mirror of https://gitee.com/openkylin/linux.git
251 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
![]() |
28e92f9903 |
Merge branch 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney: - Bitmap parsing support for "all" as an alias for all bits - Documentation updates - Miscellaneous fixes, including some that overlap into mm and lockdep - kvfree_rcu() updates - mem_dump_obj() updates, with acks from one of the slab-allocator maintainers - RCU NOCB CPU updates, including limited deoffloading - SRCU updates - Tasks-RCU updates - Torture-test updates * 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits) tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states rcu: Add missing __releases() annotation rcu: Remove obsolete rcu_read_unlock() deadlock commentary rcu: Improve comments describing RCU read-side critical sections rcu: Create an unrcu_pointer() to remove __rcu from a pointer srcu: Early test SRCU polling start rcu: Fix various typos in comments rcu/nocb: Unify timers rcu/nocb: Prepare for fine-grained deferred wakeup rcu/nocb: Only cancel nocb timer if not polling rcu/nocb: Delete bypass_timer upon nocb_gp wakeup rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup rcu/nocb: Allow de-offloading rdp leader rcu/nocb: Directly call __wake_nocb_gp() from bypass timer rcu: Don't penalize priority boosting when there is nothing to boost rcu: Point to documentation of ordering guarantees rcu: Make rcu_gp_cleanup() be noinline for tracing rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP ... |
|
![]() |
13e680fb6a |
mm: memcg/slab: disable cache merging for KMALLOC_NORMAL caches
The KMALLOC_NORMAL (kmalloc-<n>) caches are for unaccounted objects only when CONFIG_MEMCG_KMEM is enabled. To make sure that this condition remains true, we will have to prevent KMALOC_NORMAL caches to merge with other kmem caches. This is now done by setting its refcount to -1 right after its creation. Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Suggested-by: Roman Gushchin <guro@fb.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
494c1dfe85 |
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches
There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
64dd68497b |
mm: slub: move sysfs slab alloc/free interfaces to debugfs
alloc_calls and free_calls implementation in sysfs have two issues, one is PAGE_SIZE limitation of sysfs and other is it does not adhere to "one value per file" rule. To overcome this issues, move the alloc_calls and free_calls implementation to debugfs. Debugfs cache will be created if SLAB_STORE_USER flag is set. Rename the alloc_calls/free_calls to alloc_traces/free_traces, to be inline with what it does. [faiyazm@codeaurora.org: fix the leak of alloc/free traces debugfs interface] Link: https://lkml.kernel.org/r/1624248060-30286-1-git-send-email-faiyazm@codeaurora.org Link: https://lkml.kernel.org/r/1623438200-19361-1-git-send-email-faiyazm@codeaurora.org Signed-off-by: Faiyaz Mohammed <faiyazm@codeaurora.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
588c7fa022 |
mm, slub: change run-time assertion in kmalloc_index() to compile-time
Currently when size is not supported by kmalloc_index, compiler will generate a run-time BUG() while compile-time error is also possible, and better. So change BUG to BUILD_BUG_ON_MSG to make compile-time check possible. Also remove code that allocates more than 32MB because current implementation supports only up to 32MB. [42.hyeyoo@gmail.com: fix support for clang 10] Link: https://lkml.kernel.org/r/20210518181247.GA10062@hyeyoo [vbabka@suse.cz: fix false-positive assert in kernel/bpf/local_storage.c] Link: https://lkml.kernel.org/r/bea97388-01df-8eac-091b-a3c89b4a4a09@suse.czLink: https://lkml.kernel.org/r/20210511173448.GA54466@hyeyoo [elver@google.com: kfence fix] Link: https://lkml.kernel.org/r/20210512195227.245000695c9014242e9a00e5@linux-foundation.org Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
4acaa7d504 |
slab: use __func__ to trace function name
It is better to use __func__ to trace function name. Link: https://lkml.kernel.org/r/31fdbad5c45cd1e26be9ff37be321b8586b80fee.1624355507.git.gumingtao@xiaomi.com Signed-off-by: gumingtao <gumingtao@xiaomi.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
74c1d3e081 |
mm/slub: fix redzoning for small allocations
The redzone area for SLUB exists between s->object_size and s->inuse
(which is at least the word-aligned object_size). If a cache were
created with an object_size smaller than sizeof(void *), the in-object
stored freelist pointer would overwrite the redzone (e.g. with boot
param "slub_debug=ZF"):
BUG test (Tainted: G B ): Right Redzone overwritten
-----------------------------------------------------------------------------
INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb
INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200
INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): f6 f4 a5 40 1d e8 ...@..
Redzone (____ptrval____): 1a aa ..
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
Store the freelist pointer out of line when object_size is smaller than
sizeof(void *) and redzoning is enabled.
