This patch (of 5):
This is based on the idea from Mel Gorman discussed during LSFMM 2015
and independently brought up by Oleg Nesterov.
The OOM killer currently allows to kill only a single task in a good
hope that the task will terminate in a reasonable time and frees up its
memory. Such a task (oom victim) will get an access to memory reserves
via mark_oom_victim to allow a forward progress should there be a need
for additional memory during exit path.
It has been shown (e.g. by Tetsuo Handa) that it is not that hard to
construct workloads which break the core assumption mentioned above and
the OOM victim might take unbounded amount of time to exit because it
might be blocked in the uninterruptible state waiting for an event (e.g.
lock) which is blocked by another task looping in the page allocator.
This patch reduces the probability of such a lockup by introducing a
specialized kernel thread (oom_reaper) which tries to reclaim additional
memory by preemptively reaping the anonymous or swapped out memory owned
by the oom victim under an assumption that such a memory won't be needed
when its owner is killed and kicked from the userspace anyway. There is
one notable exception to this, though, if the OOM victim was in the
process of coredumping the result would be incomplete. This is
considered a reasonable constrain because the overall system health is
more important than debugability of a particular application.
A kernel thread has been chosen because we need a reliable way of
invocation so workqueue context is not appropriate because all the
workers might be busy (e.g. allocating memory). Kswapd which sounds
like another good fit is not appropriate as well because it might get
blocked on locks during reclaim as well.
oom_reaper has to take mmap_sem on the target task for reading so the
solution is not 100% because the semaphore might be held or blocked for
write but the probability is reduced considerably wrt. basically any
lock blocking forward progress as described above. In order to prevent
from blocking on the lock without any forward progress we are using only
a trylock and retry 10 times with a short sleep in between. Users of
mmap_sem which need it for write should be carefully reviewed to use
_killable waiting as much as possible and reduce allocations requests
done with the lock held to absolute minimum to reduce the risk even
further.
The API between oom killer and oom reaper is quite trivial.
wake_oom_reaper updates mm_to_reap with cmpxchg to guarantee only
NULL->mm transition and oom_reaper clear this atomically once it is done
with the work. This means that only a single mm_struct can be reaped at
the time. As the operation is potentially disruptive we are trying to
limit it to the ncessary minimum and the reaper blocks any updates while
it operates on an mm. mm_struct is pinned by mm_count to allow parallel
exit_mmap and a race is detected by atomic_inc_not_zero(mm_users).
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
Most of the mm subsystem uses pr_<level> so make it consistent.
Miscellanea:
- Realign arguments
- Add missing newline to format
- kmemleak-test.c has a "kmemleak: " prefix added to the
"Kmemleak testing" logging message via pr_fmt
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are few things about *pte_alloc*() helpers worth cleaning up:
- 'vma' argument is unused, let's drop it;
- most __pte_alloc() callers do speculative check for pmd_none(),
before taking ptl: let's introduce pte_alloc() macro which does
the check.
The only direct user of __pte_alloc left is userfaultfd, which has
different expectation about atomicity wrt pmd.
- pte_alloc_map() and pte_alloc_map_lock() are redefined using
pte_alloc().
[sudeep.holla@arm.com: fix build for arm64 hugetlbpage]
[sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patch-bomb from Andrew Morton:
- some misc things
- ofs2 updates
- about half of MM
- checkpatch updates
- autofs4 update
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits)
autofs4: fix string.h include in auto_dev-ioctl.h
autofs4: use pr_xxx() macros directly for logging
autofs4: change log print macros to not insert newline
autofs4: make autofs log prints consistent
autofs4: fix some white space errors
autofs4: fix invalid ioctl return in autofs4_root_ioctl_unlocked()
autofs4: fix coding style line length in autofs4_wait()
autofs4: fix coding style problem in autofs4_get_set_timeout()
autofs4: coding style fixes
autofs: show pipe inode in mount options
kallsyms: add support for relative offsets in kallsyms address table
kallsyms: don't overload absolute symbol type for percpu symbols
x86: kallsyms: disable absolute percpu symbols on !SMP
checkpatch: fix another left brace warning
checkpatch: improve UNSPECIFIED_INT test for bare signed/unsigned uses
checkpatch: warn on bare unsigned or signed declarations without int
checkpatch: exclude asm volatile from complex macro check
mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
mm: migrate: consolidate mem_cgroup_migrate() calls
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
...
do_fault() assumes that PAGE_SIZE is the same as PAGE_CACHE_SIZE. Use
linear_page_index() to calculate pgoff in the correct units.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Arm and arm64 used to trigger this BUG_ON() - this has now been fixed.
But a WARN_ON() here is sufficient to catch future buggy callers.
Signed-off-by: Mika Penttilä <mika.penttila@nextfour.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pmd_trans_unstable()/pmd_none_or_trans_huge_or_clear_bad() were
introduced to locklessy (but atomically) detect when a pmd is a regular
(stable) pmd or when the pmd is unstable and can infinitely transition
from pmd_none() and pmd_trans_huge() from under us, while only holding
the mmap_sem for reading (for writing not).
While holding the mmap_sem only for reading, MADV_DONTNEED can run from
under us and so before we can assume the pmd to be a regular stable pmd
we need to compare it against pmd_none() and pmd_trans_huge() in an
atomic way, with pmd_trans_unstable(). The old pmd_trans_huge() left a
tiny window for a race.
Useful applications are unlikely to notice the difference as doing
MADV_DONTNEED concurrently with a page fault would lead to undefined
behavior.
[akpm@linux-foundation.org: tidy up comment grammar/layout]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As discussed earlier, we attempt to enforce protection keys in
software.
However, the code checks all faults to ensure that they are not
violating protection key permissions. It was assumed that all
faults are either write faults where we check PKRU[key].WD (write
disable) or read faults where we check the AD (access disable)
bit.
But, there is a third category of faults for protection keys:
instruction faults. Instruction faults never run afoul of
protection keys because they do not affect instruction fetches.
So, plumb the PF_INSTR bit down in to the
arch_vma_access_permitted() function where we do the protection
key checks.
We also add a new FAULT_FLAG_INSTRUCTION. This is because
handle_mm_fault() is not passed the architecture-specific
error_code where we keep PF_INSTR, so we need to encode the
instruction fetch information in to the arch-generic fault
flags.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210224.96928009@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We try to enforce protection keys in software the same way that we
do in hardware. (See long example below).
But, we only want to do this when accessing our *own* process's
memory. If GDB set PKRU[6].AD=1 (disable access to PKEY 6), then
tried to PTRACE_POKE a target process which just happened to have
some mprotect_pkey(pkey=6) memory, we do *not* want to deny the
debugger access to that memory. PKRU is fundamentally a
thread-local structure and we do not want to enforce it on access
to _another_ thread's data.
This gets especially tricky when we have workqueues or other
delayed-work mechanisms that might run in a random process's context.
We can check that we only enforce pkeys when operating on our *own* mm,
but delayed work gets performed when a random user context is active.
We might end up with a situation where a delayed-work gup fails when
running randomly under its "own" task but succeeds when running under
another process. We want to avoid that.
To avoid that, we use the new GUP flag: FOLL_REMOTE and add a
fault flag: FAULT_FLAG_REMOTE. They indicate that we are
walking an mm which is not guranteed to be the same as
current->mm and should not be subject to protection key
enforcement.
Thanks to Jerome Glisse for pointing out this scenario.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geliang Tang <geliangtang@163.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Low <jason.low2@hp.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: iommu@lists.linux-foundation.org
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Today, for normal faults and page table walks, we check the VMA
and/or PTE to ensure that it is compatible with the action. For
instance, if we get a write fault on a non-writeable VMA, we
SIGSEGV.
We try to do the same thing for protection keys. Basically, we
try to make sure that if a user does this:
mprotect(ptr, size, PROT_NONE);
*ptr = foo;
they see the same effects with protection keys when they do this:
mprotect(ptr, size, PROT_READ|PROT_WRITE);
set_pkey(ptr, size, 4);
wrpkru(0xffffff3f); // access disable pkey 4
*ptr = foo;
The state to do that checking is in the VMA, but we also
sometimes have to do it on the page tables only, like when doing
a get_user_pages_fast() where we have no VMA.
We add two functions and expose them to generic code:
arch_pte_access_permitted(pte_flags, write)
arch_vma_access_permitted(vma, write)
These are, of course, backed up in x86 arch code with checks
against the PTE or VMA's protection key.
But, there are also cases where we do not want to respect
protection keys. When we ptrace(), for instance, we do not want
to apply the tracer's PKRU permissions to the PTEs from the
process being traced.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20160212210219.14D5D715@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For protection keys, we need to understand whether protections
should be enforced in software or not. In general, we enforce
protections when working on our own task, but not when on others.
We call these "current" and "remote" operations.
This patch introduces a new get_user_pages() variant:
get_user_pages_remote()
Which is a replacement for when get_user_pages() is called on
non-current tsk/mm.
We also introduce a new gup flag: FOLL_REMOTE which can be used
for the "__" gup variants to get this new behavior.
The uprobes is_trap_at_addr() location holds mmap_sem and
calls get_user_pages(current->mm) on an instruction address. This
makes it a pretty unique gup caller. Being an instruction access
and also really originating from the kernel (vs. the app), I opted
to consider this a 'remote' access where protection keys will not
be enforced.
Without protection keys, this patch should not change any behavior.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: jack@suse.cz
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210154.3F0E51EA@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Trinity is now hitting the WARN_ON_ONCE we added in v3.15 commit
cda540ace6 ("mm: get_user_pages(write,force) refuse to COW in shared
areas"). The warning has served its purpose, nobody was harmed by that
change, so just remove the warning to generate less noise from Trinity.
Which reminds me of the comment I wrongly left behind with that commit
(but was spotted at the time by Kirill), which has since moved into a
separate function, and become even more obscure: delete it.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_t_to_page() honors the flags in the pfn_t value to determine if a
pfn is backed by a page. However, vm_insert_mixed() was originally
written to use pfn_valid() to make this determination. To restore the
old/correct behavior, ignore the pfn_t flags in the !pfn_t_devmap() case
and fallback to trusting pfn_valid().
Fixes: 01c8f1c44b ("mm, dax, gpu: convert vm_insert_mixed to pfn_t")
Cc: Dave Hansen <dave@sr71.net>
Cc: David Airlie <airlied@linux.ie>
Reported-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Tested-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Swap cache pages are freed aggressively if swap is nearly full (>50%
currently), because otherwise we are likely to stop scanning anonymous
when we near the swap limit even if there is plenty of freeable swap cache
pages. We should follow the same trend in case of memory cgroup, which
has its own swap limit.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A dax-huge-page mapping while it uses some thp helpers is ultimately not
a transparent huge page. The distinction is especially important in the
get_user_pages() path. pmd_devmap() is used to distinguish dax-pmds
from pmd_huge() and pmd_trans_huge() which have slightly different
semantics.
Explicitly mark the pmd_trans_huge() helpers that dax needs by adding
pmd_devmap() checks.
[kirill.shutemov@linux.intel.com: fix regression in handling mlocked pages in __split_huge_pmd()]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the conversion of vm_insert_mixed() use pfn_t in the
vmf_insert_pfn_pmd() to tag the resulting pte with _PAGE_DEVICE when the
pfn is backed by a devm_memremap_pages() mapping.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert the raw unsigned long 'pfn' argument to pfn_t for the purpose of
evaluating the PFN_MAP and PFN_DEV flags. When both are set it triggers
_PAGE_DEVMAP to be set in the resulting pte.
There are no functional changes to the gpu drivers as a result of this
conversion.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before THP refcounting rework, THP was not allowed to cross VMA
boundary. So, if we have THP and we split it, PG_mlocked can be safely
transferred to small pages.
With new THP refcounting and naive approach to mlocking we can end up
with this scenario:
1. we have a mlocked THP, which belong to one VM_LOCKED VMA.
2. the process does munlock() on the *part* of the THP:
- the VMA is split into two, one of them VM_LOCKED;
- huge PMD split into PTE table;
- THP is still mlocked;
3. split_huge_page():
- it transfers PG_mlocked to *all* small pages regrardless if it
blong to any VM_LOCKED VMA.
We probably could munlock() all small pages on split_huge_page(), but I
think we have accounting issue already on step two.
Instead of forbidding mlocked pages altogether, we just avoid mlocking
PTE-mapped THPs and munlock THPs on split_huge_pmd().
This means PTE-mapped THPs will be on normal lru lists and will be split
under memory pressure by vmscan. After the split vmscan will detect
unevictable small pages and mlock them.
With this approach we shouldn't hit situation like described above.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to allow mapping of individual 4k pages of THP compound. It
means we need to track mapcount on per small page basis.
Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined. But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.
The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount. This frees up ->_mapcount in subpages to
track PTE mapcount.
We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.
Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount. When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.
page_mapcount() counts both: PTE and PMD mappings of the page.
Basically, we have mapcount for a subpage spread over two counters. It
makes tricky to detect when last mapcount for a page goes away.
We introduced PageDoubleMap() for this. When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.
This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.
[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With new refcounting THP can belong to several VMAs. This makes tricky
to track THP pages, when they partially mlocked. It can lead to leaking
mlocked pages to non-VM_LOCKED vmas and other problems.
With this patch we will split all pages on mlock and avoid
fault-in/collapse new THP in VM_LOCKED vmas.
I've tried alternative approach: do not mark THP pages mlocked and keep
them on normal LRUs. This way vmscan could try to split huge pages on
memory pressure and free up subpages which doesn't belong to VM_LOCKED
vmas. But this is user-visible change: we screw up Mlocked accouting
reported in meminfo, so I had to leave this approach aside.
