Commit Graph

65 Commits

Author SHA1 Message Date
Yinghai Lu f6dd5c3106 dmar: fix using early fixmap mapping for DMAR table parsing
Very early detection of the DMAR tables will setup fixmap mapping. For
parsing these tables later (while enabling dma and/or interrupt remapping),
early fixmap mapping shouldn't be used. Fix it by calling table detection
routines again, which will call generic apci_get_table() for setting up
the correct mapping.

Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-16 16:53:04 +02:00
Kay, Allen M 3871794642 VT-d: Changes to support KVM
This patch extends the VT-d driver to support KVM

[Ben: fixed memory pinning]
[avi: move dma_remapping.h as well]

Signed-off-by: Kay, Allen M <allen.m.kay@intel.com>
Signed-off-by: Weidong Han <weidong.han@intel.com>
Signed-off-by: Ben-Ami Yassour <benami@il.ibm.com>
Signed-off-by: Amit Shah <amit.shah@qumranet.com>
Acked-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-10-15 14:24:08 +02:00
Suresh Siddha 1cb11583a6 x64, x2apic/intr-remap: disable DMA-remapping if Interrupt-remapping is detected (temporary quirk)
Interrupt-remapping enables queued invalidation. And once queued invalidation
is enabled, IOTLB invalidation also needs to use the queued invalidation
mechanism and the register based IOTLB invalidation doesn't work.

For now, Support for IOTLB invalidation using queued invalidation is
missing. Meanwhile, disable DMA-remapping, if Interrupt-remapping
support is detected.

For the meanwhile, if someone wants to really enable DMA-remapping, they
can use nox2apic, which will disable interrupt-remapping and as such
doesn't enable queued invalidation.

And given that none of the release platforms support intr-remapping yet,
we should be ok for this temporary hack.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:45:00 +02:00
Suresh Siddha 2ae2101069 x64, x2apic/intr-remap: Interrupt remapping infrastructure
Interrupt remapping (part of Intel Virtualization Tech for directed I/O)
infrastructure.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:53 +02:00
Suresh Siddha fe962e90cb x64, x2apic/intr-remap: Queued invalidation infrastructure (part of VT-d)
Queued invalidation (part of Intel Virtualization Technology for
Directed I/O architecture) infrastructure.

This will be used for invalidating the interrupt entry cache in the
case of Interrupt-remapping and IOTLB invalidation in the case
of DMA-remapping.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:52 +02:00
Suresh Siddha ad3ad3f6a2 x64, x2apic/intr-remap: parse ioapic scope under vt-d structures
Parse the vt-d device scope structures to find the mapping between IO-APICs
and the interrupt remapping hardware units.

This will be used later for enabling Interrupt-remapping for IOAPIC devices.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:50 +02:00
Suresh Siddha 2d6b5f85bb x64, x2apic/intr-remap: Fix the need for RMRR in the DMA-remapping detection
Presence of RMRR structures is not compulsory for enabling DMA-remapping.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Yong Y Wang <yong.y.wang@intel.com>
Cc: Yong Y Wang <yong.y.wang@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:50 +02:00
Suresh Siddha aaa9d1dd63 x64, x2apic/intr-remap: use CONFIG_DMAR for DMA-remapping specific code
DMA remapping specific code covered with CONFIG_DMAR in
the generic code which will also be used later for enabling Interrupt-remapping.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:49 +02:00
Suresh Siddha 1886e8a90a x64, x2apic/intr-remap: code re-structuring, to be used by both DMA and Interrupt remapping
Allocate the iommu during the parse of DMA remapping hardware
definition structures. And also, introduce routines for device
scope initialization which will be explicitly called during
dma-remapping initialization.

These will be used for enabling interrupt remapping separately from the
existing DMA-remapping enabling sequence.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:48 +02:00
Suresh Siddha c42d9f3244 x64, x2apic/intr-remap: fix the need for sequential array allocation of iommus
Clean up the intel-iommu code related to deferred iommu flush logic. There is
no need to allocate all the iommu's as a sequential array.

