Even though it is documented how to specifiy efi parameters, it is
possible to cause a kernel panic due to a dereference of a NULL pointer when
parsing such parameters if "efi" alone is given:
PANIC: early exception 0e rip 10:ffffffff812fb361 error 0 cr2 0
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.2.0-rc1+ #450
[ 0.000000] ffffffff81fe20a9 ffffffff81e03d50 ffffffff8184bb0f 00000000000003f8
[ 0.000000] 0000000000000000 ffffffff81e03e08 ffffffff81f371a1 64656c62616e6520
[ 0.000000] 0000000000000069 000000000000005f 0000000000000000 0000000000000000
[ 0.000000] Call Trace:
[ 0.000000] [<ffffffff8184bb0f>] dump_stack+0x45/0x57
[ 0.000000] [<ffffffff81f371a1>] early_idt_handler_common+0x81/0xae
[ 0.000000] [<ffffffff812fb361>] ? parse_option_str+0x11/0x90
[ 0.000000] [<ffffffff81f4dd69>] arch_parse_efi_cmdline+0x15/0x42
[ 0.000000] [<ffffffff81f376e1>] do_early_param+0x50/0x8a
[ 0.000000] [<ffffffff8106b1b3>] parse_args+0x1e3/0x400
[ 0.000000] [<ffffffff81f37a43>] parse_early_options+0x24/0x28
[ 0.000000] [<ffffffff81f37691>] ? loglevel+0x31/0x31
[ 0.000000] [<ffffffff81f37a78>] parse_early_param+0x31/0x3d
[ 0.000000] [<ffffffff81f3ae98>] setup_arch+0x2de/0xc08
[ 0.000000] [<ffffffff8109629a>] ? vprintk_default+0x1a/0x20
[ 0.000000] [<ffffffff81f37b20>] start_kernel+0x90/0x423
[ 0.000000] [<ffffffff81f37495>] x86_64_start_reservations+0x2a/0x2c
[ 0.000000] [<ffffffff81f37582>] x86_64_start_kernel+0xeb/0xef
[ 0.000000] RIP 0xffffffff81ba2efc
This panic is not reproducible with "efi=" as this will result in a non-NULL
zero-length string.
Thus, verify that the pointer to the parameter string is not NULL. This is
consistent with other parameter-parsing functions which check for NULL pointers.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO5XAAoJEOvOhAQsB9HWe4cQAJcsmSXIDN2O6oxvgH8Wilof
EIEMvT13uwBdsjQdYUY6A6B3iUV9wzEEgoosg/JRgpz5/b1FTDMIO4arUPD3Lcak
5bmyVO2qAT+yaLAWSgn6I8DMplXrKiEuK+TkH/mW3p9TdvElLdG3Vg6UI407hSWv
W0QbVwkNtv8XmzshV9F2YdmflT8j1PgYxIu/tEkVOWn37DNW+Fp2OVBrdTIYp3AJ
X6bYZPEcQDCrWWW/s2GmIDrNgryiebasns+CAgGY21262jAYaRcFOJmR47AsTqW7
DSZXIlLc/gJca++hfxqV15RZ4NRHxrebCypTsPtZUV7ZiYHI726eeUZzxsp/9itu
mvhmi+aQUTTUP3dDhiv05f4syAKEb4zslT6SLwcna6oi09M97HfCeQsHqhcFq/MG
KnS2JJoJQToQtJvMUXMQzp5hyHjNlOclIvCxEiL32EZU54PeJOKasy/mptNGEctk
TxACWvoXBQglRaVN+1wIjjr0BaHJSuJa9CUnIfM4WZdSHiMQMx00XLTkZcTnSM6R
12pE54vVolrXswGPJhy4W/Sf1yPSW1tkWSVBbkKLyCIrlAWJtu68rXhvwhG/nz6E
3g6QrDEQGlk6bzUH4CJCEqXLPRN1bNS0XjdkEFh60Lury3Ns5yHKZXPW5vCQ5csr
FQNUyBs595CWbJNfbn1n
=0BDx
-----END PGP SIGNATURE-----
Merge tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part one from Paul Gortmaker:
"Replace module_init with equivalent device_initcall in non modules.
This series of commits converts non-modular code that is using the
module_init() call to hook itself into the system to instead use
device_initcall().
The conversion is a runtime no-op, since module_init actually becomes
__initcall in the non-modular case, and that in turn gets mapped onto
device_initcall. A couple files show a larger negative diffstat,
representing ones that had a module_exit function that we remove here
vs previously relying on the linker to dispose of it.
We make this conversion now, so that we can relocate module_init from
init.h into module.h in the future.
