Commit Graph

652 Commits

Author SHA1 Message Date
KAMEZAWA Hiroyuki 246e87a939 memcg: fix get_scan_count() for small targets
During memory reclaim we determine the number of pages to be scanned per
zone as

	(anon + file) >> priority.
Assume
	scan = (anon + file) >> priority.

If scan < SWAP_CLUSTER_MAX, the scan will be skipped for this time and
priority gets higher.  This has some problems.

  1. This increases priority as 1 without any scan.
     To do scan in this priority, amount of pages should be larger than 512M.
     If pages>>priority < SWAP_CLUSTER_MAX, it's recorded and scan will be
     batched, later. (But we lose 1 priority.)
     If memory size is below 16M, pages >> priority is 0 and no scan in
     DEF_PRIORITY forever.

  2. If zone->all_unreclaimabe==true, it's scanned only when priority==0.
     So, x86's ZONE_DMA will never be recoverred until the user of pages
     frees memory by itself.

  3. With memcg, the limit of memory can be small. When using small memcg,
     it gets priority < DEF_PRIORITY-2 very easily and need to call
     wait_iff_congested().
     For doing scan before priorty=9, 64MB of memory should be used.

Then, this patch tries to scan SWAP_CLUSTER_MAX of pages in force...when

  1. the target is enough small.
  2. it's kswapd or memcg reclaim.

Then we can avoid rapid priority drop and may be able to recover
all_unreclaimable in a small zones.  And this patch removes nr_saved_scan.
 This will allow scanning in this priority even when pages >> priority is
very small.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Ying Han <yinghan@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26 17:12:35 -07:00
Andrew Barry cfa54a0fcf mm/page_alloc.c: prevent unending loop in __alloc_pages_slowpath()
I believe I found a problem in __alloc_pages_slowpath, which allows a
process to get stuck endlessly looping, even when lots of memory is
available.

Running an I/O and memory intensive stress-test I see a 0-order page
allocation with __GFP_IO and __GFP_WAIT, running on a system with very
little free memory.  Right about the same time that the stress-test gets
killed by the OOM-killer, the utility trying to allocate memory gets stuck
in __alloc_pages_slowpath even though most of the systems memory was freed
by the oom-kill of the stress-test.

The utility ends up looping from the rebalance label down through the
wait_iff_congested continiously.  Because order=0,
__alloc_pages_direct_compact skips the call to get_page_from_freelist.
Because all of the reclaimable memory on the system has already been
reclaimed, __alloc_pages_direct_reclaim skips the call to
get_page_from_freelist.  Since there is no __GFP_FS flag, the block with
__alloc_pages_may_oom is skipped.  The loop hits the wait_iff_congested,
then jumps back to rebalance without ever trying to
get_page_from_freelist.  This loop repeats infinitely.

The test case is pretty pathological.  Running a mix of I/O stress-tests
that do a lot of fork() and consume all of the system memory, I can pretty
reliably hit this on 600 nodes, in about 12 hours.  32GB/node.

Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:36 -07:00
David Rientjes a197b59ae6 mm: fail GFP_DMA allocations when ZONE_DMA is not configured
The page allocator will improperly return a page from ZONE_NORMAL even
when __GFP_DMA is passed if CONFIG_ZONE_DMA is disabled.  The caller
expects DMA memory, perhaps for ISA devices with 16-bit address registers,
and may get higher memory resulting in undefined behavior.

This patch causes the page allocator to return NULL in such circumstances
with a warning emitted to the kernel log on the first occurrence.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:29 -07:00
Arve Hjønnevåg 6d3163ce86 mm: check if any page in a pageblock is reserved before marking it MIGRATE_RESERVE
This fixes a problem where the first pageblock got marked MIGRATE_RESERVE
even though it only had a few free pages.  eg, On current ARM port, The
kernel starts at offset 0x8000 to leave room for boot parameters, and the
memory is freed later.

This in turn caused no contiguous memory to be reserved and frequent
kswapd wakeups that emptied the caches to get more contiguous memory.

Unfortunatelly, ARM needs order-2 allocation for pgd (see
arm/mm/pgd.c#pgd_alloc()).  Therefore the issue is not minor nor easy
avoidable.

[kosaki.motohiro@jp.fujitsu.com: added some explanation]
[kosaki.motohiro@jp.fujitsu.com: add !pfn_valid_within() to check]
[minchan.kim@gmail.com: check end_pfn in pageblock_is_reserved]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Arve Hjønnevåg <arve@android.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:24 -07:00
Dave Hansen a238ab5b02 mm: break out page allocation warning code
This originally started as a simple patch to give vmalloc() some more
verbose output on failure on top of the plain page allocator messages.
Johannes suggested that it might be nicer to lead with the vmalloc() info
_before_ the page allocator messages.

But, I do think there's a lot of value in what __alloc_pages_slowpath()
does with its filtering and so forth.

This patch creates a new function which other allocators can call instead
of relying on the internal page allocator warnings.  It also gives this
function private rate-limiting which separates it from other
printk_ratelimit() users.

Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:21 -07:00
Andrea Arcangeli c6a140bf16 mm/compaction: reverse the change that forbade sync migraton with __GFP_NO_KSWAPD
It's uncertain this has been beneficial, so it's safer to undo it.  All
other compaction users would still go in synchronous mode if a first
attempt at async compaction failed.  Hopefully we don't need to force
special behavior for THP (which is the only __GFP_NO_KSWAPD user so far
and it's the easier to exercise and to be noticeable).  This also make
__GFP_NO_KSWAPD return to its original strict semantics specific to bypass
kswapd, as THP allocations have khugepaged for the async THP
allocations/compactions.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Alex Villacis Lasso <avillaci@fiec.espol.edu.ec>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:10 -07:00
KOSAKI Motohiro a6cccdc36c mm, mem-hotplug: update pcp->stat_threshold when memory hotplug occur
Currently, cpu hotplug updates pcp->stat_threshold, but memory hotplug
doesn't.  There is no reason for this.

[akpm@linux-foundation.org: fix CONFIG_SMP=n build]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:09 -07:00
KOSAKI Motohiro 1b79acc911 mm, mem-hotplug: recalculate lowmem_reserve when memory hotplug occurs
Currently, memory hotplug calls setup_per_zone_wmarks() and
calculate_zone_inactive_ratio(), but doesn't call
setup_per_zone_lowmem_reserve().

It means the number of reserved pages aren't updated even if memory hot
plug occur.  This patch fixes it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:09 -07:00
KOSAKI Motohiro 839a4fcc8a mm, mem-hotplug: fix section mismatch. setup_per_zone_inactive_ratio() should be __meminit.
Commit bce7394a3e ("page-allocator: reset wmark_min and inactive ratio of
zone when hotplug happens") introduced invalid section references.  Now,
setup_per_zone_inactive_ratio() is marked __init and then it can't be
referenced from memory hotplug code.

This patch marks it as __meminit and also marks caller as __ref.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:08 -07:00
Sergey Senozhatsky ac3bbec5ec mm: remove unused zone_idx variable from set_migratetype_isolate
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:04 -07:00
David Rientjes 7bf02ea22c arch, mm: filter disallowed nodes from arch specific show_mem functions
Architectures that implement their own show_mem() function did not pass
the filter argument to show_free_areas() to appropriately avoid emitting
the state of nodes that are disallowed in the current context.  This patch
now passes the filter argument to show_free_areas() so those nodes are now
avoided.

This patch also removes the show_free_areas() wrapper around
__show_free_areas() and converts existing callers to pass an empty filter.

ia64 emits additional information for each node, so skip_free_areas_zone()
must be made global to filter disallowed nodes and it is converted to use
a nid argument rather than a zone for this use case.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <jejb@parisc-linux.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:03 -07:00
Linus Torvalds 57d19e80f4 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
  b43: fix comment typo reqest -> request
  Haavard Skinnemoen has left Atmel
  cris: typo in mach-fs Makefile
  Kconfig: fix copy/paste-ism for dell-wmi-aio driver
  doc: timers-howto: fix a typo ("unsgined")
  perf: Only include annotate.h once in tools/perf/util/ui/browsers/annotate.c
  md, raid5: Fix spelling error in comment ('Ofcourse' --> 'Of course').
  treewide: fix a few typos in comments
  regulator: change debug statement be consistent with the style of the rest
  Revert "arm: mach-u300/gpio: Fix mem_region resource size miscalculations"
  audit: acquire creds selectively to reduce atomic op overhead
  rtlwifi: don't touch with treewide double semicolon removal
  treewide: cleanup continuations and remove logging message whitespace
  ath9k_hw: don't touch with treewide double semicolon removal
  include/linux/leds-regulator.h: fix syntax in example code
  tty: fix typo in descripton of tty_termios_encode_baud_rate
  xtensa: remove obsolete BKL kernel option from defconfig
  m68k: fix comment typo 'occcured'
  arch:Kconfig.locks Remove unused config option.
  treewide: remove extra semicolons
  ...
2011-05-23 09:12:26 -07:00
Linus Torvalds 268bb0ce3e sanitize <linux/prefetch.h> usage
Commit e66eed651f ("list: remove prefetching from regular list
iterators") removed the include of prefetch.h from list.h, which
uncovered several cases that had apparently relied on that rather
obscure header file dependency.

So this fixes things up a bit, using

   grep -L linux/prefetch.h $(git grep -l '[^a-z_]prefetchw*(' -- '*.[ch]')
   grep -L 'prefetchw*(' $(git grep -l 'linux/prefetch.h' -- '*.[ch]')

to guide us in finding files that either need <linux/prefetch.h>
inclusion, or have it despite not needing it.

There are more of them around (mostly network drivers), but this gets
many core ones.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-20 12:50:29 -07:00
Randy Dunlap b5e6ab589d mm: fix kernel-doc warning in page_alloc.c
Fix new kernel-doc warning in mm/page_alloc.c:

  Warning(mm/page_alloc.c:2370): No description found for parameter 'nid'

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-16 18:34:30 -07:00
Andi Kleen ee85c2e145 mm: add alloc_pages_exact_nid()
Add a alloc_pages_exact_nid() that allocates on a specific node.