We can bring something better later, but this should be good enough for
now.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup. We need
to get information from caller to know whether it was mapped with PMD or
PTE.
We do uncharge when last reference on the page gone. At that point if
we see PageTransHuge() it means we need to unchange whole huge page.
The tricky part is partial unmap -- when we try to unmap part of huge
page. We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered. In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker. This
should be good enough.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to allow mapping of individual 4k pages of THP compound
page. It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.
The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.
[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't define meaning of page->mapping for tail pages. Currently it's
always NULL, which can be inconsistent with head page and potentially
lead to problems.
Let's poison the pointer to catch all illigal uses.
page_rmapping(), page_mapping() and page_anon_vma() are changed to look
on head page.
The only illegal use I've caught so far is __GPF_COMP pages from sound
subsystem, mapped with PTEs. do_shared_fault() is changed to use
page_rmapping() instead of direct access to fault_page->mapping.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_cache_read has been historically using page_cache_alloc_cold to
allocate a new page. This means that mapping_gfp_mask is used as the
base for the gfp_mask. Many filesystems are setting this mask to
GFP_NOFS to prevent from fs recursion issues. page_cache_read is called
from the vm_operations_struct::fault() context during the page fault.
This context doesn't need the reclaim protection normally.
ceph and ocfs2 which call filemap_fault from their fault handlers seem
to be OK because they are not taking any fs lock before invoking generic
implementation. xfs which takes XFS_MMAPLOCK_SHARED is safe from the
reclaim recursion POV because this lock serializes truncate and punch
hole with the page faults and it doesn't get involved in the reclaim.
There is simply no reason to deliberately use a weaker allocation
context when a __GFP_FS | __GFP_IO can be used. The GFP_NOFS protection
might be even harmful. There is a push to fail GFP_NOFS allocations
rather than loop within allocator indefinitely with a very limited
reclaim ability. Once we start failing those requests the OOM killer
might be triggered prematurely because the page cache allocation failure
is propagated up the page fault path and end up in
pagefault_out_of_memory.
We cannot play with mapping_gfp_mask directly because that would be racy
wrt. parallel page faults and it might interfere with other users who
really rely on NOFS semantic from the stored gfp_mask. The mask is also
inode proper so it would even be a layering violation. What we can do
instead is to push the gfp_mask into struct vm_fault and allow fs layer
to overwrite it should the callback need to be called with a different
allocation context.
Initialize the default to (mapping_gfp_mask | __GFP_FS | __GFP_IO)
because this should be safe from the page fault path normally. Why do
we care about mapping_gfp_mask at all then? Because this doesn't hold
only reclaim protection flags but it also might contain zone and
movability restrictions (GFP_DMA32, __GFP_MOVABLE and others) so we have
to respect those.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Jan Kara <jack@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently looking at /proc/<pid>/status or statm, there is no way to
distinguish shmem pages from pages mapped to a regular file (shmem pages
are mapped to /dev/zero), even though their implication in actual memory
use is quite different.
The internal accounting currently counts shmem pages together with
regular files. As a preparation to extend the userspace interfaces,
this patch adds MM_SHMEMPAGES counter to mm_rss_stat to account for
shmem pages separately from MM_FILEPAGES. The next patch will expose it
to userspace - this patch doesn't change the exported values yet, by
adding up MM_SHMEMPAGES to MM_FILEPAGES at places where MM_FILEPAGES was
used before. The only user-visible change after this patch is the OOM
killer message that separates the reported "shmem-rss" from "file-rss".
[vbabka@suse.cz: forward-porting, tweak changelog]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The x86 vvar vma contains pages with differing cacheability
flags. x86 currently implements this by manually inserting all
the ptes using (io_)remap_pfn_range when the vma is set up.
x86 wants to move to using .fault with VM_FAULT_NOPAGE to set up
the mappings as needed. The correct API to use to insert a pfn
in .fault is vm_insert_pfn(), but vm_insert_pfn() can't override the
vma's cache mode, and the HPET page in particular needs to be
uncached despite the fact that the rest of the VMA is cached.
Add vm_insert_pfn_prot() to support varying cacheability within
the same non-COW VMA in a more sane manner.
x86 could alternatively use multiple VMAs, but that's messy,
would break CRIU, and would create unnecessary VMAs that would
waste memory.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/d2938d1eb37be7a5e4f86182db646551f11e45aa.1451446564.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
DAX handling of COW faults has wrong locking sequence:
dax_fault does i_mmap_lock_read
do_cow_fault does i_mmap_unlock_write
Ross's commit[1] missed a fix[2] that Kirill added to Matthew's
commit[3].
Original COW locking logic was introduced by Matthew here[4].
This should be applied to v4.3 as well.
[1] 0f90cc6609 mm, dax: fix DAX deadlocks
[2] 52a2b53ffd mm, dax: use i_mmap_unlock_write() in do_cow_fault()
[3] 843172978b dax: fix race between simultaneous faults
[4] 2e4cdab058 mm: allow page fault handlers to perform the COW
Cc: <stable@vger.kernel.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The following two locking commits in the DAX code:
commit 843172978b ("dax: fix race between simultaneous faults")
commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for DAX")
introduced a number of deadlocks and other issues which need to be fixed
for the v4.3 kernel. The list of issues in DAX after these commits
(some newly introduced by the commits, some preexisting) can be found
here:
https://lkml.org/lkml/2015/9/25/602 (Subject: "Re: [PATCH] dax: fix deadlock in __dax_fault").
This undoes most of the changes introduced by those two commits,
essentially returning us to the DAX locking scheme that was used in
v4.2.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's use helper rather than direct check of vma->vm_ops to distinguish
anonymous VMA.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__dax_fault() takes i_mmap_lock for write. Let's pair it with write
unlock on do_cow_fault() side.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX is not so special: we need i_mmap_lock to protect mapping->i_mmap.
__dax_pmd_fault() uses unmap_mapping_range() shoot out zero page from
all mappings. We need to drop i_mmap_lock there to avoid lock deadlock.
Re-aquiring the lock should be fine since we check i_size after the
point.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If two threads write-fault on the same hole at the same time, the winner
of the race will return to userspace and complete their store, only to
have the loser overwrite their store with zeroes. Fix this for now by
taking the i_mmap_sem for write instead of read, and do so outside the
call to get_block(). Now the loser of the race will see the block has
already been zeroed, and will not zero it again.
This severely limits our scalability. I have ideas for improving it, but
those can wait for a later patch.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow non-anonymous VMAs to provide huge pages in response to a page fault.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
special_mapping_fault() is absolutely broken. It seems it was always
wrong, but this didn't matter until vdso/vvar started to use more than
one page.
And after this change vma_is_anonymous() becomes really trivial, it
simply checks vm_ops == NULL. However, I do think the helper makes
sense. There are a lot of ->vm_ops != NULL checks, the helper makes the
caller's code more understandable (self-documented) and this is more
grep-friendly.
This patch (of 3):
Preparation. Add the new simple helper, vma_is_anonymous(vma), and change
handle_pte_fault() to use it. It will have more users.
The name is not accurate, say a hpet_mmap()'ed vma is not anonymous.
Perhaps it should be named vma_has_fault() instead. But it matches the
logic in mmap.c/memory.c (see next changes). "True" just means that a
page fault will use do_anonymous_page().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes the tlb_next_batch() bool due to this particular function only
ever returning either one or zero as its return value.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is where the page faults must be modified to call
handle_userfault() if userfaultfd_missing() is true (so if the
vma->vm_flags had VM_UFFD_MISSING set).
handle_userfault() then takes care of blocking the page fault and
delivering it to userland.
The fault flags must also be passed as parameter so the "read|write"
kind of fault can be passed to userland.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reading page fault handler code I've noticed that under right
circumstances kernel would map anonymous pages into file mappings: if
the VMA doesn't have vm_ops->fault() and the VMA wasn't fully populated
on ->mmap(), kernel would handle page fault to not populated pte with
do_anonymous_page().
Let's change page fault handler to use do_anonymous_page() only on
anonymous VMA (->vm_ops == NULL) and make sure that the VMA is not
shared.
For file mappings without vm_ops->fault() or shred VMA without vm_ops,
page fault on pte_none() entry would lead to SIGBUS.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
Historically memcg overhead was high even if memcg was unused. This has
improved a lot but it still showed up in a profile summary as being a
problem.
/usr/src/linux-4.0-vanilla/mm/memcontrol.c 6.6441 395842
mem_cgroup_try_charge 2.950% 175781
__mem_cgroup_count_vm_event 1.431% 85239
mem_cgroup_page_lruvec 0.456% 27156
mem_cgroup_commit_charge 0.392% 23342
uncharge_list 0.323% 19256
mem_cgroup_update_lru_size 0.278% 16538
memcg_check_events 0.216% 12858
mem_cgroup_charge_statistics.isra.22 0.188% 11172
try_charge 0.150% 8928
commit_charge 0.141% 8388
get_mem_cgroup_from_mm 0.121% 7184
That is showing that 6.64% of system CPU cycles were in memcontrol.c and
dominated by mem_cgroup_try_charge. The annotation shows that the bulk
of the cost was checking PageSwapCache which is expected to be cache hot
but is very expensive. The problem appears to be that __SetPageUptodate
is called just before the check which is a write barrier. It is
required to make sure struct page and page data is written before the
PTE is updated and the data visible to userspace. memcg charging does
not require or need the barrier but gets unfairly hit with the cost so
this patch attempts the charging before the barrier. Aside from the
accidental cost to memcg there is the added benefit that the barrier is
avoided if the page cannot be charged. When applied the relevant
profile summary is as follows.
/usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c 3.7907 223277
__mem_cgroup_count_vm_event 1.143% 67312
mem_cgroup_page_lruvec 0.465% 27403
mem_cgroup_commit_charge 0.381% 22452
uncharge_list 0.332% 19543
mem_cgroup_update_lru_size 0.284% 16704
get_mem_cgroup_from_mm 0.271% 15952
mem_cgroup_try_charge 0.237% 13982
memcg_check_events 0.222% 13058
mem_cgroup_charge_statistics.isra.22 0.185% 10920
commit_charge 0.140% 8235
try_charge 0.131% 7716
That brings the overhead down to 3.79% and leaves the memcg fault
accounting to the root cgroup but it's an improvement. The difference
in headline performance of the page fault microbench is marginal as
memcg is such a small component of it.
pft faults
4.0.0 4.0.0
vanilla chargefirst
Hmean faults/cpu-1 1443258.1051 ( 0.00%) 1509075.7561 ( 4.56%)
Hmean faults/cpu-3 1340385.9270 ( 0.00%) 1339160.7113 ( -0.09%)
Hmean faults/cpu-5 875599.0222 ( 0.00%) 874174.1255 ( -0.16%)
Hmean faults/cpu-7 601146.6726 ( 0.00%) 601370.9977 ( 0.04%)
Hmean faults/cpu-8 510728.2754 ( 0.00%) 510598.8214 ( -0.03%)
Hmean faults/sec-1 1432084.7845 ( 0.00%) 1497935.5274 ( 4.60%)
Hmean faults/sec-3 3943818.1437 ( 0.00%) 3941920.1520 ( -0.05%)
Hmean faults/sec-5 3877573.5867 ( 0.00%) 3869385.7553 ( -0.21%)
Hmean faults/sec-7 3991832.0418 ( 0.00%) 3992181.4189 ( 0.01%)
Hmean faults/sec-8 3987189.8167 ( 0.00%) 3986452.2204 ( -0.02%)
It's only visible at single threaded. The overhead is there for higher
threads but other factors dominate.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 662bbcb274 ("mm, sched: Allow uaccess in atomic with
pagefault_disable()") removed might_sleep() checks for all user access
code (that uses might_fault()).
The reason was to disable wrong "sleep in atomic" warnings in the
following scenario:
pagefault_disable()
rc = copy_to_user(...)
pagefault_enable()
Which is valid, as pagefault_disable() increments the preempt counter
and therefore disables the pagefault handler. copy_to_user() will not
sleep and return an error code if a page is not available.
However, as all might_sleep() checks are removed,
CONFIG_DEBUG_ATOMIC_SLEEP would no longer detect the following scenario:
spin_lock(&lock);
rc = copy_to_user(...)
spin_unlock(&lock)
If the kernel is compiled with preemption turned on, preempt_disable()
will make in_atomic() detect disabled preemption. The fault handler would
correctly never sleep on user access.
However, with preemption turned off, preempt_disable() is usually a NOP
(with !CONFIG_PREEMPT_COUNT), therefore in_atomic() will not be able to
detect disabled preemption nor disabled pagefaults. The fault handler
could sleep.
We really want to enable CONFIG_DEBUG_ATOMIC_SLEEP checks for user access
functions again, otherwise we can end up with horrible deadlocks.
Root of all evil is that pagefault_disable() acts almost as
preempt_disable(), depending on preemption being turned on/off.
As we now have pagefault_disabled(), we can use it to distinguish
whether user acces functions might sleep.
Convert might_fault() into a makro that calls __might_fault(), to
allow proper file + line messages in case of a might_sleep() warning.
Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David.Laight@ACULAB.COM
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: benh@kernel.crashing.org
Cc: bigeasy@linutronix.de
Cc: borntraeger@de.ibm.com
Cc: daniel.vetter@intel.com
Cc: heiko.carstens@de.ibm.com
Cc: herbert@gondor.apana.org.au
Cc: hocko@suse.cz
Cc: hughd@google.com
Cc: mst@redhat.com
Cc: paulus@samba.org
Cc: ralf@linux-mips.org
Cc: schwidefsky@de.ibm.com
Cc: yang.shi@windriver.com
Link: http://lkml.kernel.org/r/1431359540-32227-3-git-send-email-dahi@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will allow FS that uses VM_PFNMAP | VM_MIXEDMAP (no page structs) to
get notified when access is a write to a read-only PFN.
This can happen if we mmap() a file then first mmap-read from it to
page-in a read-only PFN, than we mmap-write to the same page.
We need this functionality to fix a DAX bug, where in the scenario above
we fail to set ctime/mtime though we modified the file. An xfstest is
attached to this patchset that shows the failure and the fix. (A DAX
patch will follow)
This functionality is extra important for us, because upon dirtying of a
pmem page we also want to RDMA the page to a remote cluster node.
We define a new pfn_mkwrite and do not reuse page_mkwrite because
1 - The name ;-)
2 - But mainly because it would take a very long and tedious
audit of all page_mkwrite functions of VM_MIXEDMAP/VM_PFNMAP
users. To make sure they do not now CRASH. For example current
DAX code (which this is for) would crash.
If we would want to reuse page_mkwrite, We will need to first
patch all users, so to not-crash-on-no-page. Then enable this
patch. But even if I did that I would not sleep so well at night.
Adding a new vector is the safest thing to do, and is not that
expensive. an extra pointer at a static function vector per driver.
Also the new vector is better for performance, because else we
Will call all current Kernel vectors, so to:
check-ha-no-page-do-nothing and return.
No need to call it from do_shared_fault because do_wp_page is called to
change pte permissions anyway.
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Boaz Harrosh <boaz@plexistor.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A lot of filesystems use generic_file_mmap() and filemap_fault(),
f_op->mmap and vm_ops->fault aren't enough to identify filesystem.
This prints file name, vm_ops->fault, f_op->mmap and a_ops->readpage
(which is almost always implemented and filesystem-specific).
Example:
[ 23.676410] BUG: Bad page map in process sh pte:1b7e6025 pmd:19bbd067
[ 23.676887] page:ffffea00006df980 count:4 mapcount:1 mapping:ffff8800196426c0 index:0x97
[ 23.677481] flags: 0x10000000000000c(referenced|uptodate)
[ 23.677896] page dumped because: bad pte
[ 23.678205] addr:00007f52fcb17000 vm_flags:00000075 anon_vma: (null) mapping:ffff8800196426c0 index:97
[ 23.678922] file:libc-2.19.so fault:filemap_fault mmap:generic_file_readonly_mmap readpage:v9fs_vfs_readpage
[akpm@linux-foundation.org: use pr_alert, per Kirill]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The do_wp_page function is extremely long. Extract the logic for
handling a page belonging to a shared vma into a function of its own.
This helps the readability of the code, without doing any functional
change in it.
Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases, do_wp_page had to copy the page suffering a write fault
to a new location. If the function logic decided that to do this, it
was done by jumping with a "goto" operation to the relevant code block.
This made the code really hard to understand. It is also against the
kernel coding style guidelines.
This patch extracts the page copy and page table update logic to a
separate function. It also clean up the naming, from "gotten" to
"wp_page_copy", and adds few comments.
Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When do_wp_page is ending, in several cases it needs to unlock the pages
and ptls it was accessing.
Currently, this logic was "called" by using a goto jump. This makes
following the control flow of the function harder. Readability was
further hampered by the unlock case containing large amount of logic
needed only in one of the 3 cases.
Using goto for cleanup is generally allowed. However, moving the
trivial unlocking flows to the relevant call sites allow deeper
refactoring in the next patch.
Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently do_wp_page contains 265 code lines. It also contains 9 goto
statements, of which 5 are targeting labels which are not cleanup
related. This makes the function extremely difficult to understand.
The following patches are an attempt at breaking the function to its
basic components, and making it easier to understand.
The patches are straight forward function extractions from do_wp_page.
As we extract functions, we remove unneeded parameters and simplify the
code as much as possible. However, the functionality is supposed to
remain completely unchanged. The patches also attempt to document the
functionality of each extracted function. In patch 2, we split the
unlock logic to the contain logic relevant to specific needs of each use
case, instead of having huge number of conditional decisions in a single
unlock flow.
This patch (of 4):
When do_wp_page is ending, in several cases it needs to reuse the existing
page. This is achieved by making the page table writable, and possibly
updating the page-cache state.
Currently, this logic was "called" by using a goto jump. This makes
following the control flow of the function harder. It is also against the
coding style guidelines for using goto.
As the code can easily be refactored into a specialized function, refactor
it out and simplify the code flow in do_wp_page.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226
Across the board the 4.0-rc1 numbers are much slower, and the degradation
is far worse when using the large memory footprint configs. Perf points
straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:
- 56.07% 56.07% [kernel] [k] default_send_IPI_mask_sequence_phys
- default_send_IPI_mask_sequence_phys
- 99.99% physflat_send_IPI_mask
- 99.37% native_send_call_func_ipi
smp_call_function_many
- native_flush_tlb_others
- 99.85% flush_tlb_page
ptep_clear_flush
try_to_unmap_one
rmap_walk
try_to_unmap
migrate_pages
migrate_misplaced_page
- handle_mm_fault
- 99.73% __do_page_fault
trace_do_page_fault
do_async_page_fault
+ async_page_fault
0.63% native_send_call_func_single_ipi
generic_exec_single
smp_call_function_single
This is showing excessive migration activity even though excessive
migrations are meant to get throttled. Normally, the scan rate is tuned
on a per-task basis depending on the locality of faults. However, if
migrations fail for any reason then the PTE scanner may scan faster if
the faults continue to be remote. This means there is higher system CPU
overhead and fault trapping at exactly the time we know that migrations
cannot happen. This patch tracks when migration failures occur and
slows the PTE scanner.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Protecting a PTE to trap a NUMA hinting fault clears the writable bit
and further faults are needed after trapping a NUMA hinting fault to set
the writable bit again. This patch preserves the writable bit when
trapping NUMA hinting faults. The impact is obvious from the number of
minor faults trapped during the basis balancing benchmark and the system
CPU usage;
autonumabench
4.0.0-rc4 4.0.0-rc4
baseline preserve
Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%)
Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%)
Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%)
Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%)
Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%)
Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%)
Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%)
Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%)
4.0.0-rc4 4.0.0-rc4
baseline preserve
User 44383.95 43971.89
System 252.61 201.24
Elapsed 998.68 1000.94
Minor Faults 2597249 1981230
Major Faults 365 364
There is a similar drop in system CPU usage using Dave Chinner's xfsrepair
workload
4.0.0-rc4 4.0.0-rc4
baseline preserve
Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%)
Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%)
The patch looks hacky but the alternatives looked worse. The tidest was
to rewalk the page tables after a hinting fault but it was more complex
than this approach and the performance was worse. It's not generally
safe to just mark the page writable during the fault if it's a write
fault as it may have been read-only for COW so that approach was
discarded.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are three follow-on patches based on the xfsrepair workload Dave
Chinner reported was problematic in 4.0-rc1 due to changes in page table
management -- https://lkml.org/lkml/2015/3/1/226.
Much of the problem was reduced by commit 53da3bc2ba ("mm: fix up numa
read-only thread grouping logic") and commit ba68bc0115 ("mm: thp:
Return the correct value for change_huge_pmd"). It was known that the
performance in 3.19 was still better even if is far less safe. This
series aims to restore the performance without compromising on safety.
For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the
three patches applied on top
autonumabench
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8
Time System-NUMA01 124.00 ( 0.00%) 161.86 (-30.53%) 107.13 ( 13.60%) 103.13 ( 16.83%) 145.01 (-16.94%)
Time System-NUMA01_THEADLOCAL 115.54 ( 0.00%) 107.64 ( 6.84%) 131.87 (-14.13%) 83.30 ( 27.90%) 92.35 ( 20.07%)
Time System-NUMA02 9.35 ( 0.00%) 10.44 (-11.66%) 8.95 ( 4.28%) 10.72 (-14.65%) 8.16 ( 12.73%)
Time System-NUMA02_SMT 3.87 ( 0.00%) 4.63 (-19.64%) 4.57 (-18.09%) 3.99 ( -3.10%) 3.36 ( 13.18%)
Time Elapsed-NUMA01 570.06 ( 0.00%) 567.82 ( 0.39%) 515.78 ( 9.52%) 517.26 ( 9.26%) 543.80 ( 4.61%)
Time Elapsed-NUMA01_THEADLOCAL 393.69 ( 0.00%) 384.83 ( 2.25%) 384.10 ( 2.44%) 384.31 ( 2.38%) 380.73 ( 3.29%)
Time Elapsed-NUMA02 49.09 ( 0.00%) 49.33 ( -0.49%) 48.86 ( 0.47%) 48.78 ( 0.63%) 50.94 ( -3.77%)
Time Elapsed-NUMA02_SMT 47.51 ( 0.00%) 47.15 ( 0.76%) 47.98 ( -0.99%) 48.12 ( -1.28%) 49.56 ( -4.31%)
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
User 46334.60 46391.94 44383.95 43971.89 44372.12
System 252.84 284.66 252.61 201.24 249.00
Elapsed 1062.14 1050.96 998.68 1000.94 1026.78
Overall the system CPU usage is comparable and the test is naturally a
bit variable. The slowing of the scanner hurts numa01 but on this
machine it is an adverse workload and patches that dramatically help it
often hurt absolutely everything else.
Due to patch 2, the fault activity is interesting
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
Minor Faults 2097811 2656646 2597249 1981230 1636841
Major Faults 362 450 365 364 365
Note the impact preserving the write bit across protection updates and
fault reduces faults.
NUMA alloc hit 1229008 1217015 1191660 1178322 1199681
NUMA alloc miss 0 0 0 0 0
NUMA interleave hit 0 0 0 0 0
NUMA alloc local 1228514 1216317 1190871 1177448 1199021
NUMA base PTE updates 245706197 240041607 238195516 244704842 115012800
NUMA huge PMD updates 479530 468448 464868 477573 224487
NUMA page range updates 491225557 479886983 476207932 489222218 229950144
NUMA hint faults 659753 656503 641678 656926 294842
NUMA hint local faults 381604 373963 360478 337585 186249
NUMA hint local percent 57 56 56 51 63
NUMA pages migrated 5412140 6374899 6266530 5277468 5755096
AutoNUMA cost 5121% 5083% 4994% 5097% 2388%
Here the impact of slowing the PTE scanner on migratrion failures is
obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are
massively reduced even though the headline performance is very similar.
As xfsrepair was the reported workload here is the impact of the series
on it.
xfsrepair
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8
Min real-fsmark 1183.29 ( 0.00%) 1165.73 ( 1.48%) 1152.78 ( 2.58%) 1153.64 ( 2.51%) 1177.62 ( 0.48%)
Min syst-fsmark 4107.85 ( 0.00%) 4027.75 ( 1.95%) 3986.74 ( 2.95%) 3979.16 ( 3.13%) 4048.76 ( 1.44%)
Min real-xfsrepair 441.51 ( 0.00%) 463.96 ( -5.08%) 449.50 ( -1.81%) 440.08 ( 0.32%) 439.87 ( 0.37%)
Min syst-xfsrepair 195.76 ( 0.00%) 278.47 (-42.25%) 262.34 (-34.01%) 203.70 ( -4.06%) 143.64 ( 26.62%)
Amean real-fsmark 1188.30 ( 0.00%) 1177.34 ( 0.92%) 1157.97 ( 2.55%) 1158.21 ( 2.53%) 1182.22 ( 0.51%)
Amean syst-fsmark 4111.37 ( 0.00%) 4055.70 ( 1.35%) 3987.19 ( 3.02%) 3998.72 ( 2.74%) 4061.69 ( 1.21%)
Amean real-xfsrepair 450.88 ( 0.00%) 468.32 ( -3.87%) 454.14 ( -0.72%) 442.36 ( 1.89%) 440.59 ( 2.28%)
Amean syst-xfsrepair 199.66 ( 0.00%) 290.60 (-45.55%) 277.20 (-38.84%) 204.68 ( -2.51%) 150.55 ( 24.60%)
Stddev real-fsmark 4.12 ( 0.00%) 10.82 (-162.29%) 4.14 ( -0.28%) 5.98 (-45.05%) 4.60 (-11.53%)
Stddev syst-fsmark 2.63 ( 0.00%) 20.32 (-671.82%) 0.37 ( 85.89%) 16.47 (-525.59%) 15.05 (-471.79%)
Stddev real-xfsrepair 6.87 ( 0.00%) 4.55 ( 33.75%) 3.46 ( 49.58%) 1.78 ( 74.12%) 0.52 ( 92.50%)
Stddev syst-xfsrepair 3.02 ( 0.00%) 10.30 (-241.37%) 13.17 (-336.37%) 0.71 ( 76.63%) 5.00 (-65.61%)
CoeffVar real-fsmark 0.35 ( 0.00%) 0.92 (-164.73%) 0.36 ( -2.91%) 0.52 (-48.82%) 0.39 (-12.10%)
CoeffVar syst-fsmark 0.06 ( 0.00%) 0.50 (-682.41%) 0.01 ( 85.45%) 0.41 (-543.22%) 0.37 (-478.78%)
CoeffVar real-xfsrepair 1.52 ( 0.00%) 0.97 ( 36.21%) 0.76 ( 49.94%) 0.40 ( 73.62%) 0.12 ( 92.33%)
CoeffVar syst-xfsrepair 1.51 ( 0.00%) 3.54 (-134.54%) 4.75 (-214.31%) 0.34 ( 77.20%) 3.32 (-119.63%)
Max real-fsmark 1193.39 ( 0.00%) 1191.77 ( 0.14%) 1162.90 ( 2.55%) 1166.66 ( 2.24%) 1188.50 ( 0.41%)
Max syst-fsmark 4114.18 ( 0.00%) 4075.45 ( 0.94%) 3987.65 ( 3.08%) 4019.45 ( 2.30%) 4082.80 ( 0.76%)
Max real-xfsrepair 457.80 ( 0.00%) 474.60 ( -3.67%) 457.82 ( -0.00%) 444.42 ( 2.92%) 441.03 ( 3.66%)
Max syst-xfsrepair 203.11 ( 0.00%) 303.65 (-49.50%) 294.35 (-44.92%) 205.33 ( -1.09%) 155.28 ( 23.55%)
The really relevant lines as syst-xfsrepair which is the system CPU
usage when running xfsrepair. Note that on my machine the overhead was
45% higher on 4.0-rc4 which may be part of what Dave is seeing. Once we
preserve the write bit across faults, it's only 2.51% higher on average.