The files changed here are just limited to those that would otherwise
have to add module.h to obviously non-modular code, in order to avoid
a compile fail, as testing has shown"
* tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
MIPS: don't use module_init in non-modular cobalt/mtd.c file
drivers/leds: don't use module_init in non-modular leds-cobalt-raq.c
cris: don't use module_init for non-modular core eeprom.c code
tty/metag_da: Avoid module_init/module_exit in non-modular code
drivers/clk: don't use module_init in clk-nomadik.c which is non-modular
xtensa: don't use module_init for non-modular core network.c code
sh: don't use module_init in non-modular psw.c code
mn10300: don't use module_init in non-modular flash.c code
parisc64: don't use module_init for non-modular core perf code
parisc: don't use module_init for non-modular core pdc_cons code
cris: don't use module_init for non-modular core intmem.c code
ia64: don't use module_init in non-modular sim/simscsi.c code
ia64: don't use module_init for non-modular core kernel/mca.c code
arm: don't use module_init in non-modular mach-vexpress/spc.c code
powerpc: don't use module_init in non-modular 83xx suspend code
powerpc: use device_initcall for registering rtc devices
x86: don't use module_init in non-modular devicetree.c code
x86: don't use module_init in non-modular intel_mid_vrtc.c
Main excitement here is Peter Zijlstra's lockless rbtree optimization to
speed module address lookup. He found some abusers of the module lock
doing that too.
A little bit of parameter work here too; including Dan Streetman's breaking
up the big param mutex so writing a parameter can load another module (yeah,
really). Unfortunately that broke the usual suspects, !CONFIG_MODULES and
!CONFIG_SYSFS, so those fixes were appended too.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
tLdh/a9GiCitqS0bT7GE
=tWPQ
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Main excitement here is Peter Zijlstra's lockless rbtree optimization
to speed module address lookup. He found some abusers of the module
lock doing that too.
A little bit of parameter work here too; including Dan Streetman's
breaking up the big param mutex so writing a parameter can load
another module (yeah, really). Unfortunately that broke the usual
suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
modules: only use mod->param_lock if CONFIG_MODULES
param: fix module param locks when !CONFIG_SYSFS.
rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
module: add per-module param_lock
module: make perm const
params: suppress unused variable error, warn once just in case code changes.
modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
kernel/module.c: avoid ifdefs for sig_enforce declaration
kernel/workqueue.c: remove ifdefs over wq_power_efficient
kernel/params.c: export param_ops_bool_enable_only
kernel/params.c: generalize bool_enable_only
kernel/module.c: use generic module param operaters for sig_enforce
kernel/params: constify struct kernel_param_ops uses
sysfs: tightened sysfs permission checks
module: Rework module_addr_{min,max}
module: Use __module_address() for module_address_lookup()
module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
module: Optimize __module_address() using a latched RB-tree
rbtree: Implement generic latch_tree
seqlock: Introduce raw_read_seqcount_latch()
...
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
UEFI GetMemoryMap() uses a new attribute bit to mark mirrored memory
address ranges. See UEFI 2.5 spec pages 157-158:
http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf
On EFI enabled systems scan the memory map and tell memblock about any
mirrored ranges.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
The X86_INTEL_MID option is bool, and hence this code is either
present or absent. It will never be modular, so using
module_init as an alias for __initcall is rather misleading.
Fix this up now, so that we can relocate module_init from
init.h into module.h in the future. If we don't do this, we'd
have to add module.h to obviously non-modular code, and that
would be a worse thing.
Note that direct use of __initcall is discouraged, vs. one
of the priority categorized subgroups. As __initcall gets
mapped onto device_initcall, our use of device_initcall
directly in this change means that the runtime impact is
zero -- it will remain at level 6 in initcall ordering.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Most code already uses consts for the struct kernel_param_ops,
sweep the kernel for the last offending stragglers. Other than
include/linux/moduleparam.h and kernel/params.c all other changes
were generated with the following Coccinelle SmPL patch. Merge
conflicts between trees can be handled with Coccinelle.
In the future git could get Coccinelle merge support to deal with
patch --> fail --> grammar --> Coccinelle --> new patch conflicts
automatically for us on patches where the grammar is available and
the patch is of high confidence. Consider this a feature request.
Test compiled on x86_64 against:
* allnoconfig
* allmodconfig
* allyesconfig
@ const_found @
identifier ops;
@@
const struct kernel_param_ops ops = {
};
@ const_not_found depends on !const_found @
identifier ops;
@@
-struct kernel_param_ops ops = {
+const struct kernel_param_ops ops = {
};
Generated-by: Coccinelle SmPL
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Junio C Hamano <gitster@pobox.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: cocci@systeme.lip6.fr
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
ACPI 6.0 formalizes e820-type-7 and efi-type-14 as persistent memory.
Mark it "reserved" and allow it to be claimed by a persistent memory
device driver.
This definition is in addition to the Linux kernel's existing type-12
definition that was recently added in support of shipping platforms with
NVDIMM support that predate ACPI 6.0 (which now classifies type-12 as
OEM reserved).
Note, /proc/iomem can be consulted for differentiating legacy
"Persistent Memory (legacy)" E820_PRAM vs standard "Persistent Memory"
E820_PMEM.