The naming is quite broken, but fixing that would need a larger renaming
action.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: tweak comment]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-11 18:50:45 -07:00
Yinghai Lu 8f389a99b6 mm: use alloc_bootmem_node_nopanic() on really needed path
Stefan found nobootmem does not work on his system that has only 8M of
RAM.  This causes an early panic:

  BIOS-provided physical RAM map:
   BIOS-88: 0000000000000000 - 000000000009f000 (usable)
   BIOS-88: 0000000000100000 - 0000000000840000 (usable)
  bootconsole [earlyser0] enabled
  Notice: NX (Execute Disable) protection missing in CPU or disabled in BIOS!
  DMI not present or invalid.
  last_pfn = 0x840 max_arch_pfn = 0x100000
  init_memory_mapping: 0000000000000000-0000000000840000
  8MB LOWMEM available.
    mapped low ram: 0 - 00840000
    low ram: 0 - 00840000
  Zone PFN ranges:
    DMA      0x00000001 -> 0x00001000
    Normal   empty
  Movable zone start PFN for each node
  early_node_map[2] active PFN ranges
      0: 0x00000001 -> 0x0000009f
      0: 0x00000100 -> 0x00000840
  BUG: Int 6: CR2 (null)
       EDI c034663c  ESI (null)  EBP c0329f38  ESP c0329ef4
       EBX c0346380  EDX 00000006  ECX ffffffff  EAX fffffff4
       err (null)  EIP c0353191   CS c0320060  flg 00010082
  Stack: (null) c030c533 000007cd (null) c030c533 00000001 (null) (null)
         00000003 0000083f 00000018 00000002 00000002 c0329f6c c03534d6 (null)
         (null) 00000100 00000840 (null) c0329f64 00000001 00001000 (null)
  Pid: 0, comm: swapper Not tainted 2.6.36 #5
  Call Trace:
   [<c02e3707>] ? 0xc02e3707
   [<c035e6e5>] 0xc035e6e5
   [<c0353191>] ? 0xc0353191
   [<c03534d6>] 0xc03534d6
   [<c034f1cd>] 0xc034f1cd
   [<c034a824>] 0xc034a824
   [<c03513cb>] ? 0xc03513cb
   [<c0349432>] 0xc0349432
   [<c0349066>] 0xc0349066

It turns out that we should ignore the low limit of 16M.

Use alloc_bootmem_node_nopanic() in this case.

[akpm@linux-foundation.org: less mess]
Signed-off-by: Yinghai LU <yinghai@kernel.org>
Reported-by: Stefan Hellermann <stefan@the2masters.de>
Tested-by: Stefan Hellermann <stefan@the2masters.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>		[2.6.34+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-11 18:50:44 -07:00
Jiri Kosina 07f9479a40 Merge branch 'master' into for-next
Fast-forwarded to current state of Linus' tree as there are patches to be
applied for files that didn't exist on the old branch.
2011-04-26 10:22:59 +02:00
Paul Mundt 9f6ae448bf mm/page_alloc.c: silence build_all_zonelists() section mismatch
The memory hotplug case involves calling to build_all_zonelists() which
in turns calls in to setup_zone_pageset().  The latter is marked
__meminit while build_all_zonelists() itself has no particular
annotation.  build_all_zonelists() is only handed a non-NULL pointer in
the case of memory hotplug through an existing __meminit path, so the
setup_zone_pageset() reference is always safe.

The options as such are either to flag build_all_zonelists() as __ref (as
per __build_all_zonelists()), or to simply discard the __meminit
annotation from setup_zone_pageset().

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-04-14 16:06:54 -07:00
Nikanth Karthikesan 58c2ee4007 mm: Fix section mismatch for setup_zone_pageset()
build_all_zonelists() which is not __meminit, calls setup_zone_pageset().

Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-04-10 17:01:03 +02:00
Lucas De Marchi 25985edced Fix common misspellings
Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-31 11:26:23 -03:00
David Rientjes b2b755b5f1 lib, arch: add filter argument to show_mem and fix private implementations
Commit ddd588b5dd ("oom: suppress nodes that are not allowed from
meminfo on oom kill") moved lib/show_mem.o out of lib/lib.a, which
resulted in build warnings on all architectures that implement their own
versions of show_mem():

	lib/lib.a(show_mem.o): In function `show_mem':
	show_mem.c:(.text+0x1f4): multiple definition of `show_mem'
	arch/sparc/mm/built-in.o:(.text+0xd70): first defined here

The fix is to remove __show_mem() and add its argument to show_mem() in
all implementations to prevent this breakage.

Architectures that implement their own show_mem() actually don't do
anything with the argument yet, but they could be made to filter nodes
that aren't allowed in the current context in the future just like the
generic implementation.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: James Bottomley <James.Bottomley@hansenpartnership.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 17:49:37 -07:00
Daisuke Nishimura f212ad7cf9 memcg: add memcg sanity checks at allocating and freeing pages
Add checks at allocating or freeing a page whether the page is used (iow,
charged) from the view point of memcg.

This check may be useful in debugging a problem and we did similar checks
before the commit 52d4b9ac(memcg: allocate all page_cgroup at boot).

This patch adds some overheads at allocating or freeing memory, so it's
enabled only when CONFIG_DEBUG_VM is enabled.

Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:25 -07:00
Kirill A. Shutemov 84be48d84a mm/page_alloc.c: use list_move() instead of list_del()/list_add() combination
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:09 -07:00
Andi Kleen 78afd5612d mm: add __GFP_OTHER_NODE flag
Add a new __GFP_OTHER_NODE flag to tell the low level numa statistics in
zone_statistics() that an allocation is on behalf of another thread.  This
way the local and remote counters can be still correct, even when
background daemons like khugepaged are changing memory mappings.

This only affects the accounting, but I think it's worth doing that right
to avoid confusing users.

I first tried to just pass down the right node, but this required a lot of
changes to pass down this parameter and at least one addition of a 10th
argument to a 9 argument function.  Using the flag is a lot less
intrusive.

Open: should be also used for migration?

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:05 -07:00
Andrea Arcangeli 11bc82d67d mm: compaction: Use async migration for __GFP_NO_KSWAPD and enforce no writeback
__GFP_NO_KSWAPD allocations are usually very expensive and not mandatory
to succeed as they have graceful fallback.  Waiting for I/O in those,
tends to be overkill in terms of latencies, so we can reduce their latency
by disabling sync migrate.

Unfortunately, even with async migration it's still possible for the
process to be blocked waiting for a request slot (e.g.  get_request_wait
in the block layer) when ->writepage is called.  To prevent
__GFP_NO_KSWAPD blocking, this patch prevents ->writepage being called on
dirty page cache for asynchronous migration.

Addresses https://bugzilla.kernel.org/show_bug.cgi?id=31142

[mel@csn.ul.ie: Avoid writebacks for NFS, retry locked pages, use bool]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Arthur Marsh <arthur.marsh@internode.on.net>
Cc: Clemens Ladisch <cladisch@googlemail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Alex Villacis Lasso <avillaci@ceibo.fiec.espol.edu.ec>
Tested-by: Alex Villacis Lasso <avillaci@ceibo.fiec.espol.edu.ec>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:05 -07:00
Namhyung Kim 1d16871d8c mm: batch-free pcp list if possible
free_pcppages_bulk() frees pages from pcp lists in a round-robin fashion
by keeping batch_free counter.  But it doesn't need to spin if there is
only one non-empty list.  This can be checked by batch_free ==
MIGRATE_PCPTYPES.

[akpm@linux-foundation.org: fix comment]
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:02 -07:00
David Rientjes cbf978bfb1 oom: suppress nodes that are not allowed from meminfo on page alloc failure
Displaying extremely verbose meminfo for all nodes on the system is
overkill for page allocation failures when the context restricts that
allocation to only a subset of nodes.  We don't particularly care about
the state of all nodes when some are not allowed in the current context,
they can have an abundance of memory but we can't allocate from that part
of memory.

This patch suppresses disallowed nodes from the meminfo dump on a page
allocation failure if the context requires it.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:01 -07:00
David Rientjes 29423e77c0 oom: suppress show_mem() for many nodes in irq context on page alloc failure
When a page allocation failure occurs, show_mem() is called to dump the
state of the VM so users may understand what happened to get into that
condition.

This output, however, can be extremely verbose.  In irq context, it may
result in significant delays that incur NMI watchdog timeouts when the
machine is large (we use CONFIG_NODES_SHIFT > 8 here to define a "large"
machine since the length of the show_mem() output is proportional to the
number of possible nodes).

This patch suppresses the show_mem() call in irq context when the kernel
has CONFIG_NODES_SHIFT > 8.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:01 -07:00
David Rientjes ddd588b5dd oom: suppress nodes that are not allowed from meminfo on oom kill
The oom killer is extremely verbose for machines with a large number of
cpus and/or nodes.  This verbosity can often be harmful if it causes other
important messages to be scrolled from the kernel log and incurs a
signicant time delay, specifically for kernels with CONFIG_NODES_SHIFT >
8.

This patch causes only memory information to be displayed for nodes that
are allowed by current's cpuset when dumping the VM state.  Information
for all other nodes is irrelevant to the oom condition; we don't care if
there's an abundance of memory elsewhere if we can't access it.

This only affects the behavior of dumping memory information when an oom
is triggered.  Other dumps, such as for sysrq+m, still display the
unfiltered form when using the existing show_mem() interface.

Additionally, the per-cpu pageset statistics are extremely verbose in oom
killer output, so it is now suppressed.  This removes

	nodes_weight(current->mems_allowed) * (1 + nr_cpus)

lines from the oom killer output.

Callers may use __show_mem(SHOW_MEM_FILTER_NODES) to filter disallowed
nodes.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:01 -07:00
Andrea Arcangeli ef2b4b95a6 mm: PageBuddy and mapcount robustness
Change the _mapcount value indicating PageBuddy from -2 to -128 for
more robusteness against page_mapcount() undeflows.

Use reset_page_mapcount instead of __ClearPageBuddy in bad_page to
ignore the previous retval of PageBuddy().

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-17 16:31:13 -07:00
Ingo Molnar 8460b3e5bc Merge commit 'v2.6.38' into x86/mm
Conflicts:
	arch/x86/mm/numa_64.c

Merge reason: Resolve the conflict, update the branch to .38.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-15 08:29:44 +01:00
Yinghai Lu cc28989437 mm: Move early_node_map[] reverse scan helpers under HAVE_MEMBLOCK
Heiko found recent memblock change triggers these warnings on s390:

  mm/page_alloc.c:3623:22: warning: 'last_active_region_index_in_nid' defined but not used
  mm/page_alloc.c:3638:22: warning: 'previous_active_region_index_in_nid' defined but not used

Need to move those two function under HAVE_MEMBLOCK with its only
user, find_memory_core_early().

-tj: Minor updates to description.

Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-26 13:05:43 +01:00
Namhyung Kim 29723fccc8 mm: fix dubious code in __count_immobile_pages()
When pfn_valid_within() failed 'iter' was incremented twice.

Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-25 15:07:37 -08:00
Yinghai Lu 8bc1f91e1f bootmem: Move __alloc_memory_core_early() to nobootmem.c
Now that bootmem.c and nobootmem.c are separate, there's no reason to
define __alloc_memory_core_early(), which is used only by nobootmem,
inside #ifdef in page_alloc.c.  Move it to nobootmem.c and make it
static.

This patch doesn't introduce any behavior change.

-tj: Updated commit description.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-24 14:43:06 +01:00
Yinghai Lu e782ab421b bootmem: Move contig_page_data definition to bootmem.c/nobootmem.c
Now that bootmem.c and nobootmem.c are separate, it's cleaner to
define contig_page_data in each file than in page_alloc.c with #ifdef.
Move it.

This patch doesn't introduce any behavior change.

-v2: According to Andrew, fixed the struct layout.
-tj: Updated commit description.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-24 14:43:06 +01:00
Ingo Molnar d2137d5af4 Merge branch 'linus' into x86/bootmem
Conflicts:
	arch/x86/mm/numa_64.c

Merge reason: fix the conflict, update to latest -rc and pick up this
              dependent fix from Yinghai:

  e6d2e2b2b1e1: memblock: don't adjust size in memblock_find_base()

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-02-14 11:55:18 +01:00
David Rientjes 2ff754fa8f mm: clear pages_scanned only if draining a pcp adds pages to the buddy allocator
Commit 0e093d9976 ("writeback: do not sleep on the congestion queue if
there are no congested BDIs or if significant congestion is not being
encountered in the current zone") uncovered a livelock in the page
allocator that resulted in tasks infinitely looping trying to find
memory and kswapd running at 100% cpu.

The issue occurs because drain_all_pages() is called immediately
following direct reclaim when no memory is freed and try_to_free_pages()
returns non-zero because all zones in the zonelist do not have their
all_unreclaimable flag set.

When draining the per-cpu pagesets back to the buddy allocator for each
zone, the zone->pages_scanned counter is cleared to avoid erroneously
setting zone->all_unreclaimable later.  The problem is that no pages may
actually be drained and, thus, the unreclaimable logic never fails
direct reclaim so the oom killer may be invoked.

This apparently only manifested after wait_iff_congested() was
introduced and the zone was full of anonymous memory that would not
congest the backing store.  The page allocator would infinitely loop if
there were no other tasks waiting to be scheduled and clear
zone->pages_scanned because of drain_all_pages() as the result of this
change before kswapd could scan enough pages to trigger the reclaim
logic.  Additionally, with every loop of the page allocator and in the
reclaim path, kswapd would be kicked and would end up running at 100%
cpu.  In this scenario, current and kswapd are all running continuously
with kswapd incrementing zone->pages_scanned and current clearing it.

The problem is even more pronounced when current swaps some of its
memory to swap cache and the reclaimable logic then considers all active
anonymous memory in the all_unreclaimable logic, which requires a much
higher zone->pages_scanned value for try_to_free_pages() to return zero
that is never attainable in this scenario.

Before wait_iff_congested(), the page allocator would incur an
unconditional timeout and allow kswapd to elevate zone->pages_scanned to
a level that the oom killer would be called the next time it loops.

The fix is to only attempt to drain pcp pages if there is actually a
quantity to be drained.  The unconditional clearing of
zone->pages_scanned in free_pcppages_bulk() need not be changed since
other callers already ensure that draining will occur.  This patch
ensures that free_pcppages_bulk() will actually free memory before
calling into it from drain_all_pages() so zone->pages_scanned is only
cleared if appropriate.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26 10:50:01 +10:00
David Rientjes f33261d75b mm: fix deferred congestion timeout if preferred zone is not allowed
Before 0e093d9976 ("writeback: do not sleep on the congestion queue if
there are no congested BDIs or if significant congestion is not being
encountered in the current zone"), preferred_zone was only used for NUMA
statistics, to determine the zoneidx from which to allocate from given
the type requested, and whether to utilize memory compaction.

wait_iff_congested(), though, uses preferred_zone to determine if the
congestion wait should be deferred because its dirty pages are backed by
a congested bdi.  This incorrectly defers the timeout and busy loops in
the page allocator with various cond_resched() calls if preferred_zone
is not allowed in the current context, usually consuming 100% of a cpu.

This patch ensures preferred_zone is an allowed zone in the fastpath
depending on whether current is constrained by its cpuset or nodes in
its mempolicy (when the nodemask passed is non-NULL).  This is correct
since the fastpath allocation always passes ALLOC_CPUSET when trying to
allocate memory.  In the slowpath, this patch resets preferred_zone to
the first zone of the allowed type when the allocation is not
constrained by current's cpuset, i.e.  it does not pass ALLOC_CPUSET.

This patch also ensures preferred_zone is from the set of allowed nodes
when called from within direct reclaim since allocations are always
constrained by cpusets in this context (it is blockable).

Both of these uses of cpuset_current_mems_allowed are protected by
get_mems_allowed().

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26 10:50:00 +10:00
Andrew Morton c06b1fca18 mm/page_alloc.c: don't cache `current' in a local
It's old-fashioned and unneeded.

akpm:/usr/src/25> size mm/page_alloc.o
   text    data     bss     dec     hex filename
  39884 1241317   18808 1300009  13d629 mm/page_alloc.o (before)
  39838 1241317   18808 1299963  13d5fb mm/page_alloc.o (after)

Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:49 -08:00
KyongHo Cho 43506fad21 mm/page_alloc.c: simplify calculation of combined index of adjacent buddy lists
The previous approach of calucation of combined index was

	page_idx & ~(1 << order))

but we have same result with

	page_idx & buddy_idx

This reduces instructions slightly as well as enhances readability.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix used-unintialised warning]
Signed-off-by: KyongHo Cho <pullip.cho@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:48 -08:00
Andrea Arcangeli 5f24ce5fd3 thp: remove PG_buddy
PG_buddy can be converted to _mapcount == -2.  So the PG_compound_lock can
be added to page->flags without overflowing (because of the sparse section
bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y.  This also
has to move the memory hotplug code from _mapcount to lru.next to avoid
any risk of clashes.  We can't use lru.next for PG_buddy removal, but
memory hotplug can use lru.next even more easily than the mapcount
instead.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:43 -08:00
Andrea Arcangeli 5c3240d92e thp: don't alloc harder for gfp nomemalloc even if nowait
Not worth throwing away the precious reserved free memory pool for
allocations that can fail gracefully (either through mempool or because
they're transhuge allocations later falling back to 4k allocations).

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:42 -08:00
Andrea Arcangeli 32dba98e08 thp: _GFP_NO_KSWAPD
Transparent hugepage allocations must be allowed not to invoke kswapd or
any other kind of indirect reclaim (especially when the defrag sysfs is
control disabled).  It's unacceptable to swap out anonymous pages
(potentially anonymous transparent hugepages) in order to create new
transparent hugepages.  This is true for the MADV_HUGEPAGE areas too
(swapping out a kvm virtual machine and so having it suffer an unbearable
slowdown, so another one with guest physical memory marked MADV_HUGEPAGE
can run 30% faster if it is running memory intensive workloads, makes no
sense).  If a transparent hugepage allocation fails the slowdown is minor
and there is total fallback, so kswapd should never be asked to swapout
memory to allow the high order allocation to succeed.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:41 -08:00
Andrea Arcangeli 59ff421631 thp: comment reminder in destroy_compound_page
Warn destroy_compound_page that __split_huge_page_refcount is heavily
dependent on its internal behavior.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:39 -08:00
Andrea Arcangeli 8dd60a3a65 thp: clear compound mapping
Clear compound mapping for anonymous compound pages like it already
happens for regular anonymous pages.  But crash if mapping is set for any
tail page, also the PageAnon check is meaningless for tail pages.  This
check only makes sense for the head page, for tail page it can only hide
bugs and we definitely don't want to hide bugs.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:39 -08:00
Andrea Arcangeli 4e9f64c42d thp: fix bad_page to show the real reason the page is bad
page_count shows the count of the head page, but the actual check is done
on the tail page, so show what is really being checked.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:38 -08:00
Volodymyr G. Lukiianyk ecb256f815 mm: set correct numa_zonelist_order string when configured on the kernel command line
When numa_zonelist_order parameter is set to "node" or "zone" on the
command line it's still showing as "default" in sysctl.  That's because
early_param parsing function changes only user_zonelist_order variable.
Fix this by copying user-provided string to numa_zonelist_order if it was
successfully parsed.

Signed-off-by: Volodymyr G Lukiianyk <volodymyrgl@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman 9950474883 mm: kswapd: stop high-order balancing when any suitable zone is balanced
Simon Kirby reported the following problem

   We're seeing cases on a number of servers where cache never fully
   grows to use all available memory.  Sometimes we see servers with 4 GB
   of memory that never seem to have less than 1.5 GB free, even with a
   constantly-active VM.  In some cases, these servers also swap out while
   this happens, even though they are constantly reading the working set
   into memory.  We have been seeing this happening for a long time; I
   don't think it's anything recent, and it still happens on 2.6.36.

After some debugging work by Simon, Dave Hansen and others, the prevaling
theory became that kswapd is reclaiming order-3 pages requested by SLUB
too aggressive about it.

There are two apparent problems here.  On the target machine, there is a
small Normal zone in comparison to DMA32.  As kswapd tries to balance all
zones, it would continually try reclaiming for Normal even though DMA32
was balanced enough for callers.  The second problem is that
sleeping_prematurely() does not use the same logic as balance_pgdat() when
deciding whether to sleep or not.  This keeps kswapd artifically awake.

A number of tests were run and the figures from previous postings will
look very different for a few reasons.  One, the old figures were forcing
my network card to use GFP_ATOMIC in attempt to replicate Simon's problem.
 Second, I previous specified slub_min_order=3 again in an attempt to
reproduce Simon's problem.  In this posting, I'm depending on Simon to say
whether his problem is fixed or not and these figures are to show the
impact to the ordinary cases.  Finally, the "vmscan" figures are taken
from /proc/vmstat instead of the tracepoints.  There is less information
but recording is less disruptive.

The first test of relevance was postmark with a process running in the
background reading a large amount of anonymous memory in blocks.  The
objective was to vaguely simulate what was happening on Simon's machine
and it's memory intensive enough to have kswapd awake.