With the full series applied, system CPU usage is 24.6% lower on
average.
Again, the impact of preserving the write bit on minor faults is obvious
and the impact of slowing scanning after migration failures is obvious
on the PTE updates. Note also that the number of pages migrated is much
reduced even though the headline performance is comparable.
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
Minor Faults 153466827 254507978 249163829 153501373 105737890
Major Faults 610 702 690 649 724
NUMA base PTE updates 217735049 210756527 217729596 216937111 144344993
NUMA huge PMD updates 129294 85044 106921 127246 79887
NUMA pages migrated 21938995 29705270 28594162 22687324 16258075
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
Mean sdb-avgqusz 13.47 2.54 2.55 2.47 2.49
Mean sdb-avgrqsz 202.32 140.22 139.50 139.02 138.12
Mean sdb-await 25.92 5.09 5.33 5.02 5.22
Mean sdb-r_await 4.71 0.19 0.83 0.51 0.11
Mean sdb-w_await 104.13 5.21 5.38 5.05 5.32
Mean sdb-svctm 0.59 0.13 0.14 0.13 0.14
Mean sdb-rrqm 0.16 0.00 0.00 0.00 0.00
Mean sdb-wrqm 3.59 1799.43 1826.84 1812.21 1785.67
Max sdb-avgqusz 111.06 12.13 14.05 11.66 15.60
Max sdb-avgrqsz 255.60 190.34 190.01 187.33 191.78
Max sdb-await 168.24 39.28 49.22 44.64 65.62
Max sdb-r_await 660.00 52.00 280.00 76.00 12.00
Max sdb-w_await 7804.00 39.28 49.22 44.64 65.62
Max sdb-svctm 4.00 2.82 2.86 1.98 2.84
Max sdb-rrqm 8.30 0.00 0.00 0.00 0.00
Max sdb-wrqm 34.20 5372.80 5278.60 5386.60 5546.15
FWIW, I also checked SPECjbb in different configurations but it's
similar observations -- minor faults lower, PTE update activity lower
and performance is roughly comparable against 3.19.
This patch (of 3):
Threads that share writable data within pages are grouped together as
related tasks. This decision is based on whether the PTE is marked
dirty which is subject to timing races between the PTE scanner update
and when the application writes the page. If the page is file-backed,
then background flushes and sync also affect placement. This is
unpredictable behaviour which is impossible to reason about so this
patch makes grouping decisions based on the VMA flags.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Chinner reported that commit 4d94246699 ("mm: convert
p[te|md]_mknonnuma and remaining page table manipulations") slowed down
his xfsrepair test enormously. In particular, it was using more system
time due to extra TLB flushing.
The ultimate reason turns out to be how the change to use the regular
page table accessor functions broke the NUMA grouping logic. The old
special mknuma/mknonnuma code accessed the page table present bit and
the magic NUMA bit directly, while the new code just changes the page
protections using PROT_NONE and the regular vma protections.
That sounds equivalent, and from a fault standpoint it really is, but a
subtle side effect is that the *other* protection bits of the page table
entries also change. And the code to decide how to group the NUMA
entries together used the writable bit to decide whether a particular
page was likely to be shared read-only or not.
And with the change to make the NUMA handling use the regular permission
setting functions, that writable bit was basically always cleared for
private mappings due to COW. So even if the page actually ends up being
written to in the end, the NUMA balancing would act as if it was always
shared RO.
This code is a heuristic anyway, so the fix - at least for now - is to
instead check whether the page is dirty rather than writable. The bit
doesn't change with protection changes.
NOTE! This also adds a FIXME comment to revisit this issue,
Not only should we probably re-visit the whole "is this a shared
read-only page" heuristic (we might want to take the vma permissions
into account and base this more on those than the per-page ones, and
also look at whether the particular access that triggers it is a write
or not), but the whole COW issue shows that we should think about the
NUMA fault handling some more.
For example, maybe we should do the early-COW thing that a regular fault
does. Or maybe we should accept that while using the same bits as
PROTNONE was a good thing (and got rid of the specual NUMA bit), we
might still want to just preseve the other protection bits across NUMA
faulting.
Those are bigger questions, left for later. This just fixes up the
heuristic so that it at least approximates working again. More analysis
and work needed.
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently COW of an XIP file is done by first bringing in a read-only
mapping, then retrying the fault and copying the page. It is much more
efficient to tell the fault handler that a COW is being attempted (by
passing in the pre-allocated page in the vm_fault structure), and allow
the handler to perform the COW operation itself.
The handler cannot insert the page itself if there is already a read-only
mapping at that address, so allow the handler to return VM_FAULT_LOCKED
and set the fault_page to be NULL. This indicates to the MM code that the
i_mmap_lock is held instead of the page lock.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX is a replacement for the variation of XIP currently supported by the
ext2 filesystem. We have three different things in the tree called 'XIP',
and the new focus is on access to data rather than executables, so a name
change was in order. DAX stands for Direct Access. The X is for
eXciting.
The new focus on data access has resulted in more careful attention to
races that exist in the current XIP code, but are not hit by the use-case
that it was designed for. XIP's architecture worked fine for ext2, but
DAX is architected to work with modern filsystems such as ext4 and XFS.
DAX is not intended for use with btrfs; the value that btrfs adds relies
on manipulating data and writing data to different locations, while DAX's
value is for write-in-place and keeping the kernel from touching the data.
DAX was developed in order to support NV-DIMMs, but it's become clear that
its usefuless extends beyond NV-DIMMs and there are several potential
customers including the tracing machinery. Other people want to place the
kernel log in an area of memory, as long as they have a BIOS that does not
clear DRAM on reboot.
Patch 1 is a bug fix, probably worth including in 3.18.
Patches 2 & 3 are infrastructure for DAX.
Patches 4-8 replace the XIP code with its DAX equivalents, transforming
ext2 to use the DAX code as we go. Note that patch 10 is the
Documentation patch.
Patches 9-15 clean up after the XIP code, removing the infrastructure
that is no longer needed and renaming various XIP things to DAX.
Most of these patches were added after Jan found things he didn't
like in an earlier version of the ext4 patch ... that had been copied
from ext2. So ext2 i being transformed to do things the same way that
ext4 will later. The ability to mount ext2 filesystems with the 'xip'
option is retained, although the 'dax' option is now preferred.
Patch 16 adds some DAX infrastructure to support ext4.
Patch 17 adds DAX support to ext4. It is broadly similar to ext2's DAX
support, but it is more efficient than ext4's due to its support for
unwritten extents.
Patch 18 is another cleanup patch renaming XIP to DAX.
My thanks to Mathieu Desnoyers for his reviews of the v11 patchset. Most
of the changes below were based on his feedback.
This patch (of 18):
Pagecache faults recheck i_size after taking the page lock to ensure that
the fault didn't race against a truncate. We don't have a page to lock in
the XIP case, so use i_mmap_lock_read() instead. It is locked in the
truncate path in unmap_mapping_range() after updating i_size. So while we
hold it in the fault path, we are guaranteed that either i_size has
already been updated in the truncate path, or that the truncate will
subsequently call zap_page_range_single() and so remove the mapping we
have just inserted.
There is a window of time in which i_size has been reduced and the thread
has a mapping to a page which will be removed from the file, but this is
harmless as the page will not be allocated to a different purpose before
the thread's access to it is revoked.
[akpm@linux-foundation.org: switch to i_mmap_lock_read(), add comment in unmap_single_vma()]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For whatever reason, generic_access_phys() only remaps one page, but
actually allows to access arbitrary size. It's quite easy to trigger
large reads, like printing out large structure with gdb, which leads to a
crash. Fix it by remapping correct size.
Fixes: 28b2ee20c7 ("access_process_vm device memory infrastructure")
Signed-off-by: Grazvydas Ignotas <notasas@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_protnone_numa is only safe to use after VMA checks for PROT_NONE are
complete. Treating a real PROT_NONE PTE as a NUMA hinting fault is going
to result in strangeness so add a check for it. BUG_ON looks like
overkill but if this is hit then it's a serious bug that could result in
corruption so do not even try recovering. It would have been more
comprehensive to check VMA flags in pte_protnone_numa but it would have
made the API ugly just for a debugging check.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Faults on the huge zero page are pointless and there is a BUG_ON to catch
them during fault time. This patch reintroduces a check that avoids
marking the zero page PAGE_NONE.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert existing users of pte_numa and friends to the new helper. Note
that the kernel is broken after this patch is applied until the other page
table modifiers are also altered. This patch layout is to make review
easier.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc updates from Andrew Morton:
"Bite-sized chunks this time, to avoid the MTA ratelimiting woes.
- fs/notify updates
- ocfs2
- some of MM"
That laconic "some MM" is mainly the removal of remap_file_pages(),
which is a big simplification of the VM, and which gets rid of a *lot*
of random cruft and special cases because we no longer support the
non-linear mappings that it used.
From a user interface perspective, nothing has changed, because the
remap_file_pages() syscall still exists, it's just done by emulating the
old behavior by creating a lot of individual small mappings instead of
one non-linear one.
The emulation is slower than the old "native" non-linear mappings, but
nobody really uses or cares about remap_file_pages(), and simplifying
the VM is a big advantage.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (78 commits)
memcg: zap memcg_slab_caches and memcg_slab_mutex
memcg: zap memcg_name argument of memcg_create_kmem_cache
memcg: zap __memcg_{charge,uncharge}_slab
mm/page_alloc.c: place zone_id check before VM_BUG_ON_PAGE check
mm: hugetlb: fix type of hugetlb_treat_as_movable variable
mm, hugetlb: remove unnecessary lower bound on sysctl handlers"?
mm: memory: merge shared-writable dirtying branches in do_wp_page()
mm: memory: remove ->vm_file check on shared writable vmas
xtensa: drop _PAGE_FILE and pte_file()-related helpers
x86: drop _PAGE_FILE and pte_file()-related helpers
unicore32: drop pte_file()-related helpers
um: drop _PAGE_FILE and pte_file()-related helpers
tile: drop pte_file()-related helpers
sparc: drop pte_file()-related helpers
sh: drop _PAGE_FILE and pte_file()-related helpers
score: drop _PAGE_FILE and pte_file()-related helpers
s390: drop pte_file()-related helpers
parisc: drop _PAGE_FILE and pte_file()-related helpers
openrisc: drop _PAGE_FILE and pte_file()-related helpers
nios2: drop _PAGE_FILE and pte_file()-related helpers
...
Whether there is a vm_ops->page_mkwrite or not, the page dirtying is
pretty much the same. Make sure the page references are the same in both
cases, then merge the two branches.
It's tempting to go even further and page-lock the !page_mkwrite case, to
get it in line with everybody else setting the page table and thus further
simplify the model. But that's not quite compelling enough to justify
dropping the pte lock, then relocking and verifying the entry for
filesystems without ->page_mkwrite, which notably includes tmpfs. Leave
it for now and lock the page late in the !page_mkwrite case.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shared anonymous mmaps are implemented with shmem files, so all VMAs with
shared writable semantics also have an underlying backing file.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One bit in ->vm_flags is unused now!
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them on page fault.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have remap_file_pages(2) emulation in -mm tree for few release cycles
and we plan to have it mainline in v3.20. This patchset removes rest of
VM_NONLINEAR infrastructure.
Patches 1-8 take care about generic code. They are pretty
straight-forward and can be applied without other of patches.
Rest patches removes pte_file()-related stuff from architecture-specific
code. It usually frees up one bit in non-present pte. I've tried to reuse
that bit for swap offset, where I was able to figure out how to do that.
For obvious reason I cannot test all that arch-specific code and would
like to see acks from maintainers.
In total, remap_file_pages(2) required about 1.4K lines of not-so-trivial
kernel code. That's too much for functionality nobody uses.
Tested-by: Felipe Balbi <balbi@ti.com>
This patch (of 38):
We don't create non-linear mappings anymore. Let's drop code which
handles them on unmap/zap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Reworked handling for foreign (grant mapped) pages to simplify the
code, enable a number of additional use cases and fix a number of
long-standing bugs.
- Prefer the TSC over the Xen PV clock when dom0 (and the TSC is
stable).
