We found that when the 'decrementer' is saved, the PPE saves the current
time 'csa->suspend_time'. When restoring the 'decrementer', (Step 34)
decrementer seems to be adjusted with the number of cycles th= at a spu
thread has not been running.
In that code it is missing a substract ('-') because 'delta_time' is
assigned a not substracted(see bellow).
Acked-by: Mark Nutter <mnutter@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch adds a new file called 'mfc' to each spufs directory.
The file accepts DMA commands that are a subset of what would
be legal DMA commands for problem state register access. Upon
reading the file, a bitmask is returned with the completed
tag groups set.
The file is meant to be used from an abstraction in libspe
that is added by a different patch.
From the kernel perspective, this means a process can now
offload a memory copy from or into an SPE local store
without having to run code on the SPE itself.
The transfer will only be performed while the SPE is owned
by one thread that is waiting in the spu_run system call
and the data will be transferred into that thread's
address space, independent of which thread started the
transfer.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The SPE Book IV indicates that MFC DMA operations must be
suspended and restored on SPU context switch (in Step 8).
This patch adds that operation, which is missing from the
current spufs implementation.
Signed-off-by: Masato Noguchi <Masato.Noguchi@jp.sony.com>
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Acked-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
In a hypervisor based setup, direct access to the first
priviledged register space can typically not be allowed
to the kernel and has to be implemented through hypervisor
calls.
As suggested by Masato Noguchi, let's abstract the register
access trough a number of function calls. Since there is
currently no public specification of actual hypervisor
calls to implement this, I only provide a place that
makes it easier to hook into.
Cc: Masato Noguchi <Masato.Noguchi@jp.sony.com>
Cc: Geoff Levand <geoff.levand@am.sony.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
checking bits manually might not be synchonized with
the use of set_bit/clear_bit. Make sure we always use
the correct bitops by removing the unnecessary
identifiers.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Handling mailbox interrupts was broken in multiple respects,
the combination of which was hiding the bugs most of the time.
- The ibox interrupt mask was open initially even though there
are no waiters on a newly created SPU.
- Acknowledging the mailbox interrupt did not work because
it is level triggered and the mailbox data is never retrieved
from inside the interrupt handler.
- The interrupt handler delivered interrupts with a disabled
mask if another interrupt is triggered for the same class
but a different mask.
- The poll function did not enable the interrupt if it had not
been enabled, so we might run into the poll timeout if none of
the other bugs saved us and no signal was delivered.
We probably still have a similar problem with blocking
read/write on mailbox files, but that will result in extra
wakeup in the worst case, not in incorrect behaviour.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds a scheduler for SPUs to make it possible to use
more logical SPUs than physical ones are present in the
system.
Currently, there is no support for preempting a running
SPU thread, they have to leave the SPU by either triggering
an event on the SPU that causes it to return to the
owning thread or by sending a signal to it.
This patch also adds operations that enable accessing an SPU
in either runnable or saved state. We use an RW semaphore
to protect the state of the SPU from changing underneath
us, while we are holding it readable. In order to change
the state, it is acquired writeable and a context save
or restore is executed before downgrading the semaphore
to read-only.
From: Mark Nutter <mnutter@us.ibm.com>,
Uli Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds the code needed to perform a context switch from
spufs, following the recommended 76-step sequence.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add some infrastructure for saving and restoring the context of an
SPE. This patch creates a new structure that can hold the whole
state of a physical SPE in memory. It also contains code that
avoids races during the context switch and the binary code that
is loaded to the SPU in order to access its registers.
The actual PPE- and SPE-side context switch code are two separate
patches.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>