POSTMARK
                                            traceonly          kanyzone
Transactions per second:              156.00 ( 0.00%)   153.00 (-1.96%)
Data megabytes read per second:        21.51 ( 0.00%)    21.52 ( 0.05%)
Data megabytes written per second:     29.28 ( 0.00%)    29.11 (-0.58%)
Files created alone per second:       250.00 ( 0.00%)   416.00 (39.90%)
Files create/transact per second:      79.00 ( 0.00%)    76.00 (-3.95%)
Files deleted alone per second:       520.00 ( 0.00%)   420.00 (-23.81%)
Files delete/transact per second:      79.00 ( 0.00%)    76.00 (-3.95%)

MMTests Statistics: duration
User/Sys Time Running Test (seconds)         16.58      17.4
Total Elapsed Time (seconds)                218.48    222.47

VMstat Reclaim Statistics: vmscan
Direct reclaims                                  0          4
Direct reclaim pages scanned                     0        203
Direct reclaim pages reclaimed                   0        184
Kswapd pages scanned                        326631     322018
Kswapd pages reclaimed                      312632     309784
Kswapd low wmark quickly                         1          4
Kswapd high wmark quickly                      122        475
Kswapd skip congestion_wait                      1          0
Pages activated                             700040     705317
Pages deactivated                           212113     203922
Pages written                                 9875       6363

Total pages scanned                         326631    322221
Total pages reclaimed                       312632    309968
%age total pages scanned/reclaimed          95.71%    96.20%
%age total pages scanned/written             3.02%     1.97%

proc vmstat: Faults
Major Faults                                   300       254
Minor Faults                                645183    660284
Page ins                                    493588    486704
Page outs                                  4960088   4986704
Swap ins                                      1230       661
Swap outs                                     9869      6355

Performance is mildly affected because kswapd is no longer doing as much
work and the background memory consumer process is getting in the way.
Note that kswapd scanned and reclaimed fewer pages as it's less aggressive
and overall fewer pages were scanned and reclaimed.  Swap in/out is
particularly reduced again reflecting kswapd throwing out fewer pages.

The slight performance impact is unfortunate here but it looks like a
direct result of kswapd being less aggressive.  As the bug report is about
too many pages being freed by kswapd, it may have to be accepted for now.

The second test is a streaming IO benchmark that was previously used by
Johannes to show regressions in page reclaim.

MICRO
					 traceonly  kanyzone
User/Sys Time Running Test (seconds)         29.29     28.87
Total Elapsed Time (seconds)                492.18    488.79

VMstat Reclaim Statistics: vmscan
Direct reclaims                               2128       1460
Direct reclaim pages scanned               2284822    1496067
Direct reclaim pages reclaimed              148919     110937
Kswapd pages scanned                      15450014   16202876
Kswapd pages reclaimed                     8503697    8537897
Kswapd low wmark quickly                      3100       3397
Kswapd high wmark quickly                     1860       7243
Kswapd skip congestion_wait                    708        801
Pages activated                               9635       9573
Pages deactivated                             1432       1271
Pages written                                  223       1130

Total pages scanned                       17734836  17698943
Total pages reclaimed                      8652616   8648834
%age total pages scanned/reclaimed          48.79%    48.87%
%age total pages scanned/written             0.00%     0.01%

proc vmstat: Faults
Major Faults                                   165       221
Minor Faults                               9655785   9656506
Page ins                                      3880      7228
Page outs                                 37692940  37480076
Swap ins                                         0        69
Swap outs                                       19        15

Again fewer pages are scanned and reclaimed as expected and this time the
test completed faster.  Note that kswapd is hitting its watermarks faster
(low and high wmark quickly) which I expect is due to kswapd reclaiming
fewer pages.

I also ran fs-mark, iozone and sysbench but there is nothing interesting
to report in the figures.  Performance is not significantly changed and
the reclaim statistics look reasonable.

Tgis patch:

When the allocator enters its slow path, kswapd is woken up to balance the
node.  It continues working until all zones within the node are balanced.
For order-0 allocations, this makes perfect sense but for higher orders it
can have unintended side-effects.  If the zone sizes are imbalanced,
kswapd may reclaim heavily within a smaller zone discarding an excessive
number of pages.  The user-visible behaviour is that kswapd is awake and
reclaiming even though plenty of pages are free from a suitable zone.

This patch alters the "balance" logic for high-order reclaim allowing
kswapd to stop if any suitable zone becomes balanced to reduce the number
of pages it reclaims from other zones.  kswapd still tries to ensure that
order-0 watermarks for all zones are met before sleeping.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:37 -08:00
Mel Gorman 77f1fe6b08 mm: migration: allow migration to operate asynchronously and avoid synchronous compaction in the faster path
Migration synchronously waits for writeback if the initial passes fails.
Callers of memory compaction do not necessarily want this behaviour if the
caller is latency sensitive or expects that synchronous migration is not
going to have a significantly better success rate.

This patch adds a sync parameter to migrate_pages() allowing the caller to
indicate if wait_on_page_writeback() is allowed within migration or not.
For reclaim/compaction, try_to_compact_pages() is first called
asynchronously, direct reclaim runs and then try_to_compact_pages() is
called synchronously as there is a greater expectation that it'll succeed.

[akpm@linux-foundation.org: build/merge fix]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:34 -08:00
Mel Gorman 3e7d344970 mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaim
Lumpy reclaim is disruptive.  It reclaims a large number of pages and
ignores the age of the pages it reclaims.  This can incur significant
stalls and potentially increase the number of major faults.

Compaction has reached the point where it is considered reasonably stable
(meaning it has passed a lot of testing) and is a potential candidate for
displacing lumpy reclaim.  This patch introduces an alternative to lumpy
reclaim whe compaction is available called reclaim/compaction.  The basic
operation is very simple - instead of selecting a contiguous range of
pages to reclaim, a number of order-0 pages are reclaimed and then
compaction is later by either kswapd (compact_zone_order()) or direct
compaction (__alloc_pages_direct_compact()).

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: use conventional task_struct naming]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:33 -08:00
Mel Gorman 88f5acf88a mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES.  To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold.  On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high.  The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues.  The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.

Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing.  This patch takes a different approach.  For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level.  This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node.  There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.

To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat().  We are still using an expensive
function but limiting how often it is called.

When the test case is reproduced, the time spent in the watermark
functions is reduced.  The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().

vanilla                      11.6615%
disable-threshold            0.2584%

David said:

: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity.  I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org>		[2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:31 -08:00
Yinghai Lu 1a4a678b12 memblock: Make find_memory_core_early() find from top-down
That is used for find ram in node or bootmem type.

We should make it top-down so it will be consistent to memblock_find,
and to avoid allocating potentially valuable low memory before we
actually need it.

Suggested-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D0C075B.3040501@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-12-29 14:46:55 -08:00
Jiri Kosina 4b7bd36470 Merge branch 'master' into for-next
Conflicts:
	MAINTAINERS
	arch/arm/mach-omap2/pm24xx.c
	drivers/scsi/bfa/bfa_fcpim.c

Needed to update to apply fixes for which the old branch was too
outdated.
2010-12-22 18:57:02 +01:00
Rafael J. Wysocki c9e664f1fd PM / Hibernate: Fix memory corruption related to swap
There is a problem that swap pages allocated before the creation of
a hibernation image can be released and used for storing the contents
of different memory pages while the image is being saved.  Since the
kernel stored in the image doesn't know of that, it causes memory
corruption to occur after resume from hibernation, especially on
systems with relatively small RAM that need to swap often.

This issue can be addressed by keeping the GFP_IOFS bits clear
in gfp_allowed_mask during the entire hibernation, including the
saving of the image, until the system is finally turned off or
the hibernation is aborted.  Unfortunately, for this purpose
it's necessary to rework the way in which the hibernate and
suspend code manipulates gfp_allowed_mask.

This change is based on an earlier patch from Hugh Dickins.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-by: Ondrej Zary <linux@rainbow-software.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: stable@kernel.org
2010-12-06 23:52:08 +01:00
Jesper Juhl fa9f90be74 Kill off a bunch of warning: ‘inline’ is not at beginning of declaration
These warnings are spewed during a build of a 'allnoconfig' kernel
(especially the ones from u64_stats_sync.h show up a lot) when building
with -Wextra (which I often do)..
They are
  a) annoying
  b) easy to get rid of.
This patch kills them off.

include/linux/u64_stats_sync.h:70:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:77:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:84:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:96:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:115:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:127:1: warning: ‘inline’ is not at beginning of declaration
kernel/time.c:241:1: warning: ‘inline’ is not at beginning of declaration
kernel/time.c:257:1: warning: ‘inline’ is not at beginning of declaration
kernel/perf_event.c:4513:1: warning: ‘inline’ is not at beginning of declaration
mm/page_alloc.c:4012:1: warning: ‘inline’ is not at beginning of declaration

Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-11-28 23:08:04 +01:00
KAMEZAWA Hiroyuki e9959f0f37 mm/page_alloc.c: fix build_all_zonelist() where percpu_alloc() is wrongly called under stop_machine_run()
During memory hotplug, build_allzonelists() may be called under
stop_machine_run().  In this function, setup_zone_pageset() is called.
But it's bug because it will do page allocation under stop_machine_run().

Here is a report from Alok Kataria.

  BUG: sleeping function called from invalid context at kernel/mutex.c:94
  in_atomic(): 0, irqs_disabled(): 1, pid: 4, name: migration/0
  Pid: 4, comm: migration/0 Not tainted 2.6.35.6-45.fc14.x86_64 #1
  Call Trace:
   [<ffffffff8103d12b>] __might_sleep+0xeb/0xf0
   [<ffffffff81468245>] mutex_lock+0x24/0x50
   [<ffffffff8110eaa6>] pcpu_alloc+0x6d/0x7ee
   [<ffffffff81048888>] ? load_balance+0xbe/0x60e
   [<ffffffff8103a1b3>] ? rt_se_boosted+0x21/0x2f
   [<ffffffff8103e1cf>] ? dequeue_rt_stack+0x18b/0x1ed
   [<ffffffff8110f237>] __alloc_percpu+0x10/0x12
   [<ffffffff81465e22>] setup_zone_pageset+0x38/0xbe
   [<ffffffff810d6d81>] ? build_zonelists_node.clone.58+0x79/0x8c
   [<ffffffff81452539>] __build_all_zonelists+0x419/0x46c
   [<ffffffff8108ef01>] ? cpu_stopper_thread+0xb2/0x198
   [<ffffffff8108f075>] stop_machine_cpu_stop+0x8e/0xc5
   [<ffffffff8108efe7>] ? stop_machine_cpu_stop+0x0/0xc5
   [<ffffffff8108ef57>] cpu_stopper_thread+0x108/0x198
   [<ffffffff81467a37>] ? schedule+0x5b2/0x5cc
   [<ffffffff8108ee4f>] ? cpu_stopper_thread+0x0/0x198
   [<ffffffff81065f29>] kthread+0x7f/0x87
   [<ffffffff8100aae4>] kernel_thread_helper+0x4/0x10
   [<ffffffff81065eaa>] ? kthread+0x0/0x87
   [<ffffffff8100aae0>] ? kernel_thread_helper+0x0/0x10
  Built 5 zonelists in Node order, mobility grouping on.  Total pages: 289456
  Policy zone: Normal

This patch tries to fix the issue by moving setup_zone_pageset() out from
stop_machine_run(). It's obviously not necessary to be called under
stop_machine_run().

