637af9c0 6038776b 634ef32b 00000000
Call Trace:
[<6001c86d>] show_stack+0xfe/0x15b
[<6038a835>] dump_stack+0x2a/0x2c
[<6038776b>] panic+0x13e/0x2b3
[<6020f099>] btrfs_read_sys_array+0x25d/0x2ff
[<601cfbbe>] open_ctree+0x192d/0x27af
[<6019c2c1>] btrfs_mount+0x8f5/0xb9a
[<600bc9a7>] mount_fs+0x11/0xf3
[<600d5167>] vfs_kern_mount+0x75/0x11a
[<6019bcb0>] btrfs_mount+0x2e4/0xb9a
[<600bc9a7>] mount_fs+0x11/0xf3
[<600d5167>] vfs_kern_mount+0x75/0x11a
[<600d710b>] do_mount+0xa35/0xbc9
[<600d7557>] SyS_mount+0x95/0xc8
[<6001e884>] handle_syscall+0x6b/0x8e
Reported-by: Jiri Slaby <jslaby@suse.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
CC: stable@vger.kernel.org # 3.19+
Signed-off-by: David Sterba <dsterba@suse.com>
Since we will add support for -d dup for non-mixed filesystem,
kernel need to support converting to this raid-type.
This patch remove limitation of above case.
Tested by following script:
(combination of dup conversion with fsck):
export TEST_DEV='/dev/vdc'
export TEST_DIR='/var/ltf/tester/mnt'
do_dup_test()
{
local m_from="$1"
local d_from="$2"
local m_to="$3"
local d_to="$4"
echo "Convert from -m $m_from -d $d_from to -m $m_to -d $d_to"
umount "$TEST_DIR" &>/dev/null
./mkfs.btrfs -f -m "$m_from" -d "$d_from" "$TEST_DEV" >/dev/null || return 1
mount "$TEST_DEV" "$TEST_DIR" || return 1
cp -a /sbin/* "$TEST_DIR"
[[ "$m_from" != "$m_to" ]] && {
./btrfs balance start -f -mconvert="$m_to" "$TEST_DIR" || return 1
}
[[ "$d_from" != "$d_to" ]] && {
local opt=()
[[ "$d_to" == single ]] && opt+=("-f")
./btrfs balance start "${opt[@]}" -dconvert="$d_to" "$TEST_DIR" || return 1
}
umount "$TEST_DIR" || return 1
./btrfsck "$TEST_DEV" || return 1
echo
return 0
}
test_all()
{
for m_from in single dup; do
for d_from in single dup; do
for m_to in single dup; do
for d_to in single dup; do
do_dup_test "$m_from" "$d_from" "$m_to" "$d_to" || return 1
done
done
done
done
}
test_all
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"A couple of small fixes"
* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: check prepare_uptodate_page() error code earlier
Btrfs: check for empty bitmap list in setup_cluster_bitmaps
btrfs: fix misleading warning when space cache failed to load
Btrfs: fix transaction handle leak in balance
Btrfs: fix unprotected list move from unused_bgs to deleted_bgs list
During the final phase of a device replace operation, I ran into a
transaction abort that resulted in the following trace:
[23919.655368] WARNING: CPU: 10 PID: 30175 at fs/btrfs/extent-tree.c:9843 btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]()
[23919.664742] BTRFS: Transaction aborted (error -2)
[23919.665749] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 parport psmouse acpi_cpufreq processor i2c_core evdev microcode pcspkr button serio_raw ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic ata_piix virtio_pci floppy virtio_ring libata e1000 virtio scsi_mod [last unloaded: btrfs]
[23919.679442] CPU: 10 PID: 30175 Comm: fsstress Not tainted 4.3.0-rc5-btrfs-next-17+ #1
[23919.682392] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[23919.689151] 0000000000000000 ffff8804020cbb50 ffffffff812566f4 ffff8804020cbb98
[23919.692604] ffff8804020cbb88 ffffffff8104d0a6 ffffffffa03eea69 ffff88041b678a48
[23919.694230] ffff88042ac38000 ffff88041b678930 00000000fffffffe ffff8804020cbbf0
[23919.696716] Call Trace:
[23919.698669] [<ffffffff812566f4>] dump_stack+0x4e/0x79
[23919.700597] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8