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The patch adds a debug driver, which dumps the power states
of all the North complex (NC) devices. This debug interface is
useful to figure out the devices, which blocks the S0ix
transitions on the platform. This is extremely useful during
enabling PM on customer platforms and derivatives.
This submission is based on the submission from Mahesh Kumar P:
https://lkml.org/lkml/2014/11/5/367
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Mahesh Kumar P <mahesh.kumar.p@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pebolle@tiscali.nl
Link: http://lkml.kernel.org/r/1430939754-6900-2-git-send-email-srinivas.pandruvada@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Nothing changes those ops. Make the initializers readable while at it.
Reported-by: Krzysztof Kozlowski <k.kozlowski.k@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add sysfs files for the EFI System Resource Table (ESRT) under
/sys/firmware/efi/esrt and for each EFI System Resource Entry under
entries/ as a subdir.
The EFI System Resource Table (ESRT) provides a read-only catalog of
system components for which the system accepts firmware upgrades via
UEFI's "Capsule Update" feature. This module allows userland utilities
to evaluate what firmware updates can be applied to this system, and
potentially arrange for those updates to occur.
The ESRT is described as part of the UEFI specification, in version 2.5
which should be available from http://uefi.org/specifications in early
2015. If you're a member of the UEFI Forum, information about its
addition to the standard is available as UEFI Mantis 1090.
For some hardware platforms, additional restrictions may be found at
http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx ,
and additional documentation may be found at
http://download.microsoft.com/download/5/F/5/5F5D16CD-2530-4289-8019-94C6A20BED3C/windows-uefi-firmware-update-platform.docx
.
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Now we have dedicated asm/irqdomain.h, so move irqdomain specific
code into it.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/1428978610-28986-33-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have 3 identical copies of the ioapic domain ops for acpi, mpparse,
and sfi. Have a global one in the io_apic code and be done with it.
To avoid include hell in io_apic.h, create a private irqdomain header
and include the generic irqdomain header from there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: sfi-devel@simplefirmware.org
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh@kernel.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1428978610-28986-32-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Convert IOAPIC driver to support and use hierarchical irqdomain
interfaces. It's a little big, but would break bisecting if we split
it into multiple patches.
Fold in a patch from Andy Shevchenko <andriy.shevchenko@linux.intel.com>
to make it bisectable.
http://lkml.org/lkml/2014/12/10/622
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: sfi-devel@simplefirmware.org
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Link: http://lkml.kernel.org/r/1428905519-23704-38-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Introduce helper functions to manipulate struct irq_alloc_info for
IOAPIC. Also add an extra parameter to IOAPIC interfaces to prepare
for hierarchical irqdomain. Function mp_set_gsi_attr() will be removed
once we have switched to hierarchical irqdomains.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Link: http://lkml.kernel.org/r/1428905519-23704-33-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
MID has no PIC, but depending on the platform it requires the
abt_timer, which is connected to irq0. The timer is set up at
late_time_init().
But, looking at the MID code it seems, that there is no reason to do
so. The only code which might need the timer working is the TSC
calibration code, but thats a non issue on MID as that is using its
own empty calibration function. And check_timer() is not invoked
either because MID has no PIC and therefor no legacy irqs.
So if you look at intel_mid_time_init() then you'll see that in the
ARAT case the timer setup is skipped already. So until the point where
x86_init.timers.setup_percpu_clockev() is called for the boot cpu
nothing really needs a timer on MID.
According to the MID code the apbt horror is only used for moorestown.
Medfield and later use the local apic timer without the apbt nonsense.
The best thing we can do is to drop moorestown support and get rid of
that apbt nonsense alltogether.
I don't think anyone deeply cares about it not being supported from
3.18 on. The number of devices which sport a moorestown should be
pretty limited and the only relevant use case of those is to act as a
pocket heater with short battery life time. Its pretty pointless to
update kernels on pocket heaters except for bragging reasons.
If someone at Intel really thinks that we need to keep moorestown
alive for other than documentary and sentimental reasons, then we can
move the apbt setup to x86_init.timers.setup_percpu_clockev(). At that
point the IOAPIC is setup already, so it should just work.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Link: http://lkml.kernel.org/r/1428905519-23704-30-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Enhance UV code to support hierarchical irqdomain, it helps to make
the architecture more clear.
We construct hwirq based on mmr_blade and mmr_offset, but mmr_offset
has type unsigned long, it may exceed the range of irq_hw_number_t. So
help about the way to construct hwirq based on mmr_blade and
mmr_offset is welcomed!
Folded a patch from Dimitri Sivanich <sivanich@sgi.com> to fix a bug
on UV platforms, please refer to:
http://lkml.org/lkml/2014/12/16/351
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Russ Anderson <rja@sgi.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Link: http://lkml.kernel.org/r/1428905519-23704-23-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use new irqdomain interfaces to allocate/free IRQ, so we can
remove GENERIC_IRQ_LEGACY_ALLOC_HWIRQ later.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Link: http://lkml.kernel.org/r/1428905519-23704-6-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Here's the big tty/serial driver update for 4.1-rc1.