[akpm@linux-foundation.org: remove unneeded local]
Reported-by: Alok Kataria <akataria@vmware.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Petr Vandrovec <petr@vmware.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-25 06:50:45 +09:00
Namhyung Kim e6223a3b19 mm: add casts to/from gfp_t in gfp_to_alloc_flags()
This removes following warning from sparse:

 mm/page_alloc.c:1934:9: warning: restricted gfp_t degrades to integer

Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:09 -07:00
Mel Gorman 0e093d9976 writeback: do not sleep on the congestion queue if there are no congested BDIs or if significant congestion is not being encountered in the current zone
If congestion_wait() is called with no BDI congested, the caller will
sleep for the full timeout and this may be an unnecessary sleep.  This
patch adds a wait_iff_congested() that checks congestion and only sleeps
if a BDI is congested else, it calls cond_resched() to ensure the caller
is not hogging the CPU longer than its quota but otherwise will not sleep.

This is aimed at reducing some of the major desktop stalls reported during
IO.  For example, while kswapd is operating, it calls congestion_wait()
but it could just have been reclaiming clean page cache pages with no
congestion.  Without this patch, it would sleep for a full timeout but
after this patch, it'll just call schedule() if it has been on the CPU too
long.  Similar logic applies to direct reclaimers that are not making
enough progress.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:07 -07:00
KAMEZAWA Hiroyuki 49ac825587 memory hotplug: unify is_removable and offline detection code
Now, sysfs interface of memory hotplug shows whether the section is
removable or not.  But it checks only migrateype of pages and doesn't
check details of cluster of pages.

Next, memory hotplug's set_migratetype_isolate() has the same kind of
check, too.

This patch adds the function __count_unmovable_pages() and makes above 2
checks to use the same logic.  Then, is_removable and hotremove code uses
the same logic.  No changes in the hotremove logic itself.

TODO: need to find a way to check RECLAMABLE. But, considering bit,
      calling shrink_slab() against a range before starting memory hotremove
      sounds better. If so, this patch's logic doesn't need to be changed.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reported-by: Michal Hocko <mhocko@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
KAMEZAWA Hiroyuki 4b20477f58 memory hotplug: fix notifier's return value check
Even if notifier cannot find any pages, it doesn't mean no pages are
available...And, if there are no notifiers registered, this condition will
be always true and memory hotplug will show -EBUSY.

This is a bug but not critical.

In most case, a pageblock which will be offlined is MIGRATE_MOVABLE This
"notifier" is called only when the pageblock is _not_ MIGRATE_MOVABLE.
But if not MIGRATE_MOVABLE, it's common case that memory hotplug will
fail.  So, no one notice this bug.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Mel Gorman b7f50cfa36 mm, page-allocator: do not check the state of a non-existant buddy during free
There is a bug in commit 6dda9d55 ("page allocator: reduce fragmentation
in buddy allocator by adding buddies that are merging to the tail of the
free lists") that means a buddy at order MAX_ORDER is checked for merging.
 A page of this order never exists so at times, an effectively random
piece of memory is being checked.

Alan Curry has reported that this is causing memory corruption in
userspace data on a PPC32 platform (http://lkml.org/lkml/2010/10/9/32).
It is not clear why this is happening.  It could be a cache coherency
problem where pages mapped in both user and kernel space are getting
different cache lines due to the bad read from kernel space
(http://lkml.org/lkml/2010/10/13/179).  It could also be that there are
some special registers being io-remapped at the end of the memmap array
and that a read has special meaning on them.  Compiler bugs have been
ruled out because the assembly before and after the patch looks relatively
harmless.

This patch fixes the problem by ensuring we are not reading a possibly
invalid location of memory.  It's not clear why the read causes corruption
but one way or the other it is a buggy read.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Corrado Zoccolo <czoccolo@gmail.com>
Reported-by: Alan Curry <pacman@kosh.dhis.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:03 -07:00
H. Peter Anvin 8e4029ee35 Merge branch 'x86/urgent' into core/memblock
Reason for merge:

Forward-port urgent change to arch/x86/mm/srat_64.c to the memblock tree.

Resolved Conflicts:
	arch/x86/mm/srat_64.c

Originally-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-10-11 17:05:11 -07:00
Ingo Molnar 153db80f8c Merge commit 'v2.6.36-rc7' into core/memblock
Merge reason: Update from -rc3 to -rc7.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-10-08 09:15:00 +02:00
Robin Holt f241e6607b mm: alloc_large_system_hash() printk overflow on 16TB boot
During boot of a 16TB system, the following is printed:
Dentry cache hash table entries: -2147483648 (order: 22, 17179869184 bytes)

Signed-off-by: Robin Holt <holt@sgi.com>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-07 13:31:21 -07:00
Mel Gorman 9ee493ce0a mm: page allocator: drain per-cpu lists after direct reclaim allocation fails
When under significant memory pressure, a process enters direct reclaim
and immediately afterwards tries to allocate a page.  If it fails and no
further progress is made, it's possible the system will go OOM.  However,
on systems with large amounts of memory, it's possible that a significant
number of pages are on per-cpu lists and inaccessible to the calling
process.  This leads to a process entering direct reclaim more often than
it should increasing the pressure on the system and compounding the
problem.

This patch notes that if direct reclaim is making progress but allocations
are still failing that the system is already under heavy pressure.  In
this case, it drains the per-cpu lists and tries the allocation a second
time before continuing.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09 18:57:25 -07:00
Christoph Lameter aa45484031 mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory is low and kswapd is awake
Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is
cheaper than scanning a number of lists.  To avoid synchronization
overhead, counter deltas are maintained on a per-cpu basis and drained
both periodically and when the delta is above a threshold.  On large CPU
systems, the difference between the estimated and real value of
NR_FREE_PAGES can be very high.  If NR_FREE_PAGES is much higher than
number of real free page in buddy, the VM can allocate pages below min
watermark, at worst reducing the real number of pages to zero.  Even if
the OOM killer kills some victim for freeing memory, it may not free
memory if the exit path requires a new page resulting in livelock.

This patch introduces a zone_page_state_snapshot() function (courtesy of
Christoph) that takes a slightly more accurate view of an arbitrary vmstat
counter.  It is used to read NR_FREE_PAGES while kswapd is awake to avoid
the watermark being accidentally broken.  The estimate is not perfect and
may result in cache line bounces but is expected to be lighter than the
IPI calls necessary to continually drain the per-cpu counters while kswapd
is awake.

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09 18:57:25 -07:00
Mel Gorman 72853e2991 mm: page allocator: update free page counters after pages are placed on the free list
When allocating a page, the system uses NR_FREE_PAGES counters to
determine if watermarks would remain intact after the allocation was made.
This check is made without interrupts disabled or the zone lock held and
so is race-prone by nature.  Unfortunately, when pages are being freed in
batch, the counters are updated before the pages are added on the list.
During this window, the counters are misleading as the pages do not exist
yet.  When under significant pressure on systems with large numbers of
CPUs, it's possible for processes to make progress even though they should
have been stalled.  This is particularly problematic if a number of the
processes are using GFP_ATOMIC as the min watermark can be accidentally
breached and in extreme cases, the system can livelock.

This patch updates the counters after the pages have been added to the
list.  This makes the allocator more cautious with respect to preserving
the watermarks and mitigates livelock possibilities.

[akpm@linux-foundation.org: avoid modifying incoming args]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09 18:57:25 -07:00
Ingo Molnar daab7fc734 Merge commit 'v2.6.36-rc3' into x86/memblock
Conflicts:
	arch/x86/kernel/trampoline.c
	mm/memblock.c

Merge reason: Resolve the conflicts, update to latest upstream.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-08-31 09:45:46 +02:00
Yinghai Lu 72d7c3b33c x86: Use memblock to replace early_res
1. replace find_e820_area with memblock_find_in_range
2. replace reserve_early with memblock_x86_reserve_range
3. replace free_early with memblock_x86_free_range.
4. NO_BOOTMEM will switch to use memblock too.
5. use _e820, _early wrap in the patch, in following patch, will
   replace them all
6. because memblock_x86_free_range support partial free, we can remove some special care
7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill()
   so adjust some calling later in setup.c::setup_arch()
   -- corruption_check and mptable_update

-v2: Move reserve_brk() early
    Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range()
    that could happen We have more then 128 RAM entry in E820 tables, and
    memblock_x86_fill() could use memblock_find_in_range() to find a new place for
    memblock.memory.region array.
    and We don't need to use extend_brk() after fill_memblock_area()
    So move reserve_brk() early before fill_memblock_area().
-v3: Move find_smp_config early
    To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable
    in right place.
-v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in
    memblock.reserved already..
    use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later.
-v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit
    active_region for 32bit does include high pages
    need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped()
-v6: Use current_limit instead
-v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L
-v8: Set memblock_can_resize early to handle EFI with more RAM entries
-v9: update after kmemleak changes in mainline

Suggested-by: David S. Miller <davem@davemloft.net>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27 11:12:29 -07:00
Yinghai Lu edbe7d23b4 memblock: Add find_memory_core_early()
According to node range in early_node_map[] with __memblock_find_in_range
to find free range.

Will be used by memblock_x86_find_in_range_node()

memblock_x86_find_in_range_node will be used to find right buffer for NODE_DATA

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27 11:10:54 -07:00
KOSAKI Motohiro 25edde0332 vmscan: kill prev_priority completely
Since 2.6.28 zone->prev_priority is unused. Then it can be removed
safely. It reduce stack usage slightly.

Now I have to say that I'm sorry. 2 years ago, I thought prev_priority
can be integrate again, it's useful. but four (or more) times trying
haven't got good performance number. Thus I give up such approach.

The rest of this changelog is notes on prev_priority and why it existed in
the first place and why it might be not necessary any more. This information
is based heavily on discussions between Andrew Morton, Rik van Riel and
Kosaki Motohiro who is heavily quotes from.

Historically prev_priority was important because it determined when the VM
would start unmapping PTE pages. i.e. there are no balances of note within
the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there
is a potential risk of unnecessarily increasing minor faults as a large
amount of read activity of use-once pages could push mapped pages to the
end of the LRU and get unmapped.