[23919.701958] [<ffffffffa03eea69>] ? btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]
[23919.703612] [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50
[23919.705047] [<ffffffffa03eea69>] btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]
[23919.706967] [<ffffffffa0402097>] __btrfs_end_transaction+0x84/0x2dd [btrfs]
[23919.708611] [<ffffffffa0402300>] btrfs_end_transaction+0x10/0x12 [btrfs]
[23919.710099] [<ffffffffa03ef0b8>] btrfs_alloc_data_chunk_ondemand+0x121/0x28b [btrfs]
[23919.711970] [<ffffffffa0413025>] btrfs_fallocate+0x7d3/0xc6d [btrfs]
[23919.713602] [<ffffffff8108b78f>] ? lock_acquire+0x10d/0x194
[23919.714756] [<ffffffff81086dbc>] ? percpu_down_read+0x51/0x78
[23919.716155] [<ffffffff8116ef1d>] ? __sb_start_write+0x5f/0xb0
[23919.718918] [<ffffffff8116ef1d>] ? __sb_start_write+0x5f/0xb0
[23919.724170] [<ffffffff8116b579>] vfs_fallocate+0x170/0x1ff
[23919.725482] [<ffffffff8117c1d7>] ioctl_preallocate+0x89/0x9b
[23919.726790] [<ffffffff8117c5ef>] do_vfs_ioctl+0x406/0x4e6
[23919.728428] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[23919.729642] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[23919.730782] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[23919.731847] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[23919.733330] ---[ end trace 166ef301a335832a ]---
This is due to a race between device replace and chunk allocation, which
the following diagram illustrates:
CPU 1 CPU 2
btrfs_dev_replace_finishing()
at this point
dev_replace->tgtdev->devid ==
BTRFS_DEV_REPLACE_DEVID (0ULL)
...
btrfs_start_transaction()
btrfs_commit_transaction()
btrfs_fallocate()
btrfs_alloc_data_chunk_ondemand()
btrfs_join_transaction()
--> starts a new transaction
do_chunk_alloc()
lock fs_info->chunk_mutex
btrfs_alloc_chunk()
--> creates extent map for
the new chunk with
em->bdev->map->stripes[i]->dev->devid
== X (X > 0)
--> extent map is added to
fs_info->mapping_tree
--> initial phase of bg A
allocation completes
unlock fs_info->chunk_mutex
lock fs_info->chunk_mutex
btrfs_dev_replace_update_device_in_mapping_tree()
--> iterates fs_info->mapping_tree and
replaces the device in every extent
map's map->stripes[] with
dev_replace->tgtdev, which still has
an id of 0ULL (BTRFS_DEV_REPLACE_DEVID)
btrfs_end_transaction()
btrfs_create_pending_block_groups()
--> starts final phase of
bg A creation (update device,
extent, and chunk trees, etc)
btrfs_finish_chunk_alloc()
btrfs_update_device()
--> attempts to update a device
item with ID == 0ULL
(BTRFS_DEV_REPLACE_DEVID)
which is the current ID of
bg A's
em->bdev->map->stripes[i]->dev->devid
--> doesn't find such item
returns -ENOENT
--> the device id should have been X
and not 0ULL
got -ENOENT from
btrfs_finish_chunk_alloc()
and aborts current transaction
finishes setting up the target device,
namely it sets tgtdev->devid to the value
of srcdev->devid, which is X (and X > 0)
frees the srcdev
unlock fs_info->chunk_mutex
So fix this by taking the device list mutex when processing the chunk's
extent map stripes to update the device items. This avoids getting the
wrong device id and use-after-free problems if the task finishing a
chunk allocation grabs the replaced device, which is freed while the
dev replace task is holding the device list mutex.
This happened while running fstest btrfs/071.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
If we fail to allocate a new data chunk, we were jumping to the error path
without release the transaction handle we got before. Fix this by always
releasing it before doing the jump.
