Recent testing has shown that under heavy load, running RCU's grace-period
kthreads at real-time priority can improve performance (according to 0day
test robot) and reduce the incidence of RCU CPU stall warnings. However,
most systems do just fine with the default non-realtime priorities for
these kthreads, and it does not make sense to expose the entire user
base to any risk stemming from this change, given that this change is
of use only to a few users running extremely heavy workloads.
Therefore, this commit allows users to specify realtime priorities
for the grace-period kthreads, but leaves them running SCHED_OTHER
by default. The realtime priority may be specified at build time
via the RCU_KTHREAD_PRIO Kconfig parameter, or at boot time via the
rcutree.kthread_prio parameter. Either way, 0 says to continue the
default SCHED_OTHER behavior and values from 1-99 specify that priority
of SCHED_FIFO behavior. Note that a value of 0 is not permitted when
the RCU_BOOST Kconfig parameter is specified.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, rcutorture's Reader Batch checks measure from the end of
the previous grace period to the end of the current one. This commit
tightens up these checks by measuring from the start and end of the same
grace period. This involves adding rcu_batches_started() and friends
corresponding to the existing rcu_batches_completed() and friends.
We leave SRCU alone for the moment, as it does not yet have a way of
tracking both ends of its grace periods.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Long ago, the various ->completed fields were of type long, but now are
unsigned long due to signed-integer-overflow concerns. However, the
various _batches_completed() functions remained of type long, even though
their only purpose in life is to return the corresponding ->completed
field. This patch cleans this up by changing these functions' return
types to unsigned long.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Subtle race conditions can result if a CPU stays in dyntick-idle mode
long enough for the ->gpnum and ->completed fields to wrap. For
example, consider the following sequence of events:
o CPU 1 encounters a quiescent state while waiting for grace period
5 to complete, but then enters dyntick-idle mode.
o While CPU 1 is in dyntick-idle mode, the grace-period counters
wrap around so that the grace period number is now 4.
o Just as CPU 1 exits dyntick-idle mode, grace period 4 completes
and grace period 5 begins.
o The quiescent state that CPU 1 passed through during the old
grace period 5 looks like it applies to the new grace period
5. Therefore, the new grace period 5 completes without CPU 1
having passed through a quiescent state.
This could clearly be a fatal surprise to any long-running RCU read-side
critical section that happened to be running on CPU 1 at the time. At one
time, this was not a problem, given that it takes significant time for
the grace-period counters to overflow even on 32-bit systems. However,
with the advent of NO_HZ_FULL and SMP embedded systems, arbitrarily long
idle periods are now becoming quite feasible. It is therefore time to
close this race.
This commit therefore avoids this race condition by having the
quiescent-state forcing code detect when a CPU is falling too far
behind, and setting a new rcu_data field ->gpwrap when this happens.
Whenever this new ->gpwrap field is set, the CPU's ->gpnum and ->completed
fields are known to be untrustworthy, and can be ignored, along with
any associated quiescent states.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
One way that an RCU CPU stall warning can happen is if the grace-period
kthread is not allowed to execute. One proxy for this kthread's
forward progress is the number of force-quiescent-state (fqs) scans.
This commit therefore adds the number of fqs scans to the RCU CPU stall
warning printouts when CONFIG_RCU_CPU_STALL_INFO=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The patch dfeb9765ce ("Allow post-unlock reference for rt_mutex")
ensured rcu-boost safe even the rt_mutex has post-unlock reference.
But rt_mutex allowing post-unlock reference is definitely a bug and it was
fixed by the commit 27e35715df ("rtmutex: Plug slow unlock race").
This fix made the previous patch (dfeb9765ce) useless.
And even worse, the priority-inversion introduced by the the previous
patch still exists.
rcu_read_unlock_special() {
rt_mutex_unlock(&rnp->boost_mtx);
/* Priority-Inversion:
* the current task had been deboosted and preempted as a low
* priority task immediately, it could wait long before reschedule in,
* and the rcu-booster also waits on this low priority task and sleeps.
* This priority-inversion makes rcu-booster can't work
* as expected.