- Assorted other cleanup and minor bug fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJU2JC+AAoJEFxbo/MsZsTRIvAH/1lgQ0EQlxaZtEFWY8cJBzxY
dXaTMfyGQOddGYDCW0r42hhXJHeX7DWXSERSD3aW9DZOn/eYdneHq9gWRD4uPrGn
hEFQ26J4jZWR5riGXaja0LqI2gJKLZ6BhHIQciLEbY+jw4ynkNBLNRPFehuwrCsZ
WdBwJkyvXC3RErekncRl/aNhxdi4p1P6qeiaW/mo3UcSO/CFSKybOLwT65iePazg
XuY9UiTn2+qcRkm/tjx8K9heHK8SBEGNWuoTcWYF1to8mwwUfKIAc4NO2UBDXJI+
rp7Z2lVFdII15JsQ08ATh3t7xDrMWLzCX/y4jCzmF3DBXLbSWdHCQMgI7TWt5pE=
=PyJK
-----END PGP SIGNATURE-----
Merge tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen features and fixes from David Vrabel:
- Reworked handling for foreign (grant mapped) pages to simplify the
code, enable a number of additional use cases and fix a number of
long-standing bugs.
- Prefer the TSC over the Xen PV clock when dom0 (and the TSC is
stable).
- Assorted other cleanup and minor bug fixes.
* tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (25 commits)
xen/manage: Fix USB interaction issues when resuming
xenbus: Add proper handling of XS_ERROR from Xenbus for transactions.
xen/gntdev: provide find_special_page VMA operation
xen/gntdev: mark userspace PTEs as special on x86 PV guests
xen-blkback: safely unmap grants in case they are still in use
xen/gntdev: safely unmap grants in case they are still in use
xen/gntdev: convert priv->lock to a mutex
xen/grant-table: add a mechanism to safely unmap pages that are in use
xen-netback: use foreign page information from the pages themselves
xen: mark grant mapped pages as foreign
xen/grant-table: add helpers for allocating pages
x86/xen: require ballooned pages for grant maps
xen: remove scratch frames for ballooned pages and m2p override
xen/grant-table: pre-populate kernel unmap ops for xen_gnttab_unmap_refs()
mm: add 'foreign' alias for the 'pinned' page flag
mm: provide a find_special_page vma operation
x86/xen: cleanup arch/x86/xen/mmu.c
x86/xen: add some __init annotations in arch/x86/xen/mmu.c
x86/xen: add some __init and static annotations in arch/x86/xen/setup.c
x86/xen: use correct types for addresses in arch/x86/xen/setup.c
...
The stack guard page error case has long incorrectly caused a SIGBUS
rather than a SIGSEGV, but nobody actually noticed until commit
fee7e49d45 ("mm: propagate error from stack expansion even for guard
page") because that error case was never actually triggered in any
normal situations.
Now that we actually report the error, people noticed the wrong signal
that resulted. So far, only the test suite of libsigsegv seems to have
actually cared, but there are real applications that use libsigsegv, so
let's not wait for any of those to break.
Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The optional find_special_page VMA operation is used to lookup the
pages backing a VMA. This is useful in cases where the normal
mechanisms for finding the page don't work. This is only called if
the PTE is special.
One use case is a Xen PV guest mapping foreign pages into userspace.
In a Xen PV guest, the PTEs contain MFNs so get_user_pages() (for
example) must do an MFN to PFN (M2P) lookup before it can get the
page. For foreign pages (those owned by another guest) the M2P lookup
returns the PFN as seen by the foreign guest (which would be
completely the wrong page for the local guest).
This cannot be fixed up improving the M2P lookup since one MFN may be
mapped onto two or more pages so getting the right page is impossible
given just the MFN.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
When batching up address ranges for TLB invalidation, we check tlb->end
!= 0 to indicate that some pages have actually been unmapped.
As of commit f045bbb9fa ("mmu_gather: fix over-eager
tlb_flush_mmu_free() calling"), we use the same check for freeing these
pages in order to avoid a performance regression where we call
free_pages_and_swap_cache even when no pages are actually queued up.
Unfortunately, the range could have been reset (tlb->end = 0) by
tlb_end_vma, which has been shown to cause memory leaks on arm64.
Furthermore, investigation into these leaks revealed that the fullmm
case on task exit no longer invalidates the TLB, by virtue of tlb->end
== 0 (in 3.18, need_flush would have been set).
This patch resolves the problem by reverting commit f045bbb9fa, using
instead tlb->local.nr as the predicate for page freeing in
tlb_flush_mmu_free and ensuring that tlb->end is initialised to a
non-zero value in the fullmm case.
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Dave Hansen <dave@sr71.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tejun, while reviewing the code, spotted the following race condition
between the dirtying and truncation of a page:
__set_page_dirty_nobuffers() __delete_from_page_cache()
if (TestSetPageDirty(page))
page->mapping = NULL
if (PageDirty())
dec_zone_page_state(page, NR_FILE_DIRTY);
dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
if (page->mapping)
account_page_dirtied(page)
__inc_zone_page_state(page, NR_FILE_DIRTY);
__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
which results in an imbalance of NR_FILE_DIRTY and BDI_RECLAIMABLE.
Dirtiers usually lock out truncation, either by holding the page lock
directly, or in case of zap_pte_range(), by pinning the mapcount with
the page table lock held. The notable exception to this rule, though,
is do_wp_page(), for which this race exists. However, do_wp_page()
already waits for a locked page to unlock before setting the dirty bit,
in order to prevent a race where clear_page_dirty() misses the page bit
in the presence of dirty ptes. Upgrade that wait to a fully locked
set_page_dirty() to also cover the situation explained above.
Afterwards, the code in set_page_dirty() dealing with a truncation race
is no longer needed. Remove it.
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jay Foad reports that the address sanitizer test (asan) sometimes gets
confused by a stack pointer that ends up being outside the stack vma
that is reported by /proc/maps.
This happens due to an interaction between RLIMIT_STACK and the guard
page: when we do the guard page check, we ignore the potential error
from the stack expansion, which effectively results in a missing guard
page, since the expected stack expansion won't have been done.
And since /proc/maps explicitly ignores the guard page (commit
d7824370e263: "mm: fix up some user-visible effects of the stack guard
page"), the stack pointer ends up being outside the reported stack area.
This is the minimal patch: it just propagates the error. It also
effectively makes the guard page part of the stack limit, which in turn
measn that the actual real stack is one page less than the stack limit.
Let's see if anybody notices. We could teach acct_stack_growth() to
allow an extra page for a grow-up/grow-down stack in the rlimit test,
but I don't want to add more complexity if it isn't needed.
Reported-and-tested-by: Jay Foad <jay.foad@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit c8475d144a.
There are several[1][2] of bug reports which points to this commit as potential
cause[3].
Let's revert it until we figure out what's going on.
[1] https://lkml.org/lkml/2014/11/14/342
[2] https://lkml.org/lkml/2014/12/22/213
[3] https://lkml.org/lkml/2014/12/9/741
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com
ACCESS_ONCE might fail with specific compilers for non-scalar accesses.
Here is a set of patches to tackle that problem.
The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure
is larger than the machine word size memcpy is used and a warning is emitted.
The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar
types.
This merge does not yet contain a patch that forces ACCESS_ONCE to work only
on scalar types. This is targetted for the next merge window as Linux next
already contains new offenders regarding ACCESS_ONCE vs. non-scalar types.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJUkrVGAAoJEBF7vIC1phx8stkP/2LmN5y6LOseoEW06xa5MX4m
cbIKsZNtsGHl7EDcTzzuWs6Sq5/Cj7V3yzeBF7QGbUKOqvFWU3jvpUBCCfjMg37C
77/Vf0ZPrxTXXxeJ4Ykdy2CGvuMtuYY9TWkrRNKmLU0xex7lGblEzCt9z6+mZviw
26/DN8ctjkHRvIUAi+7RfQBBc3oSMYAC1mzxYKBAsAFLV+LyFmsGU/4iofZMAsdt
XFyVXlrLn0Bjx/MeceGkOlMDiVx4FnfccfFaD4hhuTLBJXWitkUK/MRa4JBiXWzH
agY8942A8/j9wkI2DFp/pqZYqA/sTXLndyOWlhE//ZSti0n0BSJaOx3S27rTLkAc
5VmZEVyIrS3hyOpyyAi0sSoPkDnjeCHmQg9Rqn34/poKLd7JDrW2UkERNCf/T3eh
GI2rbhAlZz3v5mIShn8RrxzslWYmOObpMr3HYNUdRk8YUfTf6d6aZ3txHp2nP4mD
VBAEzsvP9rcVT2caVhU2dnBzeaZAj3zeDxBtjcb3X2osY9tI7qgLc9Fa/fWKgILk
2evkLcctsae2mlLNGHyaK3Dm/ZmYJv+57MyaQQEZNfZZgeB1y4k0DkxH4w1CFmCi
s8XlH5voEHgnyjSQXXgc/PNVlkPAKr78ZyTiAfiKmh8rpe41/W4hGcgao7L9Lgiu
SI0uSwKibuZt4dHGxQuG
=IQ5o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux
Pull ACCESS_ONCE cleanup preparation from Christian Borntraeger:
"kernel: Provide READ_ONCE and ASSIGN_ONCE
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com
ACCESS_ONCE might fail with specific compilers for non-scalar
accesses.
Here is a set of patches to tackle that problem.
The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data
structure is larger than the machine word size memcpy is used and a
warning is emitted. The next patches fix up several in-tree users of
ACCESS_ONCE on non-scalar types.
This does not yet contain a patch that forces ACCESS_ONCE to work only
on scalar types. This is targetted for the next merge window as Linux
next already contains new offenders regarding ACCESS_ONCE vs.
non-scalar types"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux:
s390/kvm: REPLACE barrier fixup with READ_ONCE
arm/spinlock: Replace ACCESS_ONCE with READ_ONCE
arm64/spinlock: Replace ACCESS_ONCE READ_ONCE
mips/gup: Replace ACCESS_ONCE with READ_ONCE
x86/gup: Replace ACCESS_ONCE with READ_ONCE
x86/spinlock: Replace ACCESS_ONCE with READ_ONCE
mm: replace ACCESS_ONCE with READ_ONCE or barriers
kernel: Provide READ_ONCE and ASSIGN_ONCE
ACCESS_ONCE does not work reliably on non-scalar types. For
example gcc 4.6 and 4.7 might remove the volatile tag for such
accesses during the SRA (scalar replacement of aggregates) step
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145)
Let's change the code to access the page table elements with
READ_ONCE that does implicit scalar accesses for the gup code.
mm_find_pmd is tricky, because m68k and sparc(32bit) define pmd_t
as array of longs. This code requires just that the pmd_present
and pmd_trans_huge check are done on the same value, so a barrier
is sufficent.
A similar case is in handle_pte_fault. On ppc44x the word size is
32 bit, but a pte is 64 bit. A barrier is ok as well.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: linux-mm@kvack.org
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Dave Hansen reports that commit fb7332a9fe ("mmu_gather: move minimal
range calculations into generic code") caused a performance problem:
"tlb_finish_mmu() goes up about 9x in the profiles (~0.4%->3.6%) and
tlb_flush_mmu_free() takes about 3.1% of CPU time with the patch
applied, but does not show up at all on the commit before"
and the reason is that Will moved the test for whether we need to flush
from tlb_flush_mmu() into tlb_flush_mmu_tlbonly(). But that meant that
tlb_flush_mmu_free() basically lost that check.
Move it back into tlb_flush_mmu() where it belongs, so that it covers
both tlb_flush_mmu_tlbonly() _and_ tlb_flush_mmu_free().
Reported-and-tested-by: Dave Hansen <dave@sr71.net>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull drm updates from Dave Airlie:
"Highlights:
- AMD KFD driver merge
This is the AMD HSA interface for exposing a lowlevel interface for
GPGPU use. They have an open source userspace built on top of this
interface, and the code looks as good as it was going to get out of
tree.
- Initial atomic modesetting work
The need for an atomic modesetting interface to allow userspace to
try and send a complete set of modesetting state to the driver has
arisen, and been suffering from neglect this past year. No more,
the start of the common code and changes for msm driver to use it
are in this tree. Ongoing work to get the userspace ioctl finished
and the code clean will probably wait until next kernel.
- DisplayID 1.3 and tiled monitor exposed to userspace.
Tiled monitor property is now exposed for userspace to make use of.
- Rockchip drm driver merged.
- imx gpu driver moved out of staging
Other stuff:
- core:
panel - MIPI DSI + new panels.
expose suggested x/y properties for virtual GPUs
- i915:
Initial Skylake (SKL) support
gen3/4 reset work
start of dri1/ums removal
infoframe tracking
fixes for lots of things.
- nouveau:
tegra k1 voltage support
GM204 modesetting support
GT21x memory reclocking work
- radeon:
CI dpm fixes
GPUVM improvements
Initial DPM fan control
- rcar-du:
HDMI support added
removed some support for old boards
slave encoder driver for Analog Devices adv7511
- exynos:
Exynos4415 SoC support
- msm:
a4xx gpu support
atomic helper conversion
- tegra:
iommu support
universal plane support
ganged-mode DSI support
- sti:
HDMI i2c improvements
- vmwgfx:
some late fixes.