Fixes: 2c9fe83552 ("btrfs: Fix lost-data-profile caused by balance bg")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs fixes from Chris Mason:
"This has Mark Fasheh's patches to fix quota accounting during subvol
deletion, which we've been working on for a while now. The patch is
pretty small but it's a key fix.
Otherwise it's a random assortment"
* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix balance range usage filters in 4.4-rc
btrfs: qgroup: account shared subtree during snapshot delete
Btrfs: use btrfs_get_fs_root in resolve_indirect_ref
btrfs: qgroup: fix quota disable during rescan
Btrfs: fix race between cleaner kthread and space cache writeout
Btrfs: fix scrub preventing unused block groups from being deleted
Btrfs: fix race between scrub and block group deletion
btrfs: fix rcu warning during device replace
btrfs: Continue replace when set_block_ro failed
btrfs: fix clashing number of the enhanced balance usage filter
Btrfs: fix the number of transaction units needed to remove a block group
Btrfs: use global reserve when deleting unused block group after ENOSPC
Btrfs: tests: checking for NULL instead of IS_ERR()
btrfs: fix signed overflows in btrfs_sync_file
There's a regression in 4.4-rc since commit bc3094673f
(btrfs: extend balance filter usage to take minimum and maximum) in that
existing (non-ranged) balance with -dusage=x no longer works; all chunks
are skipped.
After staring at the code for a while and wondering why a non-ranged
balance would even need min and max thresholds (..which then were not
set correctly, leading to the bug) I realized that the only problem
was the fact that the filter functions were named wrong, thanks to
patching copypasta. Simply renaming both functions lets the existing
btrfs-progs call balance with -dusage=x and now the non-ranged filter
function is invoked, properly using only a single chunk limit.
Signed-off-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Fixes: bc3094673f ("btrfs: extend balance filter usage to take minimum and maximum")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The test btrfs/011 triggers a rcu warning
Reviewed-by: Anand Jain <anand.jain@oracle.com>
===============================
[ INFO: suspicious RCU usage. ]
4.4.0-rc1-default+ #286 Tainted: G W
-------------------------------
fs/btrfs/volumes.c:1977 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
4 locks held by btrfs/28786:
0: (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+...}, at: [<ffffffffa00bc785>] btrfs_dev_replace_finishing+0x45/0xa00 [btrfs]
1: (uuid_mutex){+.+.+.}, at: [<ffffffffa00bc84f>] btrfs_dev_replace_finishing+0x10f/0xa00 [btrfs]
2: (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa00bc868>] btrfs_dev_replace_finishing+0x128/0xa00 [btrfs]
3: (&fs_info->chunk_mutex){+.+...}, at: [<ffffffffa00bc87d>] btrfs_dev_replace_finishing+0x13d/0xa00 [btrfs]
stack backtrace:
CPU: 0 PID: 28786 Comm: btrfs Tainted: G W 4.4.0-rc1-default+ #286
Hardware name: Intel Corporation SandyBridge Platform/To be filled by O.E.M., BIOS ASNBCPT1.86C.0031.B00.1006301607 06/30/2010
0000000000000001 ffff8800a07dfb48 ffffffff8141d47b 0000000000000001
0000000000000001 0000000000000000 ffff8801464a4f00 ffff8800a07dfb78
ffffffff810cd883 ffff880146eb9400 ffff8800a3698600 ffff8800a33fe220
Call Trace:
[<ffffffff8141d47b>] dump_stack+0x4f/0x74
[<ffffffff810cd883>] lockdep_rcu_suspicious+0x103/0x140
[<ffffffffa0071261>] btrfs_rm_dev_replace_remove_srcdev+0x111/0x130 [btrfs]
[<ffffffff810d354d>] ? trace_hardirqs_on+0xd/0x10
[<ffffffff81449536>] ? __percpu_counter_sum+0x66/0x80
[<ffffffffa00bcc15>] btrfs_dev_replace_finishing+0x4d5/0xa00 [btrfs]