It was delayed for a bit due to some questions surrounding some of the
console command line parsing changes that are in here. There's still
one tiny regression for people who were previously putting multiple
console command lines and expecting them all to be ignored for some odd
reason, but Peter is working on fixing that. If not, I'll send a revert
for the offending patch, but I have faith that Peter can address it.
Other than the console work here, there's the usual serial driver
updates and changes, and a buch of 8250 reworks to try to make that
driver easier to maintain over time, and have it support more devices in
the future.
All of these have been in linux-next for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlU2IcUACgkQMUfUDdst+ylFqACcC8LPhFEZg9aHn0hNUoqGK3rE
5dUAnR4b8r/NYqjVoE9FJZgZfB/TqVi1
=lyN/
-----END PGP SIGNATURE-----
Merge tag 'tty-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial updates from Greg KH:
"Here's the big tty/serial driver update for 4.1-rc1.
It was delayed for a bit due to some questions surrounding some of the
console command line parsing changes that are in here. There's still
one tiny regression for people who were previously putting multiple
console command lines and expecting them all to be ignored for some
odd reason, but Peter is working on fixing that. If not, I'll send a
revert for the offending patch, but I have faith that Peter can
address it.
Other than the console work here, there's the usual serial driver
updates and changes, and a buch of 8250 reworks to try to make that
driver easier to maintain over time, and have it support more devices
in the future.
All of these have been in linux-next for a while"
* tag 'tty-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (119 commits)
n_gsm: Drop unneeded cast on netdev_priv
sc16is7xx: expose RTS inversion in RS-485 mode
serial: 8250_pci: port failed after wakeup from S3
earlycon: 8250: Document kernel command line options
earlycon: 8250: Fix command line regression
earlycon: Fix __earlycon_table stride
tty: clean up the tty time logic a bit
serial: 8250_dw: only get the clock rate in one place
serial: 8250_dw: remove useless ACPI ID check
dmaengine: hsu: move memory allocation to GFP_NOWAIT
dmaengine: hsu: remove redundant pieces of code
serial: 8250_pci: add Intel Tangier support
dmaengine: hsu: add Intel Tangier PCI ID
serial: 8250_pci: replace switch-case by formula for Intel MID
serial: 8250_pci: replace switch-case by formula
tty: cpm_uart: replace CONFIG_8xx by CONFIG_CPM1
serial: jsm: some off by one bugs
serial: xuartps: Fix check in console_setup().
serial: xuartps: Get rid of register access macros.
serial: xuartps: Fix iobase use.
...
* new API for safe access of power supply function attrs
* devres support for power supply (un)registration
* new drivers / chips
- generic syscon based poweroff driver
- iio & charger driver for da9150
- fuel gauge driver for axp288
- bq27x00: add support for bq27510
- bq2415x: add support for bq24157s
* twl4030-madc-battery: convert to iio consumer
* misc fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJVK8KPAAoJENju1/PIO/qaKIIP/jYZr1NJ7zrSAfm/hiCS+1Kz
f68H5zlC3IOD2YlH7Yx3EUnag4k8wXiwp5LlRFMmek78H6UtKgr274cVyBA730Qk
qGYyI6rZqBi9nheIwbXugUTs65R+S1bSaLksZvNfTmnKRiHUpO5nsJJezusJM/O1
lSUJb166kR9agFL+7MSjOW4FTpqDCrndEmYOXiUmzpOS1+1ZJXPN8EMyktJxcZu9
fxE8smy2fr0rqkZoSX4irYI28DoAqb5jImv0/GlVLVKsGukzkOkwMdKunWbFywvT
mg/mkyfpPb3xWNUPuyVRzhgsPnaNYm5uNwr2yWuFvyxNOTweyjRriGMflewkKscf
aGJLOiFThJrdyTjscMCfdVuNr1a+Bzd9UdiNH1I6mS99zW7wLEukHJi2CH8+9UGE
eDRrnb6wiKAqpvIDeIatEbQUTV5JXM0vWbKIHx7m1M3P5/hLGiOWguO7V2x4RsTp
B21mXXj6/AUYA7IKIiPjNC7HJ71J80Gali40zOYRni9MFybi1SE9MzeHNdQhdbyn
EW+3irBTruSl93qMpsCivxMhnSeclB/PuPvH6wPOfhftlAvN+9GhGaIQzLl0mo5E
ckXbc23QfDCwcygCnkcQy+dgQOOttk6wDUkmhAiGriciO57NgTz9KnrhOexptw+h
2wCLGqBPSO2rADJ5RE9f
=WbZu
-----END PGP SIGNATURE-----
Merge tag 'for-v4.1' of git://git.infradead.org/battery-2.6
Pull power supply and reset changes from Sebastian Reichel:
- new API for safe access of power supply function attrs
- devres support for power supply (un)registration
- new drivers / chips:
- generic syscon based poweroff driver
- iio & charger driver for da9150
- fuel gauge driver for axp288
- bq27x00: add support for bq27510
- bq2415x: add support for bq24157s
- twl4030-madc-battery: convert to iio consumer
- misc fixes
* tag 'for-v4.1' of git://git.infradead.org/battery-2.6: (66 commits)
power: twl4030_madc_battery: Add missing MODULE_ALIAS
power: twl4030-madc-battery: Convert to iio consumer.