There is no proof this is still a problem but currently it is not considered
to be. Active files are not deactivated if the active file list is smaller
than the inactive list reducing the liklihood that file-mapped pages are
being pushed off the LRU and referenced executable pages are kept on the
active list to avoid them getting pushed out by read activity.

Even if it is a problem, prev_priority prev_priority wouldn't works
nowadays. First of all, current vmscan still a lot of UP centric code. it
expose some weakness on some dozens CPUs machine. I think we need more and
more improvement.

The problem is, current vmscan mix up per-system-pressure, per-zone-pressure
and per-task-pressure a bit. example, prev_priority try to boost priority to
other concurrent priority. but if the another task have mempolicy restriction,
it is unnecessary, but also makes wrong big latency and exceeding reclaim.
per-task based priority + prev_priority adjustment make the emulation of
per-system pressure. but it have two issue 1) too rough and brutal emulation
2) we need per-zone pressure, not per-system.

Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about
2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer.
but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the
system have higher memory pressure than priority==0 (1/4096*10,000 > 2).
prev_priority can't solve such multithreads workload issue. In other word,
prev_priority concept assume the sysmtem don't have lots threads."

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:00 -07:00
Minchan Kim ff321feac2 mm: rename try_set_zone_oom() to try_set_zonelist_oom()
We have been used naming try_set_zone_oom and clear_zonelist_oom.
The role of functions is to lock of zonelist for preventing parallel
OOM. So clear_zonelist_oom makes sense but try_set_zone_oome is rather
awkward and unmatched with clear_zonelist_oom.

Let's change it with try_set_zonelist_oom.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:57 -07:00
David Rientjes 03668b3ceb oom: avoid oom killer for lowmem allocations
If memory has been depleted in lowmem zones even with the protection
afforded to it by /proc/sys/vm/lowmem_reserve_ratio, it is unlikely that
killing current users will help.  The memory is either reclaimable (or
migratable) already, in which case we should not invoke the oom killer at
all, or it is pinned by an application for I/O.  Killing such an
application may leave the hardware in an unspecified state and there is no
guarantee that it will be able to make a timely exit.

Lowmem allocations are now failed in oom conditions when __GFP_NOFAIL is
not used so that the task can perhaps recover or try again later.

Previously, the heuristic provided some protection for those tasks with
CAP_SYS_RAWIO, but this is no longer necessary since we will not be
killing tasks for the purposes of ISA allocations.

high_zoneidx is gfp_zone(gfp_flags), meaning that ZONE_NORMAL will be the
default for all allocations that are not __GFP_DMA, __GFP_DMA32,
__GFP_HIGHMEM, and __GFP_MOVABLE on kernels configured to support those
flags.  Testing for high_zoneidx being less than ZONE_NORMAL will only
return true for allocations that have either __GFP_DMA or __GFP_DMA32.

Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:56 -07:00
Yinghai Lu b8ab9f8202 x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used
Borislav Petkov reported his 32bit numa system has problem:

[    0.000000] Reserving total of 4c00 pages for numa KVA remap
[    0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe
[    0.000000] max_pfn = 238000
[    0.000000] 8202MB HIGHMEM available.
[    0.000000] 885MB LOWMEM available.
[    0.000000]   mapped low ram: 0 - 375fe000
[    0.000000]   low ram: 0 - 375fe000
[    0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000
[    0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80
[    0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140
[    0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000
[    0.000000] BUG: unable to handle kernel paging request at 40000000
[    0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6
[    0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00
...
[    0.000000] Call Trace:
[    0.000000]  [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f
[    0.000000]  [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b
[    0.000000]  [<c2c9149e>] ? sparse_init+0x1dc/0x499
[    0.000000]  [<c2c79118>] ? paging_init+0x168/0x1df
[    0.000000]  [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb

looks like it allocates too much high address for bootmem.

Try to cut limit with get_max_mapped()

Reported-by: Borislav Petkov <borislav.petkov@amd.com>
Tested-by: Conny Seidel <conny.seidel@amd.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: <stable@kernel.org>		[2.6.34.x]
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 16:25:40 -07:00
Catalin Marinas 9078370c0d kmemleak: Add support for NO_BOOTMEM configurations
With commits 08677214 and 59be5a8e, alloc_bootmem()/free_bootmem() and
friends use the early_res functions for memory management when
NO_BOOTMEM is enabled. This patch adds the kmemleak calls in the
corresponding code paths for bootmem allocations.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: stable@kernel.org
2010-07-19 11:54:15 +01:00
Lee Schermerhorn 7aac789885 numa: introduce numa_mem_id()- effective local memory node id
Introduce numa_mem_id(), based on generic percpu variable infrastructure
to track "nearest node with memory" for archs that support memoryless
nodes.

Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES
defined, else stubs.  Architectures will define HAVE_MEMORYLESS_NODES
if/when they support them.

Archs can override definitions of:

numa_mem_id() - returns node number of "local memory" node
set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem'
cpu_to_mem()  - return numa_mem for specified cpu; may be used as lvalue

Generic initialization of 'numa_mem' occurs in __build_all_zonelists().
This will initialize the boot cpu at boot time, and all cpus on change of
numa_zonelist_order, or when node or memory hot-plug requires zonelist
rebuild.  Archs that support memoryless nodes will need to initialize
'numa_mem' for secondary cpus as they're brought on-line.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:57 -07:00
Lee Schermerhorn 7281201922 numa: add generic percpu var numa_node_id() implementation
Rework the generic version of the numa_node_id() function to use the new
generic percpu variable infrastructure.

Guard the new implementation with a new config option:

        CONFIG_USE_PERCPU_NUMA_NODE_ID.

Archs which support this new implemention will default this option to 'y'
when NUMA is configured.  This config option could be removed if/when all
archs switch over to the generic percpu implementation of numa_node_id().
Arch support involves:

  1) converting any existing per cpu variable implementations to use
     this implementation.  x86_64 is an instance of such an arch.
  2) archs that don't use a per cpu variable for numa_node_id() will
     need to initialize the new per cpu variable "numa_node" as cpus
     are brought on-line.  ia64 is an example.
  3) Defining USE_PERCPU_NUMA_NODE_ID in arch dependent Kconfig--e.g.,
     when NUMA is configured.  This is required because I have
     retained the old implementation by default to allow archs to
     be modified incrementally, as desired.

Subsequent patches will convert x86_64 and ia64 to use this implemenation.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:57 -07:00
Haicheng Li 4eaf3f6439 mem-hotplug: fix potential race while building zonelist for new populated zone
Add global mutex zonelists_mutex to fix the possible race:

     CPU0                                  CPU1                    CPU2
(1) zone->present_pages += online_pages;
(2)                                       build_all_zonelists();
(3)                                                               alloc_page();
(4)                                                               free_page();
(5) build_all_zonelists();
(6)   __build_all_zonelists();
(7)     zone->pageset = alloc_percpu();

In step (3,4), zone->pageset still points to boot_pageset, so bad
things may happen if 2+ nodes are in this state. Even if only 1 node
is accessing the boot_pageset, (3) may still consume too much memory
to fail the memory allocations in step (7).

Besides, atomic operation ensures alloc_percpu() in step (7) will never fail
since there is a new fresh memory block added in step(6).

[haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:02 -07:00
Haicheng Li 1f522509c7 mem-hotplug: avoid multiple zones sharing same boot strapping boot_pageset
For each new populated zone of hotadded node, need to update its pagesets
with dynamically allocated per_cpu_pageset struct for all possible CPUs:

    1) Detach zone->pageset from the shared boot_pageset
       at end of __build_all_zonelists().

    2) Use mutex to protect zone->pageset when it's still
       shared in onlined_pages()

Otherwises, multiple zones of different nodes would share same boot strapping
boot_pageset for same CPU, which will finally cause below kernel panic:

  ------------[ cut here ]------------
  kernel BUG at mm/page_alloc.c:1239!
  invalid opcode: 0000 [#1] SMP
  ...
  Call Trace:
   [<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0
   [<ffffffff81162e67>] alloc_pages_current+0x87/0xd0
   [<ffffffff81128407>] __page_cache_alloc+0x67/0x70
   [<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260
   [<ffffffff81132751>] ra_submit+0x21/0x30
   [<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0
   [<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0
   [<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670
   [<ffffffff81266cfa>] nfs_file_read+0xca/0x130
   [<ffffffff8117b20a>] do_sync_read+0xfa/0x140
   [<ffffffff8117bf75>] vfs_read+0xb5/0x1a0
   [<ffffffff8117c151>] sys_read+0x51/0x80
   [<ffffffff8103c032>] system_call_fastpath+0x16/0x1b
  RIP  [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900
   RSP <ffff88000d1e78a8>
  ---[ end trace 4bda28328b9990db ]

[akpm@linux-foundation.org: merge fix]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:01 -07:00
Wu Fengguang 319774e25f mem-hotplug: separate setup_per_cpu_pageset() into separate functions
No behavior change here.

Move some of setup_per_cpu_pageset() code into a new function
setup_zone_pageset() that will be useful for memory hotplug.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:01 -07:00
KOSAKI Motohiro ec95f53aa6 mm: introduce free_pages_prepare()
free_hot_cold_page() and __free_pages_ok() have very similar freeing
preparation.  Consolidate them.

[akpm@linux-foundation.org: fix busted coding style]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
Mel Gorman 4f92e2586b mm: compaction: defer compaction using an exponential backoff when compaction fails
The fragmentation index may indicate that a failure is due to external
fragmentation but after a compaction run completes, it is still possible
for an allocation to fail.  There are two obvious reasons as to why

  o Page migration cannot move all pages so fragmentation remains
  o A suitable page may exist but watermarks are not met

In the event of compaction followed by an allocation failure, this patch
defers further compaction in the zone (1 << compact_defer_shift) times.
If the next compaction attempt also fails, compact_defer_shift is
increased up to a maximum of 6.  If compaction succeeds, the defer
counters are reset again.

The zone that is deferred is the first zone in the zonelist - i.e.  the
preferred zone.  To defer compaction in the other zones, the information
would need to be stored in the zonelist or implemented similar to the
zonelist_cache.  This would impact the fast-paths and is not justified at
this time.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
Mel Gorman 56de7263fc mm: compaction: direct compact when a high-order allocation fails
Ordinarily when a high-order allocation fails, direct reclaim is entered
to free pages to satisfy the allocation.  With this patch, it is
determined if an allocation failed due to external fragmentation instead
of low memory and if so, the calling process will compact until a suitable
page is freed.  Compaction by moving pages in memory is considerably
cheaper than paging out to disk and works where there are locked pages or
no swap.  If compaction fails to free a page of a suitable size, then
reclaim will still occur.

Direct compaction returns as soon as possible.  As each block is
compacted, it is checked if a suitable page has been freed and if so, it
returns.