- qxl:
use suggested x/y properties"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
drm: sti: fix module compilation issue
drm/i915: save/restore GMBUS freq across suspend/resume on gen4
drm: sti: correctly cleanup CRTC and planes
drm: sti: add HQVDP plane
drm: sti: add cursor plane
drm: sti: enable auxiliary CRTC
drm: sti: fix delay in VTG programming
drm: sti: prepare sti_tvout to support auxiliary crtc
drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
drm: sti: fix hdmi avi infoframe
drm: sti: remove event lock while disabling vblank
drm: sti: simplify gdp code
drm: sti: clear all mixer control
drm: sti: remove gpio for HDMI hot plug detection
drm: sti: allow to change hdmi ddc i2c adapter
drm/doc: Document drm_add_modes_noedid() usage
drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
drm: Zero out DRM object memory upon cleanup
drm/i915/bdw: Fix the write setting up the WIZ hashing mode
...
This lets drivers like the AMD IOMMUv2 driver handle faults a bit more
simply, rather than doing tricks with page refs and get_user_pages().
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Oded Gabbay <oded.gabbay@amd.com>
Cc: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unmap_mapping_range family of functions do the unmapping of user pages
(ultimately via zap_page_range_single) without touching the actual
interval tree, thus share the lock.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull s390 updates from Martin Schwidefsky:
"The most notable change for this pull request is the ftrace rework
from Heiko. It brings a small performance improvement and the ground
work to support a new gcc option to replace the mcount blocks with a
single nop.
Two new s390 specific system calls are added to emulate user space
mmio for PCI, an artifact of the how PCI memory is accessed.
Two patches for the memory management with changes to common code.
For KVM mm_forbids_zeropage is added which disables the empty zero
page for an mm that is used by a KVM process. And an optimization,
pmdp_get_and_clear_full is added analog to ptep_get_and_clear_full.
Some micro optimization for the cmpxchg and the spinlock code.
And as usual bug fixes and cleanups"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (46 commits)
s390/cputime: fix 31-bit compile
s390/scm_block: make the number of reqs per HW req configurable
s390/scm_block: handle multiple requests in one HW request
s390/scm_block: allocate aidaw pages only when necessary
s390/scm_block: use mempool to manage aidaw requests
s390/eadm: change timeout value
s390/mm: fix memory leak of ptlock in pmd_free_tlb
s390: use local symbol names in entry[64].S
s390/ptrace: always include vector registers in core files
s390/simd: clear vector register pointer on fork/clone
s390: translate cputime magic constants to macros
s390/idle: convert open coded idle time seqcount
s390/idle: add missing irq off lockdep annotation
s390/debug: avoid function call for debug_sprintf_*
s390/kprobes: fix instruction copy for out of line execution
s390: remove diag 44 calls from cpu_relax()
s390/dasd: retry partition detection
s390/dasd: fix list corruption for sleep_on requests
s390/dasd: fix infinite term I/O loop
s390/dasd: remove unused code
...
Changes include:
- Support for alternative instruction patching from Andre
- seccomp from Akashi
- Some AArch32 instruction emulation, required by the Android folks
- Optimisations for exception entry/exit code, cmpxchg, pcpu atomics
- mmu_gather range calculations moved into core code
- EFI updates from Ard, including long-awaited SMBIOS support
- /proc/cpuinfo fixes to align with the format used by arch/arm/
- A few non-critical fixes across the architecture
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJUhbSAAAoJELescNyEwWM07PQH/AolxqOJTTg8TKe2wvRC+DwY
R98bcECMwhXvwep1KhTBew7z7NRzXJvVVs+EePSpXWX2+KK2aWN4L50rAb9ow4ty
PZ5EFw564g3rUpc7cbqIrM/lasiYWuIWw/BL+wccOm3mWbZfokBB2t0tn/2rVv0K
5tf2VCLLxgiFJPLuYk61uH7Nshvv5uJ6ODwdXjbrH+Mfl6xsaiKv17ZrfP4D/M4o
hrLoXxVTuuWj3sy/lBJv8vbTbKbQ6BGl9JQhBZGZHeKOdvX7UnbKH4N5vWLUFZya
QYO92AK1xGolu8a9bEfzrmxn0zXeAHgFTnRwtDCekOvy0kTR9MRIqXASXKO3ZEU=
=rnFX
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here's the usual mixed bag of arm64 updates, also including some
related EFI changes (Acked by Matt) and the MMU gather range cleanup
(Acked by you).
Changes include:
- support for alternative instruction patching from Andre
- seccomp from Akashi
- some AArch32 instruction emulation, required by the Android folks
- optimisations for exception entry/exit code, cmpxchg, pcpu atomics
- mmu_gather range calculations moved into core code
- EFI updates from Ard, including long-awaited SMBIOS support
- /proc/cpuinfo fixes to align with the format used by arch/arm/
- a few non-critical fixes across the architecture"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (70 commits)
arm64: remove the unnecessary arm64_swiotlb_init()
arm64: add module support for alternatives fixups
arm64: perf: Prevent wraparound during overflow
arm64/include/asm: Fixed a warning about 'struct pt_regs'
arm64: Provide a namespace to NCAPS
arm64: bpf: lift restriction on last instruction
arm64: Implement support for read-mostly sections
arm64: compat: align cacheflush syscall with arch/arm
arm64: add seccomp support
arm64: add SIGSYS siginfo for compat task
arm64: add seccomp syscall for compat task
asm-generic: add generic seccomp.h for secure computing mode 1
arm64: ptrace: allow tracer to skip a system call
arm64: ptrace: add NT_ARM_SYSTEM_CALL regset
arm64: Move some head.text functions to executable section
arm64: jump labels: NOP out NOP -> NOP replacement
arm64: add support to dump the kernel page tables
arm64: Add FIX_HOLE to permanent fixed addresses
arm64: alternatives: fix pr_fmt string for consistency
arm64: vmlinux.lds.S: don't discard .exit.* sections at link-time
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhNLZAAoJEHm+PkMAQRiGAEcH/iclYDW7k2GKemMqboy+Ohmh
+ELbQothNhlGZlS1wWdD69LBiiXkkQ+ufVYFh/hC0oy0gUdfPMt5t+bOHy6cjn6w
9zOcACtpDKnqbOwRqXZjZgNmIabk7lRjbn7GK4GQqpIaW4oO0FWcT91FFhtGSPDa
tjtmGRqDmbNsqfzr18h0WPEpUZmT6MxIdv17AYDliPB1MaaRuAv1Kss05TJrXdfL
Oucv+C0uwnybD9UWAz6pLJ3H/HR9VJFdkaJ4Y0pbCHAuxdd1+swoTpicluHlsJA1
EkK5iWQRMpcmGwKvB0unCAQljNpaJiq4/Tlmmv8JlYpMlmIiVLT0D8BZx5q05QQ=
=oGNw
-----END PGP SIGNATURE-----
Merge tag 'v3.18' into drm-next
Linux 3.18
Backmerge Linus tree into -next as we had conflicts in i915/radeon/nouveau,
and everyone was solving them individually.
* tag 'v3.18': (57 commits)
Linux 3.18
watchdog: s3c2410_wdt: Fix the mask bit offset for Exynos7
uapi: fix to export linux/vm_sockets.h
i2c: cadence: Set the hardware time-out register to maximum value
i2c: davinci: generate STP always when NACK is received
ahci: disable MSI on SAMSUNG 0xa800 SSD
context_tracking: Restore previous state in schedule_user
slab: fix nodeid bounds check for non-contiguous node IDs
lib/genalloc.c: export devm_gen_pool_create() for modules
mm: fix anon_vma_clone() error treatment
mm: fix swapoff hang after page migration and fork
fat: fix oops on corrupted vfat fs
ipc/sem.c: fully initialize sem_array before making it visible
drivers/input/evdev.c: don't kfree() a vmalloc address
cxgb4: Fill in supported link mode for SFP modules
xen-netfront: Remove BUGs on paged skb data which crosses a page boundary
mm/vmpressure.c: fix race in vmpressure_work_fn()
mm: frontswap: invalidate expired data on a dup-store failure
mm: do not overwrite reserved pages counter at show_mem()
drm/radeon: kernel panic in drm_calc_vbltimestamp_from_scanoutpos with 3.18.0-rc6
...
Conflicts:
drivers/gpu/drm/i915/intel_display.c
drivers/gpu/drm/nouveau/nouveau_drm.c
drivers/gpu/drm/radeon/radeon_cs.c
I've been seeing swapoff hangs in recent testing: it's cycling around
trying unsuccessfully to find an mm for some remaining pages of swap.
I have been exercising swap and page migration more heavily recently,
and now notice a long-standing error in copy_one_pte(): it's trying to
add dst_mm to swapoff's mmlist when it finds a swap entry, but is doing
so even when it's a migration entry or an hwpoison entry.
Which wouldn't matter much, except it adds dst_mm next to src_mm,
assuming src_mm is already on the mmlist: which may not be so. Then if
pages are later swapped out from dst_mm, swapoff won't be able to find
where to replace them.
There's already a !non_swap_entry() test for stats: move that up before
the swap_duplicate() and the addition to mmlist.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: <stable@vger.kernel.org> [2.6.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On architectures with hardware broadcasting of TLB invalidation messages
, it makes sense to reduce the range of the mmu_gather structure when
unmapping page ranges based on the dirty address information passed to
tlb_remove_tlb_entry.
arm64 already does this by directly manipulating the start/end fields
of the gather structure, but this confuses the generic code which
does not expect these fields to change and can end up calculating
invalid, negative ranges when forcing a flush in zap_pte_range.
This patch moves the minimal range calculation out of the arm64 code
and into the generic implementation, simplifying zap_pte_range in the
process (which no longer needs to care about start/end, since they will
point to the appropriate ranges already). With the range being tracked
by core code, the need_flush flag is dropped in favour of checking that
the end of the range has actually been set.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Cc: Michal Simek <monstr@monstr.eu>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When unmapping a range of pages in zap_pte_range, the page being
unmapped is added to an mmu_gather_batch structure for asynchronous
freeing. If we run out of space in the batch structure before the range
has been completely unmapped, then we break out of the loop, force a
TLB flush and free the pages that we have batched so far. If there are
further pages to unmap, then we resume the loop where we left off.
Unfortunately, we forget to update addr when we break out of the loop,
which causes us to truncate the range being invalidated as the end
address is exclusive. When we re-enter the loop at the same address, the
page has already been freed and the pte_present test will fail, meaning
that we do not reconsider the address for invalidation.
This patch fixes the problem by incrementing addr by the PAGE_SIZE
before breaking out of the loop on batch failure.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new function stub to allow architectures to disable for
an mm_structthe backing of non-present, anonymous pages with
read-only empty zero pages.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
For VMAs that don't want write notifications, PTEs created for read faults
have their write bit set. If the read fault happens after VM_SOFTDIRTY is
cleared, then the PTE's softdirty bit will remain clear after subsequent
writes.
Here's a simple code snippet to demonstrate the bug:
char* m = mmap(NULL, getpagesize(), PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);
system("echo 4 > /proc/$PPID/clear_refs"); /* clear VM_SOFTDIRTY */
assert(*m == '\0'); /* new PTE allows write access */
assert(!soft_dirty(x));
*m = 'x'; /* should dirty the page */
assert(soft_dirty(x)); /* fails */
With this patch, write notifications are enabled when VM_SOFTDIRTY is
cleared. Furthermore, to avoid unnecessary faults, write notifications
are disabled when VM_SOFTDIRTY is set.
As a side effect of enabling and disabling write notifications with
care, this patch fixes a bug in mprotect where vm_page_prot bits set by
drivers were zapped on mprotect. An analogous bug was fixed in mmap by
commit c9d0bf2414 ("mm: uncached vma support with writenotify").
Signed-off-by: Peter Feiner <pfeiner@google.com>
Reported-by: Peter Feiner <pfeiner@google.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Jamie Liu <jamieliu@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes the same bug as b43790eedd ("mm: softdirty: don't forget to
save file map softdiry bit on unmap") and 9aed8614af ("mm/memory.c:
don't forget to set softdirty on file mapped fault") where the return
value of pte_*mksoft_dirty was being ignored.
To be sure that no other pte/pmd "mk" function return values were being
ignored, I annotated the functions in arch/x86/include/asm/pgtable.h
with __must_check and rebuilt.
The userspace effect of this bug is that the softdirty mark might be
lost if a file mapped pte get zapped.
Signed-off-by: Peter Feiner <pfeiner@google.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Jamie Liu <jamieliu@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJUIAZrAAoJEBvWZb6bTYbykA8P/jDmLw1wXWk3iQWQOidjr2X1
0sFwMvDmZOH3SDDOeI1dBFthut+QDxfHBFE4IsVLlcMrCtLT79BkJ2PopTrCcfBp
QkrqdzgUJpPufF5lsViOq3LOs2+8MUha75b80odcrqp45XFLmuFPwuOzokGNVAcF
0Hh4+c3+93FH24A+aav+EJjvWZx3pufHDrvjE13qclgGsszmjEngpTWTn+Kik0TT
U9mXhSp1OCWdXLz5cAgNr/cuVm6gU/MqLhtnQMnRIeBtcYnUKYY1a/XsD3l5FRWG
LJ8g+GEMW7hupR9RT/gR2+b7l096cmKqMPSFrYue/yMeHf49kcOmE1FasM1wnFir
WfGoJbX9AiV/od8RyCxGQsT9OHlVhtTY9pIRs6IAaQNDFc7W0ou2VMv/2UiZ8UXM
c4I+PGJWhV9doo9Q7qvPEa38tQKnjmGqfwEVyvjj/kdi4ecfs/YP5NKvOj+QqR4B
eiKhfXr6EF7TcAcrVHu/dTNOgizBQ6yX1QAQomedqivDx7c8KYPEFhZkcOFzF7X6
8qZMEqx+rHEMWUwf0aqQuG01yLA3jBzD31ihuwKS7V8a/8wk80KiVwvhpMt3LFbV
+MITe5+yoWBfbkrhwuOgHg2LNVEVsjRde/XJqAcqBhZwafy+JTTHHfyfGOUG9HSQ
sz8s9mlKUnCl4vME8N0i
=nnB5
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Two very simple bugfixes, affecting all supported architectures"
[ Two? There's three commits in here. Oh well, I guess Paolo didn't
count the preparatory symbol export ]
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: correct null pid check in kvm_vcpu_yield_to()
KVM: check for !is_zero_pfn() in kvm_is_mmio_pfn()
mm: export symbol dependencies of is_zero_pfn()
In order to make the static inline function is_zero_pfn() callable by
modules, export its symbol dependencies 'zero_pfn' and (for s390 and
mips) 'zero_page_mask'.