dt: power: Add docs for generic SYSCON poweroff driver.
power: reset: Add generic SYSCON register mapped poweroff.
power: max17042_battery: add missed blank
power: max17042_battery: Use reg type instead of chip type
power/reset: at91: big endian fixes for atsama5d3x
power_supply: charger-manager: Fix dereferencing of ERR_PTR
HID: input: Fix NULL pointer dereference when power_supply_register fails
power: constify of_device_id array
power/reset/rmobile-reset.c: Fix !HAS_IOMEM build
power_supply: 88pm860x_charger: Fix possible NULL pointer dereference and use of initialized variable
arm: mach-pxa: Decrement the power supply's device reference counter
mfd: ab8500: Decrement the power supply's device reference counter
power_supply: bq2415x_charger: Decrement the power supply's device reference counter
power_supply: 88pm860x_charger: Decrement the power supply's device reference counter
x86/olpc/xo15/sci: Use newly added power_supply_put API
x86/olpc/xo1/sci: Use newly added power_supply_put API
power_supply: charger-manager: Decrement the power supply's device reference counter
power_supply: Increment power supply use counter when obtaining references
...
Pull x86 platform change from Ingo Molnar:
"An Intel Quark SoC fix"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel/quark: Run IMR self-test on IMR capble hw only
Pull x86 mm changes from Ingo Molnar:
"The main changes in this cycle were:
- reduce the x86/32 PAE per task PGD allocation overhead from 4K to
0.032k (Fenghua Yu)
- early_ioremap/memunmap() usage cleanups (Juergen Gross)
- gbpages support cleanups (Luis R Rodriguez)
- improve AMD Bulldozer (family 0x15) ASLR I$ aliasing workaround to
increase randomization by 3 bits (per bootup) (Hector
Marco-Gisbert)
- misc fixlets"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Improve AMD Bulldozer ASLR workaround
x86/mm/pat: Initialize __cachemode2pte_tbl[] and __pte2cachemode_tbl[] in a bit more readable fashion
init.h: Clean up the __setup()/early_param() macros
x86/mm: Simplify probe_page_size_mask()
x86/mm: Further simplify 1 GB kernel linear mappings handling
x86/mm: Use early_param_on_off() for direct_gbpages
init.h: Add early_param_on_off()
x86/mm: Simplify enabling direct_gbpages
x86/mm: Use IS_ENABLED() for direct_gbpages
x86/mm: Unexport set_memory_ro() and set_memory_rw()
x86/mm, efi: Use early_ioremap() in arch/x86/platform/efi/efi-bgrt.c
x86/mm: Use early_memunmap() instead of early_iounmap()
x86/mm/pat: Ensure different messages in STRICT_DEVMEM and PAT cases
x86/mm: Reduce PAE-mode per task pgd allocation overhead from 4K to 32 bytes
Pull x86 cleanups from Ingo Molnar:
"Various cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/iommu: Fix header comments regarding standard and _FINISH macros
x86/earlyprintk: Put CONFIG_PCI-only functions under the #ifdef
x86: Fix up obsolete __cpu_set() function usage
Currently x86-64 efi_call_phys_prolog() saves into a global variable (save_pgd),
and efi_call_phys_epilog() restores the kernel pagetables from that global
variable.
Change this to a cleaner save/restore pattern where the saving function returns
the saved object and the restore function restores that.
Apply the same concept to the 32-bit code as well.
Plus this approach, as an added bonus, allows us to express the
!efi_enabled(EFI_OLD_MEMMAP) situation in a clean fashion as well,
via a 'NULL' return value.
Cc: Tapasweni Pathak <tapaswenipathak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Tapasweni Pathak reported that we do a kmalloc() in efi_call_phys_prolog()
on x86-64 while having interrupts disabled, which is a big no-no, as
kmalloc() can sleep.
Solve this by removing the irq disabling from the prolog/epilog calls
around EFI calls: it's unnecessary, as in this stage we are single
threaded in the boot thread, and we don't ever execute this from
interrupt contexts.
Reported-by: Tapasweni Pathak <tapaswenipathak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
... and hide the memory regions dump behind it. Make it default-off.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20141209095843.GA3990@pd.tnic
Acked-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Replace direct usage of put_device() with new API: power_supply_put().
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Reviewed-by: Sebastian Reichel <sre@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sebastian Reichel <sre@kernel.org>
Replace direct usage of put_device() with new API: power_supply_put().
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Reviewed-by: Sebastian Reichel <sre@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sebastian Reichel <sre@kernel.org>
Change the ownership of power_supply structure from each driver
implementing the class to the power supply core.
The patch changes power_supply_register() function thus all drivers
implementing power supply class are adjusted.