[akpm@linux-foundation.org: Fix build errors]
[aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:59 -07:00
Mel Gorman 748446bb6b mm: compaction: memory compaction core
This patch is the core of a mechanism which compacts memory in a zone by
relocating movable pages towards the end of the zone.

A single compaction run involves a migration scanner and a free scanner.
Both scanners operate on pageblock-sized areas in the zone.  The migration
scanner starts at the bottom of the zone and searches for all movable
pages within each area, isolating them onto a private list called
migratelist.  The free scanner starts at the top of the zone and searches
for suitable areas and consumes the free pages within making them
available for the migration scanner.  The pages isolated for migration are
then migrated to the newly isolated free pages.

[aarcange@redhat.com: Fix unsafe optimisation]
[mel@csn.ul.ie: do not schedule work on other CPUs for compaction]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:59 -07:00
David Rientjes e325c90ffc mm: default to node zonelist ordering when nodes have only lowmem
There are two types of zonelist ordering methodologies:

 - node order, preferring allocations on a node to stay local to and

 - zone order, preferring allocations come from a higher zone to avoid
   allocating in lowmem zones even though they may not be local.

The ordering technique used by the kernel is configurable on the command
line, but also has some logic to determine what the default should be.

This logic currently lacks knowledge of systems where a node may only have
lowmem.  For such systems, it is necessary to use node order so that
GFP_KERNEL allocations may be satisfied by nodes consisting of only
lowmem.

If zone order is used, GFP_KERNEL allocations to such nodes are actually
allocated on a node with local affinity that includes ZONE_NORMAL.

This change defaults to node zonelist ordering if any node lacks
ZONE_NORMAL.

To force zone order, append 'numa_zonelist_order=zone' to the kernel
command line.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:58 -07:00
Miao Xie c0ff7453bb cpuset,mm: fix no node to alloc memory when changing cpuset's mems
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later.  But in the way, the allocator may find that
there is no node to alloc memory.

The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:

(mpol: mempolicy)
	task1			task1's mpol	task2
	alloc page		1
	  alloc on node0? NO	1
				1		change mems from 1 to 0
				1		rebind task1's mpol
				0-1		  set new bits
				0	  	  clear disallowed bits
	  alloc on node1? NO	0
	  ...
	can't alloc page
	  goto oom

This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits).  So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.

[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:57 -07:00
Corrado Zoccolo 6dda9d55bf page allocator: reduce fragmentation in buddy allocator by adding buddies that are merging to the tail of the free lists
In order to reduce fragmentation, this patch classifies freed pages in two
groups according to their probability of being part of a high order merge.
 Pages belonging to a compound whose next-highest buddy is free are more
likely to be part of a high order merge in the near future, so they will
be added at the tail of the freelist.  The remaining pages are put at the
front of the freelist.

In this way, the pages that are more likely to cause a big merge are kept
free longer.  Consequently there is a tendency to aggregate the
long-living allocations on a subset of the compounds, reducing the
fragmentation.

This heuristic was tested on three machines, x86, x86-64 and ppc64 with
3GB of RAM in each machine.  The tests were kernbench, netperf, sysbench
and STREAM for performance and a high-order stress test for huge page
allocations.

KernBench X86
Elapsed mean     374.77 ( 0.00%)   375.10 (-0.09%)
User    mean     649.53 ( 0.00%)   650.44 (-0.14%)
System  mean      54.75 ( 0.00%)    54.18 ( 1.05%)
CPU     mean     187.75 ( 0.00%)   187.25 ( 0.27%)

KernBench X86-64
Elapsed mean      94.45 ( 0.00%)    94.01 ( 0.47%)
User    mean     323.27 ( 0.00%)   322.66 ( 0.19%)
System  mean      36.71 ( 0.00%)    36.50 ( 0.57%)
CPU     mean     380.75 ( 0.00%)   381.75 (-0.26%)

KernBench PPC64
Elapsed mean     173.45 ( 0.00%)   173.74 (-0.17%)
User    mean     587.99 ( 0.00%)   587.95 ( 0.01%)
System  mean      60.60 ( 0.00%)    60.57 ( 0.05%)
CPU     mean     373.50 ( 0.00%)   372.75 ( 0.20%)

Nothing notable for kernbench.

NetPerf UDP X86
      64    42.68 ( 0.00%)     42.77 ( 0.21%)
     128    85.62 ( 0.00%)     85.32 (-0.35%)
     256   170.01 ( 0.00%)    168.76 (-0.74%)
    1024   655.68 ( 0.00%)    652.33 (-0.51%)
    2048  1262.39 ( 0.00%)   1248.61 (-1.10%)
    3312  1958.41 ( 0.00%)   1944.61 (-0.71%)
    4096  2345.63 ( 0.00%)   2318.83 (-1.16%)
    8192  4132.90 ( 0.00%)   4089.50 (-1.06%)
   16384  6770.88 ( 0.00%)   6642.05 (-1.94%)*

NetPerf UDP X86-64
      64   148.82 ( 0.00%)    154.92 ( 3.94%)
     128   298.96 ( 0.00%)    312.95 ( 4.47%)
     256   583.67 ( 0.00%)    626.39 ( 6.82%)
    1024  2293.18 ( 0.00%)   2371.10 ( 3.29%)
    2048  4274.16 ( 0.00%)   4396.83 ( 2.79%)
    3312  6356.94 ( 0.00%)   6571.35 ( 3.26%)
    4096  7422.68 ( 0.00%)   7635.42 ( 2.79%)*
    8192 12114.81 ( 0.00%)* 12346.88 ( 1.88%)
   16384 17022.28 ( 0.00%)* 17033.19 ( 0.06%)*
             1.64%             2.73%

NetPerf UDP PPC64
      64    49.98 ( 0.00%)     50.25 ( 0.54%)
     128    98.66 ( 0.00%)    100.95 ( 2.27%)
     256   197.33 ( 0.00%)    191.03 (-3.30%)
    1024   761.98 ( 0.00%)    785.07 ( 2.94%)
    2048  1493.50 ( 0.00%)   1510.85 ( 1.15%)
    3312  2303.95 ( 0.00%)   2271.72 (-1.42%)
    4096  2774.56 ( 0.00%)   2773.06 (-0.05%)
    8192  4918.31 ( 0.00%)   4793.59 (-2.60%)
   16384  7497.98 ( 0.00%)   7749.52 ( 3.25%)

The tests are run to have confidence limits within 1%.  Results marked
with a * were not confident although in this case, it's only outside by
small amounts.  Even with some results that were not confident, the
netperf UDP results were generally positive.

NetPerf TCP X86
      64   652.25 ( 0.00%)*   648.12 (-0.64%)*
            23.80%            22.82%
     128  1229.98 ( 0.00%)*  1220.56 (-0.77%)*
            21.03%            18.90%
     256  2105.88 ( 0.00%)   1872.03 (-12.49%)*
             1.00%            16.46%
    1024  3476.46 ( 0.00%)*  3548.28 ( 2.02%)*
            13.37%            11.39%
    2048  4023.44 ( 0.00%)*  4231.45 ( 4.92%)*
             9.76%            12.48%
    3312  4348.88 ( 0.00%)*  4396.96 ( 1.09%)*
             6.49%             8.75%
    4096  4726.56 ( 0.00%)*  4877.71 ( 3.10%)*
             9.85%             8.50%
    8192  4732.28 ( 0.00%)*  5777.77 (18.10%)*
             9.13%            13.04%
   16384  5543.05 ( 0.00%)*  5906.24 ( 6.15%)*
             7.73%             8.68%

NETPERF TCP X86-64
            netperf-tcp-vanilla-netperf       netperf-tcp
                   tcp-vanilla     pgalloc-delay
      64  1895.87 ( 0.00%)*  1775.07 (-6.81%)*
             5.79%             4.78%
     128  3571.03 ( 0.00%)*  3342.20 (-6.85%)*
             3.68%             6.06%
     256  5097.21 ( 0.00%)*  4859.43 (-4.89%)*
             3.02%             2.10%
    1024  8919.10 ( 0.00%)*  8892.49 (-0.30%)*
             5.89%             6.55%
    2048 10255.46 ( 0.00%)* 10449.39 ( 1.86%)*
             7.08%             7.44%
    3312 10839.90 ( 0.00%)* 10740.15 (-0.93%)*
             6.87%             7.33%
    4096 10814.84 ( 0.00%)* 10766.97 (-0.44%)*
             6.86%             8.18%
    8192 11606.89 ( 0.00%)* 11189.28 (-3.73%)*
             7.49%             5.55%
   16384 12554.88 ( 0.00%)* 12361.22 (-1.57%)*
             7.36%             6.49%

NETPERF TCP PPC64
            netperf-tcp-vanilla-netperf       netperf-tcp
                   tcp-vanilla     pgalloc-delay
      64   594.17 ( 0.00%)    596.04 ( 0.31%)*
             1.00%             2.29%
     128  1064.87 ( 0.00%)*  1074.77 ( 0.92%)*
             1.30%             1.40%
     256  1852.46 ( 0.00%)*  1856.95 ( 0.24%)
             1.25%             1.00%
    1024  3839.46 ( 0.00%)*  3813.05 (-0.69%)
             1.02%             1.00%
    2048  4885.04 ( 0.00%)*  4881.97 (-0.06%)*
             1.15%             1.04%
    3312  5506.90 ( 0.00%)   5459.72 (-0.86%)
    4096  6449.19 ( 0.00%)   6345.46 (-1.63%)
    8192  7501.17 ( 0.00%)   7508.79 ( 0.10%)
   16384  9618.65 ( 0.00%)   9490.10 (-1.35%)

There was a distinct lack of confidence in the X86* figures so I included
what the devation was where the results were not confident.  Many of the
results, whether gains or losses were within the standard deviation so no
solid conclusion can be reached on performance impact.  Looking at the
figures, only the X86-64 ones look suspicious with a few losses that were
outside the noise.  However, the results were so unstable that without
knowing why they vary so much, a solid conclusion cannot be reached.