*/
complete(&rnp->boost_completion);
}
Just revert the patch to avoid it.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When rcu_boost_kthread_setaffinity() sees that all CPUs for a given
rcu_node structure are now offline, it affinities the corresponding
RCU-boost ("rcub") kthread away from those CPUs. This is pointless
because the kthread cannot run on those offline CPUs in any case.
This commit therefore removes this unneeded code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that offlining CPUs no longer moves leaf rcu_node structures'
->blkd_tasks lists to the root, there is no way for the root rcu_node
structure's ->blkd_task list to be nonempty, unless the root node is also
the sole leaf node. This commit therefore refrains from creating an rcub
kthread for the root rcu_node structure unless it is also the sole leaf.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Given that there is now arcu_preempt_has_tasks() function that checks
to see if the ->blkd_tasks list is non-empty, this commit makes use of it.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When the last CPU associated with a given leaf rcu_node structure
goes offline, something must be done about the tasks queued on that
rcu_node structure. Each of these tasks has been preempted on one of
the leaf rcu_node structure's CPUs while in an RCU read-side critical
section that it have not yet exited. Handling these tasks is the job of
rcu_preempt_offline_tasks(), which migrates them from the leaf rcu_node
structure to the root rcu_node structure.
Unfortunately, this migration has to be done one task at a time because
each tasks allegiance must be shifted from the original leaf rcu_node to
the root, so that future attempts to deal with these tasks will acquire
the root rcu_node structure's ->lock rather than that of the leaf.
Worse yet, this migration must be done with interrupts disabled, which
is not so good for realtime response, especially given that there is
no bound on the number of tasks on a given rcu_node structure's list.
(OK, OK, there is a bound, it is just that it is unreasonably large,
especially on 64-bit systems.) This was not considered a problem back
when rcu_preempt_offline_tasks() was first written because realtime
systems were assumed not to do CPU-hotplug operations while real-time
applications were running. This assumption has proved of dubious validity
given that people are starting to run multiple realtime applications
on a single SMP system and that it is common practice to offline then
online a CPU before starting its real-time application in order to clear
extraneous processing off of that CPU. So we now need CPU hotplug
operations to avoid undue latencies.
This commit therefore avoids migrating these tasks, instead letting
them be dequeued one by one from the original leaf rcu_node structure
by rcu_read_unlock_special(). This means that the clearing of bits
from the upper-level rcu_node structures must be deferred until the
last such task has been dequeued, because otherwise subsequent grace
periods won't wait on them. This commit has the beneficial side effect
of simplifying the CPU-hotplug code for TREE_PREEMPT_RCU, especially in
CONFIG_RCU_BOOST builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit causes rcu_read_unlock_special() to propagate ->qsmaskinit
bit clearing up the rcu_node tree once a given rcu_node structure's
blkd_tasks list becomes empty. This is the final commit in preparation
for the rework of RCU priority boosting: It enables preempted tasks to
remain queued on their rcu_node structure even after all of that rcu_node
structure's CPUs have gone offline.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit abstracts rcu_cleanup_dead_rnp() from rcu_cleanup_dead_cpu()
in preparation for the rework of RCU priority boosting. This new function
will be invoked from rcu_read_unlock_special() in the reworked scheme,
which is why rcu_cleanup_dead_rnp() assumes that the leaf rcu_node
structure's ->qsmaskinit field has already been updated.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit undertakes a simple variable renaming to make way for
some rework of RCU priority boosting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit prevents random compiler optimizations by applying
ACCESS_ONCE() to lockless accesses.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_barrier() no-callbacks check for no-CBs CPUs has race conditions.
It checks a given CPU's lists of callbacks, and if all three no-CBs lists
are empty, ignores that CPU. However, these three lists could potentially
be empty even when callbacks are present if the check executed just as
the callbacks were being moved from one list to another. It turns out
that recent versions of rcutorture can spot this race.
This commit plugs this hole by consolidating the per-list counts of
no-CBs callbacks into a single count, which is incremented before
the corresponding callback is posted and after it is invoked. Then
rcu_barrier() checks this single count to reliably determine whether
the corresponding CPU has no-CBs callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The "cpu" argument to rcu_cleanup_after_idle() is always the current
CPU, so drop it. This moves the smp_processor_id() from the caller to
rcu_cleanup_after_idle(), saving argument-passing overhead. Again,
the anticipated cross-CPU uses of these functions has been replaced
by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
The "cpu" argument to rcu_prepare_for_idle() is always the current
CPU, so drop it. This in turn allows two of the uses of "cpu" in
this function to be replaced with a this_cpu_ptr() and the third by
smp_processor_id(), replacing that of the call to rcu_prepare_for_idle().