[<ffffffffa00bc96e>] ? btrfs_dev_replace_finishing+0x22e/0xa00 [btrfs]
[<ffffffffa00a8795>] ? btrfs_scrub_dev+0x415/0x6d0 [btrfs]
[<ffffffffa003ea69>] ? btrfs_start_transaction+0x9/0x20 [btrfs]
[<ffffffffa00bda79>] btrfs_dev_replace_start+0x339/0x590 [btrfs]
[<ffffffff81196aa5>] ? __might_fault+0x95/0xa0
[<ffffffffa0078638>] btrfs_ioctl_dev_replace+0x118/0x160 [btrfs]
[<ffffffff811409c6>] ? stack_trace_call+0x46/0x70
[<ffffffffa007c914>] ? btrfs_ioctl+0x24/0x1770 [btrfs]
[<ffffffffa007ce43>] btrfs_ioctl+0x553/0x1770 [btrfs]
[<ffffffff811409c6>] ? stack_trace_call+0x46/0x70
[<ffffffff811d6eb1>] ? do_vfs_ioctl+0x21/0x5a0
[<ffffffff811d6f1c>] do_vfs_ioctl+0x8c/0x5a0
[<ffffffff811e3336>] ? __fget_light+0x86/0xb0
[<ffffffff811e3369>] ? __fdget+0x9/0x20
[<ffffffff811d7451>] ? SyS_ioctl+0x21/0x80
[<ffffffff811d7483>] SyS_ioctl+0x53/0x80
[<ffffffff81b1efd7>] entry_SYSCALL_64_fastpath+0x12/0x6f
This is because of unprotected use of rcu_dereference in
btrfs_scratch_superblocks. We can't add rcu locks around the whole
function because we read the superblock.
The fix will use the rcu string buffer directly without the rcu locking.
Thi is safe as the device will not go away in the meantime. We're
holding the device list mutexes.
Restructuring the code to narrow down the rcu section turned out to be
impossible, we need to call filp_open (through update_dev_time) on the
buffer and this could call kmalloc/__might_sleep. We could call kstrdup
with GFP_ATOMIC but it's not absolutely necessary.
Fixes: 12b1c2637b (Btrfs: enhance btrfs_scratch_superblock to scratch all superblocks)
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were using only 1 transaction unit when attempting to delete an unused
block group but in reality we need 3 + N units, where N corresponds to the
number of stripes. We were accounting only for the addition of the orphan
item (for the block group's free space cache inode) but we were not
accounting that we need to delete one block group item from the extent
tree, one free space item from the tree of tree roots and N device extent
items from the device tree.
While one unit is not enough, it worked most of the time because for each
single unit we are too pessimistic and assume an entire tree path, with
the highest possible heigth (8), needs to be COWed with eventual node
splits at every possible level in the tree, so there was usually enough
reserved space for removing all the items and adding the orphan item.
However after adding the orphan item, writepages() can by called by the VM
subsystem against the btree inode when we are under memory pressure, which
causes writeback to start for the nodes we COWed before, this forces the
operation to remove the free space item to COW again some (or all of) the
same nodes (in the tree of tree roots). Even without writepages() being
called, we could fail with ENOSPC because these items are located in
multiple trees and one of them might have a higher heigth and require
node/leaf splits at many levels, exhausting all the reserved space before
removing all the items and adding the orphan.
In the kernel 4.0 release, commit 3d84be7991 ("Btrfs: fix BUG_ON in
btrfs_orphan_add() when delete unused block group"), we attempted to fix
a BUG_ON due to ENOSPC when trying to add the orphan item by making the
cleaner kthread reserve one transaction unit before attempting to remove
the block group, but this was not enough. We had a couple user reports
still hitting the same BUG_ON after 4.0, like Stefan Priebe's report on
a 4.2-rc6 kernel for example:
http://www.spinics.net/lists/linux-btrfs/msg46070.html
So fix this by reserving all the necessary units of metadata.