This will be used later in the interrupt-remapping patch series to
allocate iommu much early and individually for each device remapping
hardware unit.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:47 +02:00
Suresh Siddha e61d98d8da x64, x2apic/intr-remap: Intel vt-d, IOMMU code reorganization
code reorganization of the generic Intel vt-d parsing related routines and linux
iommu routines specific to Intel vt-d.

drivers/pci/dmar.c	now contains the generic vt-d parsing related routines
drivers/pci/intel_iommu.c contains the iommu routines specific to vt-d

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: akpm@linux-foundation.org
Cc: arjan@linux.intel.com
Cc: andi@firstfloor.org
Cc: ebiederm@xmission.com
Cc: jbarnes@virtuousgeek.org
Cc: steiner@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-12 08:44:46 +02:00
mark gross 98bcef56ca copyright owner and author clean up for intel iommu and related files
The following is a clean up and correction of the copyright holding
entities for the files associated with the intel iommu code.

Signed-off-by: <mgross@linux.intel.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 17:12:14 -08:00
David Miller f661197e0a Genericizing iova.[ch]
I would like to potentially move the sparc64 IOMMU code over to using
the nice new drivers/pci/iova.[ch] code for free area management..

In order to do that we have to detach the IOMMU page size assumptions
which only really need to exist in the intel-iommu.[ch] code.

This patch attempts to implement that.

[akpm@linux-foundation.org: build fix]
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:01 -08:00
Fenghua Yu 093f87d279 PCI: More Sanity checks for DMAR
Add and changes a few sanity checks in dmar.c.

1.  The haw field in ACPI DMAR table in VT-d spec doesn't describe the
   range of haw.  But since DMA page size is 4KB in DMA remapping, haw
   should be at least 4KB.  The current VT-d code in dmar.c returns failure
   when haw==0.  This sanity check is not accurate and execution can pass
   when haw is less than one page size 4KB.  This patch changes the haw
   sanity check to validate if haw is less than 4KB.

2. Add dmar_rmrr_units verification.

3. Add parse_dmar_table() verification.

[akpm@linux-foundation.org: coding-style fixes]

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: mark gross <mgross@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-02-01 15:04:21 -08:00
Keshavamurthy, Anil S 10e5247f40 Intel IOMMU: DMAR detection and parsing logic
This patch supports the upcomming Intel IOMMU hardware a.k.a.  Intel(R)
Virtualization Technology for Directed I/O Architecture and the hardware spec
for the same can be found here
http://www.intel.com/technology/virtualization/index.htm

FAQ! (questions from akpm, answers from ak)

> So...  what's all this code for?
>
> I assume that the intent here is to speed things up under Xen, etc?

Yes in some cases, but not this code.  That would be the Xen version of this
code that could potentially assign whole devices to guests.  I expect this to
be only useful in some special cases though because most hardware is not
virtualizable and you typically want an own instance for each guest.

Ok at some point KVM might implement this too; i likely would use this code
for this.

> Do we
> have any benchmark results to help us to decide whether a merge would be
> justified?

The main advantage for doing it in the normal kernel is not performance, but
more safety.  Broken devices won't be able to corrupt memory by doing random
DMA.

Unfortunately that doesn't work for graphics yet, for that need user space
interfaces for the X server are needed.

There are some potential performance benefits too:

- When you have a device that cannot address the complete address range an
  IOMMU can remap its memory instead of bounce buffering.  Remapping is likely
  cheaper than copying.

- The IOMMU can merge sg lists into a single virtual block.  This could
  potentially speed up SG IO when the device is slow walking SG lists.  [I
  long ago benchmarked 5% on some block benchmark with an old MPT Fusion; but
  it probably depends a lot on the HBA]

And you get better driver debugging because unexpected memory accesses from
the devices will cause a trappable event.

>
> Does it slow anything down?

It adds more overhead to each IO so yes.

This patch:

Add support for early detection and parsing of DMAR's (DMA Remapping) reported
to OS via ACPI tables.

DMA remapping(DMAR) devices support enables independent address translations
for Direct Memory Access(DMA) from Devices.  These DMA remapping devices are
reported via ACPI tables and includes pci device scope covered by these DMA
remapping device.

For detailed info on the specification of "Intel(R) Virtualization Technology
for Directed I/O Architecture" please see
http://www.intel.com/technology/virtualization/index.htm

Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Greg KH <greg@kroah.com>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22 08:13:18 -07:00