Each driver provides the implementation of power supply. However it
should not be the owner of power supply class instance because it is
exposed by core to other subsystems with power_supply_get_by_name().
These other subsystems have no knowledge when the driver will unregister
the power supply. This leads to several issues when driver is unbound -
mostly because user of power supply accesses freed memory.
Instead let the core own the instance of struct 'power_supply'. Other
users of this power supply will still access valid memory because it
will be freed when device reference count reaches 0. Currently this
means "it will leak" but power_supply_put() call in next patches will
solve it.
This solves invalid memory references in following race condition
scenario:
Thread 1: charger manager
Thread 2: power supply driver, used by charger manager
THREAD 1 (charger manager) THREAD 2 (power supply driver)
========================== ==============================
psy = power_supply_get_by_name()
Driver unbind, .remove
power_supply_unregister()
Device fully removed
psy->get_property()
The 'get_property' call is executed in invalid context because the driver was
unbound and struct 'power_supply' memory was freed.
This could be observed easily with charger manager driver (here compiled
with max17040 fuel gauge):
$ cat /sys/devices/virtual/power_supply/cm-battery/capacity &
$ echo "1-0036" > /sys/bus/i2c/drivers/max17040/unbind
[ 55.725123] Unable to handle kernel NULL pointer dereference at virtual address 00000000
[ 55.732584] pgd = d98d4000
[ 55.734060] [00000000] *pgd=5afa2831, *pte=00000000, *ppte=00000000
[ 55.740318] Internal error: Oops: 80000007 [#1] PREEMPT SMP ARM
[ 55.746210] Modules linked in:
[ 55.749259] CPU: 1 PID: 2936 Comm: cat Tainted: G W 3.19.0-rc1-next-20141226-00048-gf79f475f3c44-dirty #1496
[ 55.760190] Hardware name: SAMSUNG EXYNOS (Flattened Device Tree)
[ 55.766270] task: d9b76f00 ti: daf54000 task.ti: daf54000
[ 55.771647] PC is at 0x0
[ 55.774182] LR is at charger_get_property+0x2f4/0x36c
[ 55.779201] pc : [<00000000>] lr : [<c034b0b4>] psr: 60000013
[ 55.779201] sp : daf55e90 ip : 00000003 fp : 00000000
[ 55.790657] r10: 00000000 r9 : c06e2878 r8 : d9b26c68
[ 55.795865] r7 : dad81610 r6 : daec7410 r5 : daf55ebc r4 : 00000000
[ 55.802367] r3 : 00000000 r2 : daf55ebc r1 : 0000002a r0 : d9b26c68
[ 55.808879] Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user
[ 55.815994] Control: 10c5387d Table: 598d406a DAC: 00000015
[ 55.821723] Process cat (pid: 2936, stack limit = 0xdaf54210)
[ 55.827451] Stack: (0xdaf55e90 to 0xdaf56000)
[ 55.831795] 5e80: 60000013 c01459c4 0000002a c06f8ef8
[ 55.839956] 5ea0: db651000 c06f8ef8 daebac00 c04cb668 daebac08 c0346864 00000000 c01459c4
[ 55.848115] 5ec0: d99eaa80 c06f8ef8 00000fff 00001000 db651000 c027f25c c027f240 d99eaa80
[ 55.856274] 5ee0: d9a06c00 c0146218 daf55f18 00001000 d99eaa80 db4c18c0 00000001 00000001
[ 55.864468] 5f00: daf55f80 c0144c78 c0144c54 c0107f90 00015000 d99eaab0 00000000 00000000
[ 55.872603] 5f20: 000051c7 00000000 db4c18c0 c04a9370 00015000 00001000 daf55f80 00001000
[ 55.880763] 5f40: daf54000 00015000 00000000 c00e53dc db4c18c0 c00e548c 0000000d 00008124
[ 55.888937] 5f60: 00000001 00000000 00000000 db4c18c0 db4c18c0 00001000 00015000 c00e5550
[ 55.897099] 5f80: 00000000 00000000 00001000 00001000 00015000 00000003 00000003 c000f364
[ 55.905239] 5fa0: 00000000 c000f1a0 00001000 00015000 00000003 00015000 00001000 0001333c
[ 55.913399] 5fc0: 00001000 00015000 00000003 00000003 00000002 00000000 00000000 00000000
[ 55.921560] 5fe0: 7fffe000 be999850 0000a225 b6f3c19c 60000010 00000003 00000000 00000000
[ 55.929744] [<c034b0b4>] (charger_get_property) from [<c0346864>] (power_supply_show_property+0x48/0x20c)
[ 55.939286] [<c0346864>] (power_supply_show_property) from [<c027f25c>] (dev_attr_show+0x1c/0x48)
[ 55.948130] [<c027f25c>] (dev_attr_show) from [<c0146218>] (sysfs_kf_seq_show+0x84/0x104)
[ 55.956298] [<c0146218>] (sysfs_kf_seq_show) from [<c0144c78>] (kernfs_seq_show+0x24/0x28)
[ 55.964536] [<c0144c78>] (kernfs_seq_show) from [<c0107f90>] (seq_read+0x1b0/0x484)
[ 55.972172] [<c0107f90>] (seq_read) from [<c00e53dc>] (__vfs_read+0x18/0x4c)
[ 55.979188] [<c00e53dc>] (__vfs_read) from [<c00e548c>] (vfs_read+0x7c/0x100)
[ 55.986304] [<c00e548c>] (vfs_read) from [<c00e5550>] (SyS_read+0x40/0x8c)
[ 55.993164] [<c00e5550>] (SyS_read) from [<c000f1a0>] (ret_fast_syscall+0x0/0x48)
[ 56.000626] Code: bad PC value
[ 56.011652] ---[ end trace 7b64343fbdae8ef1 ]---
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reviewed-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
[for the nvec part]
Reviewed-by: Marc Dietrich <marvin24@gmx.de>
[for compal-laptop.c]
Acked-by: Darren Hart <dvhart@linux.intel.com>
[for the mfd part]
Acked-by: Lee Jones <lee.jones@linaro.org>
[for the hid part]
Acked-by: Jiri Kosina <jkosina@suse.cz>
[for the acpi part]
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sebastian Reichel <sre@kernel.org>
Since we have a native 8250 driver carrying the Intel MID serial devices the
specific support is not needed anymore. This patch removes it for Intel MID.