SYSBENCH X86
              sysbench-vanilla     pgalloc-delay
           1  7722.85 ( 0.00%)  7756.79 ( 0.44%)
           2 14901.11 ( 0.00%) 13683.44 (-8.90%)
           3 15171.71 ( 0.00%) 14888.25 (-1.90%)
           4 14966.98 ( 0.00%) 15029.67 ( 0.42%)
           5 14370.47 ( 0.00%) 14865.00 ( 3.33%)
           6 14870.33 ( 0.00%) 14845.57 (-0.17%)
           7 14429.45 ( 0.00%) 14520.85 ( 0.63%)
           8 14354.35 ( 0.00%) 14362.31 ( 0.06%)

SYSBENCH X86-64
           1 17448.70 ( 0.00%) 17484.41 ( 0.20%)
           2 34276.39 ( 0.00%) 34251.00 (-0.07%)
           3 50805.25 ( 0.00%) 50854.80 ( 0.10%)
           4 66667.10 ( 0.00%) 66174.69 (-0.74%)
           5 66003.91 ( 0.00%) 65685.25 (-0.49%)
           6 64981.90 ( 0.00%) 65125.60 ( 0.22%)
           7 64933.16 ( 0.00%) 64379.23 (-0.86%)
           8 63353.30 ( 0.00%) 63281.22 (-0.11%)
           9 63511.84 ( 0.00%) 63570.37 ( 0.09%)
          10 62708.27 ( 0.00%) 63166.25 ( 0.73%)
          11 62092.81 ( 0.00%) 61787.75 (-0.49%)
          12 61330.11 ( 0.00%) 61036.34 (-0.48%)
          13 61438.37 ( 0.00%) 61994.47 ( 0.90%)
          14 62304.48 ( 0.00%) 62064.90 (-0.39%)
          15 63296.48 ( 0.00%) 62875.16 (-0.67%)
          16 63951.76 ( 0.00%) 63769.09 (-0.29%)

SYSBENCH PPC64
                             -sysbench-pgalloc-delay-sysbench
              sysbench-vanilla     pgalloc-delay
           1  7645.08 ( 0.00%)  7467.43 (-2.38%)
           2 14856.67 ( 0.00%) 14558.73 (-2.05%)
           3 21952.31 ( 0.00%) 21683.64 (-1.24%)
           4 27946.09 ( 0.00%) 28623.29 ( 2.37%)
           5 28045.11 ( 0.00%) 28143.69 ( 0.35%)
           6 27477.10 ( 0.00%) 27337.45 (-0.51%)
           7 26489.17 ( 0.00%) 26590.06 ( 0.38%)
           8 26642.91 ( 0.00%) 25274.33 (-5.41%)
           9 25137.27 ( 0.00%) 24810.06 (-1.32%)
          10 24451.99 ( 0.00%) 24275.85 (-0.73%)
          11 23262.20 ( 0.00%) 23674.88 ( 1.74%)
          12 24234.81 ( 0.00%) 23640.89 (-2.51%)
          13 24577.75 ( 0.00%) 24433.50 (-0.59%)
          14 25640.19 ( 0.00%) 25116.52 (-2.08%)
          15 26188.84 ( 0.00%) 26181.36 (-0.03%)
          16 26782.37 ( 0.00%) 26255.99 (-2.00%)

Again, there is little to conclude here.  While there are a few losses,
the results vary by +/- 8% in some cases.  They are the results of most
concern as there are some large losses but it's also within the variance
typically seen between kernel releases.

The STREAM results varied so little and are so verbose that I didn't
include them here.

The final test stressed how many huge pages can be allocated.  The
absolute number of huge pages allocated are the same with or without the
page.  However, the "unusability free space index" which is a measure of
external fragmentation was slightly lower (lower is better) throughout the
lifetime of the system.  I also measured the latency of how long it took
to successfully allocate a huge page.  The latency was slightly lower and
on X86 and PPC64, more huge pages were allocated almost immediately from
the free lists.  The improvement is slight but there.

[mel@csn.ul.ie: Tested, reworked for less branches]
[czoccolo@gmail.com: fix oops by checking pfn_valid_within()]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:56 -07:00
Thomas Weber 8839316121 Fix typos in comments
[Ss]ytem => [Ss]ystem
udpate => update
paramters => parameters
orginal => original

Signed-off-by: Thomas Weber <swirl@gmx.li>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-03-16 11:47:56 +01:00
Wu Fengguang 718a38211b mm: introduce dump_page() and print symbolic flag names
- introduce dump_page() to print the page info for debugging some error
  condition.

- convert three mm users: bad_page(), print_bad_pte() and memory offline
  failure.

- print an extra field: the symbolic names of page->flags

Example dump_page() output:

[  157.521694] page:ffffea0000a7cba8 count:2 mapcount:1 mapping:ffff88001c901791 index:0x147
[  157.525570] page flags: 0x100000000100068(uptodate|lru|active|swapbacked)

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Alex Chiang <achiang@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Mel Gorman <mel@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-12 15:52:28 -08:00
Thomas Gleixner 2d30a1f631 mm: do not iterate over NR_CPUS in __zone_pcp_update()
__zone_pcp_update() iterates over NR_CPUS instead of limiting the access
to the possible cpus.  This might result in access to uninitialized areas
as the per cpu allocator only populates the per cpu memory for possible
cpus.

This problem was created as a result of the dynamic allocation of pagesets
from percpu memory that went in during the merge window - commit
99dcc3e5a9 ("this_cpu: Page allocator
conversion").

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-12 15:52:28 -08:00
David Rientjes 72f0ba0252 mm: suppress pfn range output for zones without pages
free_area_init_nodes() emits pfn ranges for all zones on the system.
There may be no pages on a higher zone, however, due to memory limitations
or the use of the mem= kernel parameter.  For example:

Zone PFN ranges:
  DMA      0x00000001 -> 0x00001000
  DMA32    0x00001000 -> 0x00100000
  Normal   0x00100000 -> 0x00100000

The implementation copies the previous zone's highest pfn, if any, as the
next zone's lowest pfn.  If its highest pfn is then greater than the
amount of addressable memory, the upper memory limit is used instead.
Thus, both the lowest and highest possible pfn for higher zones without
memory may be the same.

The pfn range for zones without memory is now shown as "empty" instead.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:26 -08:00
Rafael J. Wysocki 452aa6999e mm/pm: force GFP_NOIO during suspend/hibernation and resume
There are quite a few GFP_KERNEL memory allocations made during
suspend/hibernation and resume that may cause the system to hang, because
the I/O operations they depend on cannot be completed due to the
underlying devices being suspended.

Avoid this problem by clearing the __GFP_IO and __GFP_FS bits in
gfp_allowed_mask before suspend/hibernation and restoring the original
values of these bits in gfp_allowed_mask durig the subsequent resume.

[akpm@linux-foundation.org: fix CONFIG_PM=n linkage]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:26 -08:00
KOSAKI Motohiro 93e4a89a8c mm: restore zone->all_unreclaimable to independence word
commit e815af95 ("change all_unreclaimable zone member to flags") changed
all_unreclaimable member to bit flag.  But it had an undesireble side
effect.  free_one_page() is one of most hot path in linux kernel and
increasing atomic ops in it can reduce kernel performance a bit.

Thus, this patch revert such commit partially. at least
all_unreclaimable shouldn't share memory word with other zone flags.

[akpm@linux-foundation.org: fix patch interaction]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:25 -08:00
Li Hong fc91668eaf mm: remove free_hot_page()
free_hot_page() is just a wrapper around free_hot_cold_page() with
parameter 'cold = 0'.  After adding a clear comment for
free_hot_cold_page(), it is reasonable to remove a level of call.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Li Hong <lihong.hi@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:25 -08:00
Li Hong c475dab63a mm/page_alloc.c: adjust a call site to trace_mm_page_free_direct
Move a call of trace_mm_page_free_direct() from free_hot_page() to
free_hot_cold_page().  It is clearer and close to kmemcheck_free_shadow(),
as it is done in function __free_pages_ok().

Signed-off-by: Li Hong <lihong.hi@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:24 -08:00
Li Hong f650316c8b mm/page_alloc.c: remove duplicate call to trace_mm_page_free_direct
trace_mm_page_free_direct() is called in function __free_pages().  But it
is called again in free_hot_page() if order == 0 and produce duplicate
records in trace file for mm_page_free_direct event.  As below:

K-PID    CPU#    TIMESTAMP  FUNCTION
  gnome-terminal-1567  [000]  4415.246466: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0
  gnome-terminal-1567  [000]  4415.246468: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0
  gnome-terminal-1567  [000]  4415.246506: mm_page_alloc: page=ffffea0003db9f40 pfn=1155800 order=0 migratetype=0 gfp_flags=GFP_KERNEL
  gnome-terminal-1567  [000]  4415.255557: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0
  gnome-terminal-1567  [000]  4415.255557: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0

This patch removes the first call and adds a call to
trace_mm_page_free_direct() in __free_pages_ok().

Signed-off-by: Li Hong <lihong.hi@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:24 -08:00
Linus Torvalds a626b46e17 Merge branch 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
  early_res: Need to save the allocation name in drop_range_partial()
  sparsemem: Fix compilation on PowerPC
  early_res: Add free_early_partial()
  x86: Fix non-bootmem compilation on PowerPC
  core: Move early_res from arch/x86 to kernel/
  x86: Add find_fw_memmap_area
  Move round_up/down to kernel.h
  x86: Make 32bit support NO_BOOTMEM
  early_res: Enhance check_and_double_early_res
  x86: Move back find_e820_area to e820.c
  x86: Add find_early_area_size
  x86: Separate early_res related code from e820.c
  x86: Move bios page reserve early to head32/64.c
  sparsemem: Put mem map for one node together.
  sparsemem: Put usemap for one node together
  x86: Make 64 bit use early_res instead of bootmem before slab
  x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA
  x86: Make early_node_mem get mem > 4 GB if possible
  x86: Dynamically increase early_res array size
  x86: Introduce max_early_res and early_res_count
  ...
2010-03-03 08:15:05 -08:00
Yinghai Lu 2ee78f7b1d x86: Fix non-bootmem compilation on PowerPC
These build errors on some non-x86 platforms (PowerPC for example):

 mm/page_alloc.c: In function '__alloc_memory_core_early':
   mm/page_alloc.c:3468: error: implicit declaration of function 'find_early_area'
   mm/page_alloc.c:3483: error: implicit declaration of function 'reserve_early_without_check'

The function is only needed on CONFIG_NO_BOOTMEM.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@saeurebad.de>
Cc: Mel Gorman <mel@csn.ul.ie>
LKML-Reference: <4B747239.4070907@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-22 09:16:40 +01:00
Yinghai Lu 08677214e3 x86: Make 64 bit use early_res instead of bootmem before slab
Finally we can use early_res to replace bootmem for x86_64 now.

Still can use CONFIG_NO_BOOTMEM to enable it or not.

-v2: fix 32bit compiling about MAX_DMA32_PFN
-v3: folded bug fix from LKML message below

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4B747239.4070907@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-12 09:41:59 -08:00
Tejun Heo ab386128f2 Merge branch 'master' into percpu 2010-02-02 14:38:15 +09:00