Again, the anticipated cross-CPU uses of these functions has been replaced
by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
The "cpu" argument to rcu_needs_cpu() is always the current CPU, so drop
it. This in turn allows the "cpu" argument to rcu_cpu_has_callbacks()
to be removed, which allows the uses of "cpu" in both functions to be
replaced with a this_cpu_ptr(). Again, the anticipated cross-CPU uses
of these functions has been replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
The "cpu" argument to rcu_note_context_switch() is always the current
CPU, so drop it. This in turn allows the "cpu" argument to
rcu_preempt_note_context_switch() to be removed, which allows the sole
use of "cpu" in both functions to be replaced with a this_cpu_ptr().
Again, the anticipated cross-CPU uses of these functions has been
replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Because rcu_preempt_check_callbacks()'s argument is guaranteed to
always be the current CPU, drop the argument and replace per_cpu()
with __this_cpu_read().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
For some functions in kernel/rcu/tree* the rdtp parameter is always
this_cpu_ptr(rdtp). Remove the parameter if constant and calculate the
pointer in function.
This will have the advantage that it is obvious that the address are
all per cpu offsets and thus it will enable the use of this_cpu_ops in
the future.
Signed-off-by: Christoph Lameter <cl@linux.com>
[ paulmck: Forward-ported to rcu/dev, whitespace adjustment. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Commit 35ce7f29a4 (rcu: Create rcuo kthreads only for onlined CPUs)
contains checks for the case where CPUs are brought online out of
order, re-wiring the rcuo leader-follower relationships as needed.
Unfortunately, this rewiring was broken. This apparently went undetected
due to the tendency of systems to bring CPUs online in order. This commit
nevertheless fixes the rewiring.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
PREEMPT_RCU and TREE_PREEMPT_RCU serve the same function after
TINY_PREEMPT_RCU has been removed. This patch removes TREE_PREEMPT_RCU
and uses PREEMPT_RCU config option in its place.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Rename CONFIG_RCU_BOOST_PRIO to CONFIG_RCU_KTHREAD_PRIO and use this
value for both the per-CPU kthreads (rcuc/N) and the rcu boosting
threads (rcub/n).
Also, create the module_parameter rcutree.kthread_prio to be used on
the kernel command line at boot to set a new value (rcutree.kthread_prio=N).
Signed-off-by: Clark Williams <clark.williams@gmail.com>
[ paulmck: Ported to rcu/dev, applied Paul Bolle and Peter Zijlstra feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
There are some RCU_BOOST-specific per-CPU variable declarations that
are needlessly defined under #ifdef in kernel/rcu/tree.c. This commit
therefore moves these declarations into a pre-existing #ifdef in
kernel/rcu/tree_plugin.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The CONFIG_RCU_CPU_STALL_VERBOSE Kconfig parameter causes preemptible
RCU's CPU stall warnings to dump out any preempted tasks that are blocking
the current RCU grace period. This information is useful, and the default
has been CONFIG_RCU_CPU_STALL_VERBOSE=y for some years. It is therefore
time for this commit to remove this Kconfig parameter, so that future
kernel builds will always act as if CONFIG_RCU_CPU_STALL_VERBOSE=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit 35ce7f29a4 (rcu: Create rcuo kthreads only for onlined CPUs)
avoids creating rcuo kthreads for CPUs that never come online. This
fixes a bug in many instances of firmware: Instead of lying about their
age, these systems instead lie about the number of CPUs that they have.
Before commit 35ce7f29a4, this could result in huge numbers of useless
rcuo kthreads being created.
It appears that experience indicates that I should have told the
people suffering from this problem to fix their broken firmware, but
I instead produced what turned out to be a partial fix. The missing
piece supplied by this commit makes sure that rcu_barrier() knows not to
post callbacks for no-CBs CPUs that have not yet come online, because
otherwise rcu_barrier() will hang on systems having firmware that lies
about the number of CPUs.