We need this for KVM, as CONFIG_KVM is a tristate for all supported
architectures except ARM and arm64, and testing a pfn whether it refers
to the zero page is required to correctly distinguish the zero page
from other special RAM ranges that may also have the PG_reserved bit
set, but need to be treated as MMIO memory.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sasha Levin has shown oopses on ffffea0003480048 and ffffea0003480008 at
mm/memory.c:1132, running Trinity on different 3.16-rc-next kernels:
where zap_pte_range() checks page->mapping to see if PageAnon(page).
Those addresses fit struct pages for pfns d2001 and d2000, and in each
dump a register or a stack slot showed d2001730 or d2000730: pte flags
0x730 are PCD ACCESSED PROTNONE SPECIAL IOMAP; and Sasha's e820 map has
a hole between cfffffff and 100000000, which would need special access.
Commit c46a7c817e ("x86: define _PAGE_NUMA by reusing software bits on
the PMD and PTE levels") has broken vm_normal_page(): a PROTNONE SPECIAL
pte no longer passes the pte_special() test, so zap_pte_range() goes on
to try to access a non-existent struct page.
Fix this by refining pte_special() (SPECIAL with PRESENT or PROTNONE) to
complement pte_numa() (SPECIAL with neither PRESENT nor PROTNONE). A
hint that this was a problem was that c46a7c817e added pte_numa() test
to vm_normal_page(), and moved its is_zero_pfn() test from slow to fast
path: This was papering over a pte_special() snag when the zero page was
encountered during zap. This patch reverts vm_normal_page() to how it
was before, relying on pte_special().
It still appears that this patch may be incomplete: aren't there other
places which need to be handling PROTNONE along with PRESENT? For
example, pte_mknuma() clears _PAGE_PRESENT and sets _PAGE_NUMA, but on a
PROT_NONE area, that would make it pte_special(). This is side-stepped
by the fact that NUMA hinting faults skipped PROT_NONE VMAs and there
are no grounds where a NUMA hinting fault on a PROT_NONE VMA would be
interesting.
Fixes: c46a7c817e ("x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels")
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: <stable@vger.kernel.org> [3.16]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core mm code will provide a default gate area based on
FIXADDR_USER_START and FIXADDR_USER_END if
!defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR).
This default is only useful for ia64. arm64, ppc, s390, sh, tile, 64-bit
UML, and x86_32 have their own code just to disable it. arm, 32-bit UML,
and x86_64 have gate areas, but they have their own implementations.
This gets rid of the default and moves the code into ia64.
This should save some code on architectures without a gate area: it's now
possible to inline the gate_area functions in the default case.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Nathan Lynch <nathan_lynch@mentor.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle]
Acked-by: Richard Weinberger <richard@nod.at> [for um]
Acked-by: Will Deacon <will.deacon@arm.com> [for arm64]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Nathan Lynch <Nathan_Lynch@mentor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.
Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages. However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:
- Charging, uncharging, page migration, and charge migration all need
to take a per-page bit spinlock as they could race with uncharging.
- Swap cache truncation happens during both swap-in and swap-out, and
possibly repeatedly before the page is actually freed. This means
that the memcg swapout code is called from many contexts that make
no sense and it has to figure out the direction from page state to
make sure memory and memory+swap are always correctly charged.
- On page migration, the old page might be unmapped but then reused,
so memcg code has to prevent untimely uncharging in that case.
Because this code - which should be a simple charge transfer - is so
special-cased, it is not reusable for replace_page_cache().
But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.
For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped. Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge. The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.
mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache(). However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration. Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.
Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.
Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration. Remove the very costly page_cgroup
lock and set pc->flags non-atomically.
[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages. This drastically simplifies the code and
reduces charging and uncharging overhead. The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.
Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
executing in the root memcg). Before:
15.36% cat [kernel.kallsyms] [k] copy_user_generic_string
13.31% cat [kernel.kallsyms] [k] memset
11.48% cat [kernel.kallsyms] [k] do_mpage_readpage
4.23% cat [kernel.kallsyms] [k] get_page_from_freelist
2.38% cat [kernel.kallsyms] [k] put_page
2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge
2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common
1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
After:
15.67% cat [kernel.kallsyms] [k] copy_user_generic_string
13.48% cat [kernel.kallsyms] [k] memset
11.42% cat [kernel.kallsyms] [k] do_mpage_readpage
3.98% cat [kernel.kallsyms] [k] get_page_from_freelist
2.46% cat [kernel.kallsyms] [k] put_page
2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk
1.30% cat [kernel.kallsyms] [k] kfree
As you can see, the memcg footprint has shrunk quite a bit.
text data bss dec hex filename
37970 9892 400 48262 bc86 mm/memcontrol.o.old
35239 9892 400 45531 b1db mm/memcontrol.o
This patch (of 4):
The memcg charge API charges pages before they are rmapped - i.e. have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on. Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.
Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:
mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
pages from the memcg if necessary.
mem_cgroup_commit_charge() commits the page to the charge once it
has a valid page->mapping and PageAnon() reliably tells the type.
mem_cgroup_cancel_charge() aborts the transaction.
This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.
As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again. Revive lru_cache_add_active_or_unevictable().
[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch changes confusing #ifdef use in __access_remote_vm into
merely ugly #ifdef use.
Addresses bug https://bugzilla.kernel.org/show_bug.cgi?id=81651
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fault_around_bytes can only be changed via debugfs. Let's mark it
read-mostly.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Things can go wrong if fault_around_bytes will be changed under
do_fault_around(): between fault_around_mask() and fault_around_pages().
Let's read fault_around_bytes only once during do_fault_around() and
calculate mask based on the reading.
Note: fault_around_bytes can only be updated via debug interface. Also
I've tried but was not able to trigger a bad behaviour without the
patch. So I would not consider this patch as urgent.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a comment describing the circumstances in which
__lock_page_or_retry() will or will not release the mmap_sem when
returning 0.
Add comments to lock_page_or_retry()'s callers (filemap_fault(),
do_swap_page()) noting the impact on VM_FAULT_RETRY returns.
Add comments on up the call tree, particularly replacing the false "We
return with mmap_sem still held" comments.
Signed-off-by: Paul Cassella <cassella@cray.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Otherwise we may not notice that pte was softdirty because
pte_mksoft_dirty helper _returns_ new pte but doesn't modify the
argument.
In case if page fault happend on dirty filemapping the newly created pte
may loose softdirty bit thus if a userspace program is tracking memory
changes with help of a memory tracker (CONFIG_MEM_SOFT_DIRTY) it might
miss modification of a memory page (which in worts case may lead to data
inconsistency).
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 71e3aac072 ("thp: transparent hugepage core") adds
copy_pte_range prototype to huge_mm.h. I'm not sure why (or if) this
function have been used outside of memory.c, but it currently isn't.
This patch makes copy_pte_range() static again.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ACCESS_ONCE() in handle_pte_fault() when getting the entry or
orig_pte upon which all subsequent decisions and pte_same() tests will
be made.
I have no evidence that its lack is responsible for the mm/filemap.c:202
BUG_ON(page_mapped(page)) in __delete_from_page_cache() found by
trinity, and I am not optimistic that it will fix it. But I have found
no other explanation, and ACCESS_ONCE() here will surely not hurt.
If gcc does re-access the pte before passing it down, then that would be
disastrous for correct page fault handling, and certainly could explain
the page_mapped() BUGs seen (concurrent fault causing page to be mapped
in a second time on top of itself: mapcount 2 for a single pte).
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_fault_around() expects fault_around_bytes rounded down to nearest page
order. Instead of calling rounddown_pow_of_two every time in
fault_around_pages()/fault_around_mask() we could do round down when user
changes fault_around_bytes via debugfs interface.
This also fixes bug when user set fault_around_bytes to 0. Result of
rounddown_pow_of_two(0) is not defined, therefore fault_around_bytes == 0
doesn't work without this patch.
Let's set fault_around_bytes to PAGE_SIZE if user sets to something less
than PAGE_SIZE
[akpm@linux-foundation.org: tweak code layout]
Fixes: a9b0f861("mm: nominate faultaround area in bytes rather than page order")
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ingo Korb reported that "repeated mapping of the same file on tmpfs
using remap_file_pages sometimes triggers a BUG at mm/filemap.c:202 when
the process exits".
He bisected the bug to d7c1755179 ("mm: implement ->map_pages for
shmem/tmpfs"), although the bug was actually added by commit
8c6e50b029 ("mm: introduce vm_ops->map_pages()").
The problem is caused by calling do_fault_around for a _non-linear_
fault. In this case pgoff is shifted and might become negative during
calculation.
Faulting around non-linear page-fault makes no sense and breaks the
logic in do_fault_around because pgoff is shifted.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reported-by: Ingo Korb <ingo.korb@tu-dortmund.de>
Tested-by: Ingo Korb <ingo.korb@tu-dortmund.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Ning Qu <quning@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some clarification on how faultaround works.
[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is evidencs that the faultaround feature is less relevant on
architectures with page size bigger then 4k. Which makes sense since page
fault overhead per byte of mapped area should be less there.
Let's rework the feature to specify faultaround area in bytes instead of
page order. It's 64 kilobytes for now.
The patch effectively disables faultaround on architectures with page size
>= 64k (like ppc64).
It's possible that some other size of faultaround area is relevant for a
platform. We can expose `fault_around_bytes' variable to arch-specific
code once such platforms will be found.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is
pretty much self-contained let's move it to separate file.
No other changes made.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
_PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting
faults on x86. Care is taken such that _PAGE_NUMA is used only in
situations where the VMA flags distinguish between NUMA hinting faults
and prot_none faults. This decision was x86-specific and conceptually
it is difficult requiring special casing to distinguish between PROTNONE
and NUMA ptes based on context.
Fundamentally, we only need the _PAGE_NUMA bit to tell the difference
between an entry that is really unmapped and a page that is protected
for NUMA hinting faults as if the PTE is not present then a fault will
be trapped.
Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset.
This patch shrinks the maximum possible swap size and uses the bit to
uniquely distinguish between NUMA hinting ptes and swap ptes.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Noonan <steven@uplinklabs.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Changing PTEs and PMDs to pte_numa & pmd_numa is done with the
mmap_sem held for reading, which means a pmd can be instantiated
and turned into a numa one while __handle_mm_fault() is examining
the value of old_pmd.
If that happens, __handle_mm_fault() should just return and let
the page fault retry, instead of throwing an oops. This is
handled by the test for pmd_trans_huge(*pmd) below.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Sunil Pandey <sunil.k.pandey@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-mm@kvack.org
Cc: lwoodman@redhat.com
Cc: dave.hansen@intel.com
Link: http://lkml.kernel.org/r/20140429153615.2d72098e@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The mmu-gather operation 'tlb_flush_mmu()' has done two things: the
actual tlb flush operation, and the batched freeing of the pages that
the TLB entries pointed at.
This splits the operation into separate phases, so that the forced
batched flushing done by zap_pte_range() can now do the actual TLB flush
while still holding the page table lock, but delay the batched freeing
of all the pages to after the lock has been dropped.
This in turn allows us to avoid a race condition between
set_page_dirty() (as called by zap_pte_range() when it finds a dirty
shared memory pte) and page_mkclean(): because we now flush all the
dirty page data from the TLB's while holding the pte lock,
page_mkclean() will be held up walking the (recently cleaned) page
tables until after the TLB entries have been flushed from all CPU's.
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fixup_user_fault() is used by the futex code when the direct user access
fails, and the futex code wants it to either map in the page in a usable
form or return an error. It relied on handle_mm_fault() to map the
page, and correctly checked the error return from that, but while that
does map the page, it doesn't actually guarantee that the page will be
mapped with sufficient permissions to be then accessed.
So do the appropriate tests of the vma access rights by hand.
[ Side note: arguably handle_mm_fault() could just do that itself, but
we have traditionally done it in the caller, because some callers -
notably get_user_pages() - have been able to access pages even when
they are mapped with PROT_NONE. Maybe we should re-visit that design
decision, but in the meantime this is the minimal patch. ]
Found by Dave Jones running his trinity tool.
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's only one caller of set_page_dirty_balance() and that will call it
with page_mkwrite == 0.
The page_mkwrite argument was unused since commit b827e496c8 "mm: close
page_mkwrite races".
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.
mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's new version of faultaround patchset. It took a while to tune it
and collect performance data.
First patch adds new callback ->map_pages to vm_operations_struct.
->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from
"pgoff" till "max_pgoff". ->map_pages() is called with page table
locked and must not block. If it's not possible to reach a page without
blocking, filesystem should skip it. Filesystem should use do_set_pte()
to setup page table entry. Pointer to entry associated with offset
"pgoff" is passed in "pte" field in vm_fault structure. Pointers to
entries for other offsets should be calculated relative to "pte".