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Fixes: 3d84be7991 ("Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's possible to reach a state where the cleaner kthread isn't able to
start a transaction to delete an unused block group due to lack of enough
free metadata space and due to lack of unallocated device space to allocate
a new metadata block group as well. If this happens try to use space from
the global block group reserve just like we do for unlink operations, so
that we don't reach a permanent state where starting a transaction for
filesystem operations (file creation, renames, etc) keeps failing with
-ENOSPC. Such an unfortunate state was observed on a machine where over
a dozen unused data block groups existed and the cleaner kthread was
failing to delete them due to ENOSPC error when attempting to start a
transaction, and even running balance with a -dusage=0 filter failed with
ENOSPC as well. Also unmounting and mounting again the filesystem didn't
help. Allowing the cleaner kthread to use the global block reserve to
delete the unused data block groups fixed the problem.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes and cleanups from Chris Mason:
"Some of this got cherry-picked from a github repo this week, but I
verified the patches.
We have three small scrub cleanups and a collection of fixes"
* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: Use fs_info directly in btrfs_delete_unused_bgs
btrfs: Fix lost-data-profile caused by balance bg
btrfs: Fix lost-data-profile caused by auto removing bg
btrfs: Remove len argument from scrub_find_csum
btrfs: Reduce unnecessary arguments in scrub_recheck_block
btrfs: Use scrub_checksum_data and scrub_checksum_tree_block for scrub_recheck_block_checksum
btrfs: Reset sblock->xxx_error stats before calling scrub_recheck_block_checksum
btrfs: scrub: setup all fields for sblock_to_check
btrfs: scrub: set error stats when tree block spanning stripes
Btrfs: fix race when listing an inode's xattrs
Btrfs: fix race leading to BUG_ON when running delalloc for nodatacow
Btrfs: fix race leading to incorrect item deletion when dropping extents
Btrfs: fix sleeping inside atomic context in qgroup rescan worker
Btrfs: fix race waiting for qgroup rescan worker
btrfs: qgroup: exit the rescan worker during umount
Btrfs: fix extent accounting for partial direct IO writes
Reproduce:
(In integration-4.3 branch)
TEST_DEV=(/dev/vdg /dev/vdh)
TEST_DIR=/mnt/tmp
umount "$TEST_DEV" >/dev/null
mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}"
mount -o nospace_cache "$TEST_DEV" "$TEST_DIR"
btrfs balance start -dusage=0 $TEST_DIR
btrfs filesystem usage $TEST_DIR
dd if=/dev/zero of="$TEST_DIR"/file count=100
btrfs filesystem usage $TEST_DIR
Result:
We can see "no data chunk" in first "btrfs filesystem usage":
# btrfs filesystem usage $TEST_DIR
Overall:
...
Metadata,single: Size:8.00MiB, Used:0.00B
/dev/vdg 8.00MiB
Metadata,RAID1: Size:122.88MiB, Used:112.00KiB
/dev/vdg 122.88MiB
/dev/vdh 122.88MiB
System,single: Size:4.00MiB, Used:0.00B
/dev/vdg 4.00MiB
System,RAID1: Size:8.00MiB, Used:16.00KiB
/dev/vdg 8.00MiB
/dev/vdh 8.00MiB
Unallocated:
/dev/vdg 1.06GiB
/dev/vdh 1.07GiB
And "data chunks changed from raid1 to single" in second
"btrfs filesystem usage":
# btrfs filesystem usage $TEST_DIR
Overall:
...
Data,single: Size:256.00MiB, Used:0.00B
/dev/vdh 256.00MiB
Metadata,single: Size:8.00MiB, Used:0.00B
/dev/vdg 8.00MiB
Metadata,RAID1: Size:122.88MiB, Used:112.00KiB
/dev/vdg 122.88MiB
/dev/vdh 122.88MiB
System,single: Size:4.00MiB, Used:0.00B
/dev/vdg 4.00MiB
System,RAID1: Size:8.00MiB, Used:16.00KiB
/dev/vdg 8.00MiB
/dev/vdh 8.00MiB
Unallocated:
/dev/vdg 1.06GiB
/dev/vdh 841.92MiB
Reason:
btrfs balance delete last data chunk in case of no data in
the filesystem, then we can see "no data chunk" by "fi usage"
command.