It is tempting to simply have rcu_barrier() refuse to post a callback on
any no-CBs CPU that does not have an rcuo kthread. This unfortunately
does not work because rcu_barrier() is required to wait for all pending
callbacks. It is therefore required to wait even for those callbacks
that cannot possibly be invoked. Even if doing so hangs the system.
Given that posting a callback to a no-CBs CPU that does not yet have an
rcuo kthread can hang rcu_barrier(), It is tempting to report an error
in this case. Unfortunately, this will result in false positives at
boot time, when it is perfectly legal to post callbacks to the boot CPU
before the scheduler has started, in other words, before it is legal
to invoke rcu_barrier().
So this commit instead has rcu_barrier() avoid posting callbacks to
CPUs having neither rcuo kthread nor pending callbacks, and has it
complain bitterly if it finds CPUs having no rcuo kthread but some
pending callbacks. And when rcu_barrier() does find CPUs having no rcuo
kthread but pending callbacks, as noted earlier, it has no choice but
to hang indefinitely.
Reported-by: Yanko Kaneti <yaneti@declera.com>
Reported-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Eric B Munson <emunson@akamai.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Eric B Munson <emunson@akamai.com>
Tested-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Tested-by: Yanko Kaneti <yaneti@declera.com>
Tested-by: Kevin Fenzi <kevin@scrye.com>
Tested-by: Meelis Roos <mroos@linux.ee>
Currently, the expedited grace-period primitives do get_online_cpus().
This greatly simplifies their implementation, but means that calls
to them holding locks that are acquired by CPU-hotplug notifiers (to
say nothing of calls to these primitives from CPU-hotplug notifiers)
can deadlock. But this is starting to become inconvenient, as can be
seen here: https://lkml.org/lkml/2014/8/5/754. The problem in this
case is that some developers need to acquire a mutex from a CPU-hotplug
notifier, but also need to hold it across a synchronize_rcu_expedited().
As noted above, this currently results in deadlock.
This commit avoids the deadlock and retains the simplicity by creating
a try_get_online_cpus(), which returns false if the get_online_cpus()
reference count could not immediately be incremented. If a call to
try_get_online_cpus() returns true, the expedited primitives operate as
before. If a call returns false, the expedited primitives fall back to
normal grace-period operations. This falling back of course results in
increased grace-period latency, but only during times when CPU hotplug
operations are actually in flight. The effect should therefore be
negligible during normal operation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Tested-by: Lan Tianyu <tianyu.lan@intel.com>
The NOCB follower wakeup ordering depends on the store to the tail
pointer happening before the wakeup. However, because atomic_long_add()
does not return a value, it does not provide ordering guarantees, and
the locking in wake_up() only guarantees that the store will happen
before the unlock, which might be too late. Even though this is only a
theoretical issue, this commit adds a smp_mb__after_atomic() after the
final atomic_long_add() to provide the needed ordering guarantee.
Reported-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
If an RCU callback is queued on a no-CBs CPU from idle code with irqs
disabled, and if that CPU stays idle forever after, the callback will
never be invoked. This commit therefore adds a check for this situation
in ____call_rcu_nocb(), invoking the RCU core solely for the purpose
of the ensuing return-to-idle transition. (If the CPU doesn't return
to idle, the next scheduling-clock interrupt will fix things up.)
Reported-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The NOCB leader wakeup ordering depends on the store to the header
happening before the check for the leader already being awake. However,
because atomic_long_add() does not return a value, it does not provide
ordering guarantees, the incorrect comment in wake_nocb_leader()
notwithstanding. This commit therefore adds a smp_mb__after_atomic()
after the final atomic_long_add() to provide the needed ordering
guarantee.
Reported-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
If there are no nohz_full= CPUs, then there is currently no reason to
track sysidle state. This commit therefore short-circuits this state
tracking if !tick_nohz_full_enabled().
Note that these checks will need to be revisited if nohz_full= state
can ever be changed at runtime.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Now that we have rcu_state_p, which references rcu_preempt_state for
TREE_PREEMPT_RCU and rcu_sched_state for TREE_RCU, we don't need a
separate rcu_sysidle_state variable. This commit therefore eliminates
rcu_preempt_state in favor of rcu_state_p.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
If we configure a kernel with CONFIG_NOCB_CPU=y, CONFIG_RCU_NOCB_CPU_NONE=y and
CONFIG_CPUMASK_OFFSTACK=n and do not pass in a rcu_nocb= boot parameter, the
cpumask rcu_nocb_mask can be garbage instead of NULL.