Currently VM use ->map_pages only on read page fault path. We try to
map FAULT_AROUND_PAGES a time. FAULT_AROUND_PAGES is 16 for now.
Performance data for different FAULT_AROUND_ORDER is below.
TODO:
- implement ->map_pages() for shmem/tmpfs;
- modify get_user_pages() to be able to use ->map_pages() and implement
mmap(MAP_POPULATE|MAP_NONBLOCK) on top.
=========================================================================
Tested on 4-socket machine (120 threads) with 128GiB of RAM.
Few real-world workloads. The sweet spot for FAULT_AROUND_ORDER here is
somewhere between 3 and 5. Let's say 4 :)
Linux build (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 283,301,572 247,151,987 212,215,789 204,772,882 199,568,944 194,703,779 193,381,485
time, seconds 151.227629483 153.920996480 151.356125472 150.863792049 150.879207877 151.150764954 151.450962358
Linux rebuild (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 5,396,854 4,148,444 2,855,286 2,577,282 2,361,957 2,169,573 2,112,643
time, seconds 27.404543757 27.559725591 27.030057426 26.855045126 26.678618635 26.974523490 26.761320095
Git test suite (make -j60 test)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 129,591,823 99,200,751 66,106,718 57,606,410 51,510,808 45,776,813 44,085,515
time, seconds 66.087215026 64.784546905 64.401156567 65.282708668 66.034016829 66.793780811 67.237810413
Two synthetic tests: access every word in file in sequential/random order.
It doesn't improve much after FAULT_AROUND_ORDER == 4.
Sequential access 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 4,195,437 2,098,275 525,068 262,251 131,170 32,856 8,282
time, seconds 7.250461742 6.461711074 5.493859139 5.488488147 5.707213983 5.898510832 5.109232856
8 threads
minor-faults 33,557,540 16,892,728 4,515,848 2,366,999 1,423,382 442,732 142,339
time, seconds 16.649304881 9.312555263 6.612490639 6.394316732 6.669827501 6.75078944 6.371900528
32 threads
minor-faults 134,228,222 67,526,810 17,725,386 9,716,537 4,763,731 1,668,921 537,200
time, seconds 49.164430543 29.712060103 12.938649729 10.175151004 11.840094583 9.594081325 9.928461797
60 threads
minor-faults 251,687,988 126,146,952 32,919,406 18,208,804 10,458,947 2,733,907 928,217
time, seconds 86.260656897 49.626551828 22.335007632 17.608243696 16.523119035 16.339489186 16.326390902
120 threads
minor-faults 503,352,863 252,939,677 67,039,168 35,191,827 19,170,091 4,688,357 1,471,862
time, seconds 124.589206333 79.757867787 39.508707872 32.167281632 29.972989292 28.729834575 28.042251622
Random access 1GiB file
1 thread
minor-faults 262,636 132,743 34,369 17,299 8,527 3,451 1,222
time, seconds 15.351890914 16.613802482 16.569227308 15.179220992 16.557356122 16.578247824 15.365266994
8 threads
minor-faults 2,098,948 1,061,871 273,690 154,501 87,110 25,663 7,384
time, seconds 15.040026343 15.096933500 14.474757288 14.289129964 14.411537468 14.296316837 14.395635804
32 threads
minor-faults 8,390,734 4,231,023 1,054,432 528,847 269,242 97,746 26,881
time, seconds 20.430433109 21.585235358 22.115062928 14.872878951 14.880856305 14.883370649 14.821261690
60 threads
minor-faults 15,733,258 7,892,809 1,973,393 988,266 594,789 164,994 51,691
time, seconds 26.577302548 25.692397770 18.728863715 20.153026398 21.619101933 17.745086260 17.613215273
120 threads
minor-faults 31,471,111 15,816,616 3,959,209 1,978,685 1,008,299 264,635 96,010
time, seconds 41.835322703 40.459786095 36.085306105 35.313894834 35.814445675 36.552633793 34.289210594
Touch only one page in page table in 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 8,372 8,324 8,270 8,260 8,249 8,239 8,237
time, seconds 0.039892712 0.045369149 0.051846126 0.063681685 0.079095975 0.17652406 0.541213386
8 threads
minor-faults 65,731 65,681 65,628 65,620 65,608 65,599 65,596
time, seconds 0.124159196 0.488600638 0.156854426 0.191901957 0.242631486 0.543569456 1.677303984
32 threads
minor-faults 262,388 262,341 262,285 262,276 262,266 262,257 263,183
time, seconds 0.452421421 0.488600638 0.565020946 0.648229739 0.789850823 1.651584361 5.000361559
60 threads
minor-faults 491,822 491,792 491,723 491,711 491,701 491,691 491,825
time, seconds 0.763288616 0.869620515 0.980727360 1.161732354 1.466915814 3.04041448 9.308612938
120 threads
minor-faults 983,466 983,655 983,366 983,372 983,363 984,083 984,164
time, seconds 1.595846553 1.667902182 2.008959376 2.425380942 2.941368804 5.977807890 18.401846125
This patch (of 2):
Introduce new vm_ops callback ->map_pages() and uses it for mapping easy
accessible pages around fault address.
On read page fault, if filesystem provides ->map_pages(), we try to map up
to FAULT_AROUND_PAGES pages around page fault address in hope to reduce
number of minor page faults.
We call ->map_pages first and use ->fault() as fallback if page by the
offset is not ready to be mapped (cold page cache or something).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The described issue now occurs inside mmap_region(). And unfortunately
is still valid.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_user_pages(write=1, force=1) has always had odd behaviour on write-
protected shared mappings: although it demands FMODE_WRITE-access to the
underlying object (do_mmap_pgoff sets neither VM_SHARED nor VM_MAYWRITE
without that), it ends up with do_wp_page substituting private anonymous
Copied-On-Write pages for the shared file pages in the area.
That was long ago intentional, as a safety measure to prevent ptrace
setting a breakpoint (or POKETEXT or POKEDATA) from inadvertently
corrupting the underlying executable. Yet exec and dynamic loaders open
the file read-only, and use MAP_PRIVATE rather than MAP_SHARED.
The traditional odd behaviour still causes surprises and bugs in mm, and
is probably not what any caller wants - even the comment on the flag
says "You do not want this" (although it's undoubtedly necessary for
overriding userspace protections in some contexts, and good when !write).
Let's stop doing that. But it would be dangerous to remove the long-
standing safety at this stage, so just make get_user_pages(write,force)
fail with EFAULT when applied to a write-protected shared area.
Infiniband may in future want to force write through to underlying
object: we can add another FOLL_flag later to enable that if required.
Odd though the old behaviour was, there is no doubt that we may turn out
to break userspace with this change, and have to revert it quickly.
Issue a WARN_ON_ONCE to help debug the changed case (easily triggered by
userspace, so only once to prevent spamming the logs); and delay a few
associated cleanups until this change is proved.
get_user_pages callers who might see trouble from this change:
ptrace poking, or writing to /proc/<pid>/mem
drivers/infiniband/
drivers/media/v4l2-core/
drivers/gpu/drm/exynos/exynos_drm_gem.c
drivers/staging/tidspbridge/core/tiomap3430.c
if they ever apply get_user_pages to write-protected shared mappings
of an object which was opened for writing.
I went to apply the same change to mm/nommu.c, but retreated. NOMMU has
no place for COW, and its VM_flags conventions are not the same: I'd be
more likely to screw up NOMMU than make an improvement there.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two functions which need to call vm_ops->page_mkwrite():
do_shared_fault() and do_wp_page(). We can consolidate preparation
code.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce do_shared_fault(). The function does what do_fault() does for
write faults to shared mappings
Unlike do_fault(), do_shared_fault() is relatively clean and
straight-forward.
Old do_fault() is not needed anymore. Let it die.
[lliubbo@gmail.com: fix NULL pointer dereference]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce do_cow_fault(). The function does what do_fault() does for
write page faults to private mappings.
Unlike do_fault(), do_read_fault() is relatively clean and
straight-forward.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce do_read_fault(). The function does what do_fault() does for
read page faults.
Unlike do_fault(), do_read_fault() is pretty clean and straightforward.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extract code to vm_ops->do_fault() and basic error handling to separate
function. The code will be reused.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current __do_fault() is awful and unmaintainable. These patches try to
sort it out by split __do_fault() into three destinct codepaths:
- to handle read page fault;
- to handle write page fault to private mappings;
- to handle write page fault to shared mappings;
I also found page refcount leak in PageHWPoison() path of __do_fault().
This patch (of 7):
do_fault() is unused: no reason for underscores.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mark functions as static in memory.c because they are not used outside
this file.
This eliminates the following warnings in mm/memory.c:
mm/memory.c:3530:5: warning: no previous prototype for `numa_migrate_prep' [-Wmissing-prototypes]
mm/memory.c:3545:5: warning: no previous prototype for `do_numa_page' [-Wmissing-prototypes]
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Masayoshi Mizuma reported a bug with the hang of an application under
the memcg limit. It happens on write-protection fault to huge zero page
If we successfully allocate a huge page to replace zero page but hit the
memcg limit we need to split the zero page with split_huge_page_pmd()
and fallback to small pages.
The other part of the problem is that VM_FAULT_OOM has special meaning
in do_huge_pmd_wp_page() context. __handle_mm_fault() expects the page
to be split if it sees VM_FAULT_OOM and it will will retry page fault
handling. This causes an infinite loop if the page was not split.
do_huge_pmd_wp_zero_page_fallback() can return VM_FAULT_OOM if it failed
to allocate one small page, so fallback to small pages will not help.
The solution for this part is to replace VM_FAULT_OOM with
VM_FAULT_FALLBACK is fallback required.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bad_page() is cool in that it prints out a bunch of data about the page.
But, I can never remember which page flags are good and which are bad,
or whether ->index or ->mapping is required to be NULL.
This patch allows bad/dump_page() callers to specify a string about why
they are dumping the page and adds explanation strings to a number of
places. It also adds a 'bad_flags' argument to bad_page(), which it
then dumps out separately from the flags which are actually set.
This way, the messages will show specifically why the page was bad,
*specifically* which flags it is complaining about, if it was a page
flag combination which was the problem.
[akpm@linux-foundation.org: switch to pr_alert]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
To make sure that it really works this time, some numbers from my test
machine (just booted, no load):
Before:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
kmalloc-96 31987 32190 128 30 1 : tunables 120 60 8 : slabdata 1073 1073 92
After:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
page->ptl 27516 28143 72 53 1 : tunables 120 60 8 : slabdata 531 531 9
kmalloc-96 3853 5280 128 30 1 : tunables 120 60 8 : slabdata 176 176 0
Note that the patch is useful not only for debug case, but also for
PREEMPT_RT, where spinlock_t is always bloated.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Record actively mapped pages and provide an api for asserting a given
page is dma inactive before execution proceeds. Placing
debug_dma_assert_idle() in cow_user_page() flagged the violation of the
dma-api in the NET_DMA implementation (see commit 7787380336 "net_dma:
mark broken").
The implementation includes the capability to count, in a limited way,
repeat mappings of the same page that occur without an intervening
unmap. This 'overlap' counter is limited to the few bits of tag space
in a radix tree. This mechanism is added to mitigate false negative
cases where, for example, a page is dma mapped twice and
debug_dma_assert_idle() is called after the page is un-mapped once.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: James Bottomley <JBottomley@Parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add calls to the new mmu_notifier_invalidate_range() function to all
places in the VMM that need it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Commit 597d795a2a ('mm: do not allocate page->ptl dynamically, if
spinlock_t fits to long') restructures some allocators that are compiled
even if USE_SPLIT_PTLOCKS arn't used. It results in compilation
failure:
mm/memory.c:4282:6: error: 'struct page' has no member named 'ptl'
mm/memory.c:4288:12: error: 'struct page' has no member named 'ptl'
Add in the missing ifdef.
Fixes: 597d795a2a ('mm: do not allocate page->ptl dynamically, if spinlock_t fits to long')
Signed-off-by: Olof Johansson <olof@lixom.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In struct page we have enough space to fit long-size page->ptl there,
but we use dynamically-allocated page->ptl if size(spinlock_t) is larger
than sizeof(int).
It hurts 64-bit architectures with CONFIG_GENERIC_LOCKBREAK, where
sizeof(spinlock_t) == 8, but it easily fits into struct page.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit ea1e7ed337.
Al points out that while the commit *does* actually create a separate
slab for the page->ptl allocation, that slab is never actually used, and
the code continues to use kmalloc/kfree.
Damien Wyart points out that the original patch did have the conversion
to use kmem_cache_alloc/free, so it got lost somewhere on its way to me.
Revert the half-arsed attempt that didn't do anything. If we really do
want the special slab (remember: this is all relevant just for debug
builds, so it's not necessarily all that critical) we might as well redo
the patch fully.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use kernel/bounds.c to convert build-time spinlock_t size check into a
preprocessor symbol and apply that to properly separate the page::ptl
situation.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If split page table lock is in use, we embed the lock into struct page
of table's page. We have to disable split lock, if spinlock_t is too
big be to be embedded, like when DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC
enabled.
This patch add support for dynamic allocation of split page table lock
if we can't embed it to struct page.
page->ptl is unsigned long now and we use it as spinlock_t if
sizeof(spinlock_t) <= sizeof(long), otherwise it's pointer to spinlock_t.
The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
pgtable_pmd_page_ctor() for PMD table. All other helpers converted to
support dynamically allocated page->ptl.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>