Note that the console device name is changed from ttyMFDx to ttySx.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull Intel Quark SoC support from Ingo Molnar:
"This adds support for Intel Quark X1000 SoC boards, used in the low
power 32-bit x86 Intel Galileo microcontroller board intended for the
Arduino space.
There's been some preparatory core x86 patches for Quark CPU quirks
merged already, but this rounds it all up and adds Kconfig enablement.
It's a clean hardware enablement addition tree at this point"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel/quark: Fix simple_return.cocci warnings
x86/intel/quark: Fix ptr_ret.cocci warnings
x86/intel/quark: Add Intel Quark platform support
x86/intel/quark: Add Isolated Memory Regions for Quark X1000
Pull misc x86 fixes from Ingo Molnar:
"This contains:
- EFI fixes
- a boot printout fix
- ASLR/kASLR fixes
- intel microcode driver fixes
- other misc fixes
Most of the linecount comes from an EFI revert"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
x86/microcode/intel: Handle truncated microcode images more robustly
x86/microcode/intel: Guard against stack overflow in the loader
x86, mm/ASLR: Fix stack randomization on 64-bit systems
x86/mm/init: Fix incorrect page size in init_memory_mapping() printks
x86/mm/ASLR: Propagate base load address calculation
Documentation/x86: Fix path in zero-page.txt
x86/apic: Fix the devicetree build in certain configs
Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"
x86/efi: Avoid triple faults during EFI mixed mode calls
Add Intel Quark platform support. Quark needs to pull down all
unlocked IMRs to ensure agreement with the EFI memory map post
boot.
This patch adds an entry in Kconfig for Quark as a platform and
makes IMR support mandatory if selected.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Tested-by: Ong, Boon Leong <boon.leong.ong@intel.com>
Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Reviewed-by: Andy Shevchenko <andy.schevchenko@gmail.com>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Reviewed-by: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: dvhart@infradead.org
Link: http://lkml.kernel.org/r/1422635379-12476-3-git-send-email-pure.logic@nexus-software.ie
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel's Quark X1000 SoC contains a set of registers called
Isolated Memory Regions. IMRs are accessed over the IOSF mailbox
interface. IMRs are areas carved out of memory that define
read/write access rights to the various system agents within the
Quark system. For a given agent in the system it is possible to
specify if that agent may read or write an area of memory
defined by an IMR with a granularity of 1 KiB.
Quark_SecureBootPRM_330234_001.pdf section 4.5 details the
concept of IMRs quark-x1000-datasheet.pdf section 12.7.4 details
the implementation of IMRs in silicon.
eSRAM flush, CPU Snoop write-only, CPU SMM Mode, CPU non-SMM
mode, RMU and PCIe Virtual Channels (VC0 and VC1) can have
individual read/write access masks applied to them for a given
memory region in Quark X1000. This enables IMRs to treat each
memory transaction type listed above on an individual basis and
to filter appropriately based on the IMR access mask for the
memory region. Quark supports eight IMRs.
Since all of the DMA capable SoC components in the X1000 are
mapped to VC0 it is possible to define sections of memory as
invalid for DMA write operations originating from Ethernet, USB,
SD and any other DMA capable south-cluster component on VC0.
Similarly it is possible to mark kernel memory as non-SMM mode
read/write only or to mark BIOS runtime memory as SMM mode
accessible only depending on the particular memory footprint on
a given system.
On an IMR violation Quark SoC X1000 systems are configured to
reset the system, so ensuring that the IMR memory map is
consistent with the EFI provided memory map is critical to
ensure no IMR violations reset the system.