Hence this commit replaces checks for rcu_nocb_mask == NULL with a check for
have_rcu_nocb_mask.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
RCU currently uses for_each_possible_cpu() to spawn rcuo kthreads,
which can result in more rcuo kthreads than one would expect, for
example, derRichard reported 64 CPUs worth of rcuo kthreads on an
8-CPU image. This commit therefore creates rcuo kthreads only for
those CPUs that actually come online.
This was reported by derRichard on the OFTC IRC network.
Reported-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Currently, RCU spawns kthreads from several different early_initcall()
functions. Although this has served RCU well for quite some time,
as more kthreads are added a more deterministic approach is required.
This commit therefore causes all of RCU's early-boot kthreads to be
spawned from a single early_initcall() function.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Return false instead of 0 in rcu_nocb_adopt_orphan_cbs() as this has
bool as return type.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Return false instead of 0 in __call_rcu_nocb() as this has bool as
return type.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Return true/false in rcu_nocb_adopt_orphan_cbs() instead of 0/1 as
this function has return type of bool.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Return true/false instead of 0/1 in __call_rcu_nocb() as this returns a
bool type.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
This commit checks the return value of the zalloc_cpumask_var() used for
allocating cpumask for rcu_nocb_mask.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Commit b58cc46c5f (rcu: Don't offload callbacks unless specifically
requested) failed to adjust the callback lists of the CPUs that are
known to be no-CBs CPUs only because they are also nohz_full= CPUs.
This failure can result in callbacks that are posted during early boot
getting stranded on nxtlist for CPUs whose no-CBs property becomes
apparent late, and there can also be spurious warnings about offline
CPUs posting callbacks.
This commit fixes these problems by adding an early-boot rcu_init_nohz()
that properly initializes the no-CBs CPUs.
Note that kernels built with CONFIG_RCU_NOCB_CPU_ALL=y or with
CONFIG_RCU_NOCB_CPU=n do not exhibit this bug. Neither do kernels
booted without the nohz_full= boot parameter.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The rcu_bh_qs(), rcu_preempt_qs(), and rcu_sched_qs() functions use
old-style per-CPU variable access and write to ->passed_quiesce even
if it is already set. This commit therefore updates to use the new-style
per-CPU variable access functions and avoids the spurious writes.
This commit also eliminates the "cpu" argument to these functions because
they are always invoked on the indicated CPU.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_preempt_note_context_switch() function is on a scheduling fast
path, so it would be good to avoid disabling irqs. The reason that irqs
are disabled is to synchronize process-level and irq-handler access to
the task_struct ->rcu_read_unlock_special bitmask. This commit therefore
makes ->rcu_read_unlock_special instead be a union of bools with a short
allowing single-access checks in RCU's __rcu_read_unlock(). This results
in the process-level and irq-handler accesses being simple loads and
stores, so that irqs need no longer be disabled. This commit therefore
removes the irq disabling from rcu_preempt_note_context_switch().
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently TASKS_RCU would ignore a CPU running a task in nohz_full=
usermode execution. There would be neither a context switch nor a
scheduling-clock interrupt to tell TASKS_RCU that the task in question
had passed through a quiescent state. The grace period would therefore
extend indefinitely. This commit therefore makes RCU's dyntick-idle
subsystem record the task_struct structure of the task that is running
in dyntick-idle mode on each CPU. The TASKS_RCU grace period can
then access this information and record a quiescent state on
behalf of any CPU running in dyntick-idle usermode.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU-tasks requires the occasional voluntary context switch
from CPU-bound in-kernel tasks. In some cases, this requires
instrumenting cond_resched(). However, there is some reluctance
to countenance unconditionally instrumenting cond_resched() (see
http://lwn.net/Articles/603252/), so this commit creates a separate
cond_resched_rcu_qs() that may be used in place of cond_resched() in
locations prone to long-duration in-kernel looping.
This commit currently instruments only RCU-tasks. Future possibilities
include also instrumenting RCU, RCU-bh, and RCU-sched in order to reduce
IPI usage.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>