And when we do write operation to fs, the only available data
profile is 0x0, result is all new chunks are allocated single type.
Fix:
Allocate a data chunk explicitly to ensure we don't lose the
raid profile for data.
Test:
Test by above script, and confirmed the logic by debug output.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Merge second patch-bomb from Andrew Morton:
- most of the rest of MM
- procfs
- lib/ updates
- printk updates
- bitops infrastructure tweaks
- checkpatch updates
- nilfs2 update
- signals
- various other misc bits: coredump, seqfile, kexec, pidns, zlib, ipc,
dma-debug, dma-mapping, ...
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (102 commits)
ipc,msg: drop dst nil validation in copy_msg
include/linux/zutil.h: fix usage example of zlib_adler32()
panic: release stale console lock to always get the logbuf printed out
dma-debug: check nents in dma_sync_sg*
dma-mapping: tidy up dma_parms default handling
pidns: fix set/getpriority and ioprio_set/get in PRIO_USER mode
kexec: use file name as the output message prefix
fs, seqfile: always allow oom killer
seq_file: reuse string_escape_str()
fs/seq_file: use seq_* helpers in seq_hex_dump()
coredump: change zap_threads() and zap_process() to use for_each_thread()
coredump: ensure all coredumping tasks have SIGNAL_GROUP_COREDUMP
signal: remove jffs2_garbage_collect_thread()->allow_signal(SIGCONT)
signal: introduce kernel_signal_stop() to fix jffs2_garbage_collect_thread()
signal: turn dequeue_signal_lock() into kernel_dequeue_signal()
signals: kill block_all_signals() and unblock_all_signals()
nilfs2: fix gcc uninitialized-variable warnings in powerpc build
nilfs2: fix gcc unused-but-set-variable warnings
MAINTAINERS: nilfs2: add header file for tracing
nilfs2: add tracepoints for analyzing reading and writing metadata files
...
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the 'limit' filter, we can enhance the 'usage' filter to
accept a range. The change is backward compatible, the range is applied
only in connection with the BTRFS_BALANCE_ARGS_USAGE_RANGE flag.
We don't have a usecase yet, the current syntax has been sufficient. The
enhancement should provide parity with other range-like filters.
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Balance block groups which have the given number of stripes, defined by
a range min..max. This is useful to selectively rebalance only chunks
that do not span enough devices, applies to RAID0/10/5/6.
Signed-off-by: Gabríel Arthúr Pétursson <gabriel@system.is>
[ renamed bargs members, added to the UAPI, wrote the changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The 'limit' filter is underdesigned, it should have been a range for
[min,max], with some relaxed semantics when one of the bounds is
missing. Besides that, using a full u64 for a single value is a waste of
bytes.
Let's fix both by extending the use of the u64 bytes for the [min,max]
range. This can be done in a backward compatible way, the range will be
interpreted only if the appropriate flag is set
(BTRFS_BALANCE_ARGS_LIMIT_RANGE).
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
I want to set some per transaction flags, so instead of adding yet another int
lets just convert the current two int indicators to flags and add a flags field
for future use. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Improve readability by generalizing the profile validity checks.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_raid_array[] is used to define all raid attributes, use it
to get tolerated_failures in btrfs_get_num_tolerated_disk_barrier_failures(),
instead of complex condition in function.
It can make code simple and auto-support other possible raid-type in
future.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This array is used to record attributes of each raid type,
make it public, and many functions will benifit with this array.
For example, num_tolerated_disk_barrier_failures(), we can
avoid complex conditions in this function, and get raid attribute
simply by accessing above array.
It can also make code logic simple, reduce duplication code, and
increase maintainability.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Convert the simple cases, not all functions provide a way to reach the
fs_info. Also skipped debugging messages (print-tree, integrity
checker and pr_debug) and messages that are printed from possibly
unfinished mount.
Signed-off-by: David Sterba <dsterba@suse.com>