The API for accessing IMRs is based on MTRR code but doesn't
provide a /proc or /sys interface to manipulate IMRs. Defining
the size and extent of IMRs is exclusively the domain of
in-kernel code.
Quark firmware sets up a series of locked IMRs around pieces of
memory that firmware owns such as ACPI runtime data. During boot
a series of unlocked IMRs are placed around items in memory to
guarantee no DMA modification of those items can take place.
Grub also places an unlocked IMR around the kernel boot params
data structure and compressed kernel image. It is necessary for
the kernel to tear down all unlocked IMRs in order to ensure
that the kernel's view of memory passed via the EFI memory map
is consistent with the IMR memory map. Without tearing down all
unlocked IMRs on boot transitory IMRs such as those used to
protect the compressed kernel image will cause IMR violations and system reboots.
The IMR init code tears down all unlocked IMRs and sets a
protective IMR around the kernel .text and .rodata as one
contiguous block. This sanitizes the IMR memory map with respect
to the EFI memory map and protects the read-only portions of the
kernel from unwarranted DMA access.
Tested-by: Ong, Boon Leong <boon.leong.ong@intel.com>
Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Reviewed-by: Andy Shevchenko <andy.schevchenko@gmail.com>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Reviewed-by: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: andy.shevchenko@gmail.com
Cc: dvhart@infradead.org
Link: http://lkml.kernel.org/r/1422635379-12476-2-git-send-email-pure.logic@nexus-software.ie
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Here's the big tty/serial driver update for 3.20-rc1. Nothing huge
here, just lots of driver updates and some core tty layer fixes as well.
All have been in linux-next with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlTgtgkACgkQMUfUDdst+ykXbACg14oFAmeYjO9RsdIHPXBvKseO
47QAn0foy91bpNQ5UFOxWS5L6Fzj2ZND
=syx2
-----END PGP SIGNATURE-----
Merge tag 'tty-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver patches from Greg KH:
"Here's the big tty/serial driver update for 3.20-rc1. Nothing huge
here, just lots of driver updates and some core tty layer fixes as
well. All have been in linux-next with no reported issues"
* tag 'tty-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (119 commits)
serial: 8250: Fix UART_BUG_TXEN workaround
serial: driver for ETRAX FS UART
tty: remove unused variable sprop
serial: of-serial: fetch line number from DT
serial: samsung: earlycon support depends on CONFIG_SERIAL_SAMSUNG_CONSOLE
tty/serial: serial8250_set_divisor() can be static
tty/serial: Add Spreadtrum sc9836-uart driver support
Documentation: DT: Add bindings for Spreadtrum SoC Platform
serial: samsung: remove redundant interrupt enabling
tty: Remove external interface for tty_set_termios()
serial: omap: Fix RTS handling
serial: 8250_omap: Use UPSTAT_AUTORTS for RTS handling
serial: core: Rework hw-assisted flow control support
tty/serial: 8250_early: Add support for PXA UARTs
tty/serial: of_serial: add support for PXA/MMP uarts
tty/serial: of_serial: add DT alias ID handling
serial: 8250: Prevent concurrent updates to shadow registers
serial: 8250: Use canary to restart console after suspend
serial: 8250: Refactor XR17V35X divisor calculation
serial: 8250: Refactor divisor programming
...
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
* Unnecessary buffer size calculation and condition on the lenght
removed from intel_cacheinfo.c::show_shared_cpu_map_func().
* uv_nmi_nr_cpus_pr() got overly smart and implemented "..."
abbreviation if the output stretched over the predefined 1024 byte
buffer. Replaced with plain printk.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andy pointed out that if an NMI or MCE is received while we're in the
middle of an EFI mixed mode call a triple fault will occur. This can
happen, for example, when issuing an EFI mixed mode call while running
perf.
The reason for the triple fault is that we execute the mixed mode call
in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers
installed throughout the call.
At Andy's suggestion, stop playing the games we currently do at runtime,
such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We
can simply switch to the __KERNEL32_CS descriptor before invoking
firmware services, and run in compatibility mode. This way, if an
NMI/MCE does occur the kernel IDT handler will execute correctly, since
it'll jump to __KERNEL_CS automatically.
However, this change is only possible post-ExitBootServices(). Before
then the firmware "owns" the machine and expects for its 32-bit IDT
handlers to be left intact to service interrupts, etc.
So, we now need to distinguish between early boot and runtime
invocations of EFI services. During early boot, we need to restore the
GDT that the firmware expects to be present. We can only jump to the
__KERNEL32_CS code segment for mixed mode calls after ExitBootServices()
has been invoked.
A liberal sprinkling of comments in the thunking code should make the
differences in early and late environments more apparent.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
__FUNCTION__ hasn't been treated as a string literal since gcc 3.4, so
this only helps people who only test-compile using 3.3 (compiler-gcc3.h
barks at anything older than that). Besides, there are almost no
occurrences of __FUNCTION__ left in the tree.
[akpm@linux-foundation.org: convert remaining __FUNCTION__ references]
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>