Additionally remove the "smaller than sizeof(void *)" check under
CONFIG_DEBUG_VM in kmem_cache_sanity_check() as it is now redundant:
SLAB and SLOB both handle small sizes.
(Note that no caches within this size range are known to exist in the
kernel currently.)
Link: https://lkml.kernel.org/r/20210608183955.280836-3-keescook@chromium.org
Fixes:
|
|
![]() |
afe0c26d19 |
mm, slub: move slub_debug static key enabling outside slab_mutex
Paul E. McKenney reported [1] that commit |
|
![]() |
e548eaa116 |
mm/slub: Add Support for free path information of an object
This commit adds enables a stack dump for the last free of an object: slab kmalloc-64 start c8ab0140 data offset 64 pointer offset 0 size 64 allocated at meminfo_proc_show+0x40/0x4fc [ 20.192078] meminfo_proc_show+0x40/0x4fc [ 20.192263] seq_read_iter+0x18c/0x4c4 [ 20.192430] proc_reg_read_iter+0x84/0xac [ 20.192617] generic_file_splice_read+0xe8/0x17c [ 20.192816] splice_direct_to_actor+0xb8/0x290 [ 20.193008] do_splice_direct+0xa0/0xe0 [ 20.193185] do_sendfile+0x2d0/0x438 [ 20.193345] sys_sendfile64+0x12c/0x140 [ 20.193523] ret_fast_syscall+0x0/0x58 [ 20.193695] 0xbeeacde4 [ 20.193822] Free path: [ 20.193935] meminfo_proc_show+0x5c/0x4fc [ 20.194115] seq_read_iter+0x18c/0x4c4 [ 20.194285] proc_reg_read_iter+0x84/0xac [ 20.194475] generic_file_splice_read+0xe8/0x17c [ 20.194685] splice_direct_to_actor+0xb8/0x290 [ 20.194870] do_splice_direct+0xa0/0xe0 [ 20.195014] do_sendfile+0x2d0/0x438 [ 20.195174] sys_sendfile64+0x12c/0x140 [ 20.195336] ret_fast_syscall+0x0/0x58 [ 20.195491] 0xbeeacde4 Acked-by: Vlastimil Babka <vbabka@suse.cz> Co-developed-by: Vaneet Narang <v.narang@samsung.com> Signed-off-by: Vaneet Narang <v.narang@samsung.com> Signed-off-by: Maninder Singh <maninder1.s@samsung.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
![]() |
82edd9d52e |
mm/slab_common: provide "slab_merge" option for !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT) builds
This is a minor addition to the allocator setup options to provide a simple way to on demand enable back cache merging for builds that by default run with CONFIG_SLAB_MERGE_DEFAULT not set. Link: https://lkml.kernel.org/r/20210319194506.200159-1-aquini@redhat.com Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
0d3dd2c8ea |
rcutorture: Add crude tests for mem_dump_obj()
This commit adds a few crude tests for mem_dump_obj() to rcutorture runs. Just to prevent bitrot, you understand! Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
![]() |
5bb1bb353c |
mm: Don't build mm_dump_obj() on CONFIG_PRINTK=n kernels
The mem_dump_obj() functionality adds a few hundred bytes, which is a small price to pay. Except on kernels built with CONFIG_PRINTK=n, in which mem_dump_obj() messages will be suppressed. This commit therefore makes mem_dump_obj() be a static inline empty function on kernels built with CONFIG_PRINTK=n and excludes all of its support functions as well. This avoids kernel bloat on systems that cannot use mem_dump_obj(). Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <linux-mm@kvack.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
![]() |
d12d9ad816 |
kasan, mm: optimize krealloc poisoning
Currently, krealloc() always calls ksize(), which unpoisons the whole object including the redzone. This is inefficient, as kasan_krealloc() repoisons the redzone for objects that fit into the same buffer. This patch changes krealloc() instrumentation to use uninstrumented __ksize() that doesn't unpoison the memory. Instead, kasan_kreallos() is changed to unpoison the memory excluding the redzone. For objects that don't fit into the old allocation, this patch disables KASAN accessibility checks when copying memory into a new object instead of unpoisoning it. Link: https://lkml.kernel.org/r/9bef90327c9cb109d736c40115684fd32f49e6b0.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
26a5ca7a73 |
kasan, mm: fail krealloc on freed objects
Currently, if krealloc() is called on a freed object with KASAN enabled, it allocates and returns a new object, but doesn't copy any memory from the old one as ksize() returns 0. This makes the caller believe that krealloc() succeeded (KASAN report is printed though). This patch adds an accessibility check into __do_krealloc(). If the check fails, krealloc() returns NULL. This check duplicates the one in ksize(); this is fixed in the following patch. This patch also adds a KASAN-KUnit test to check krealloc() behaviour when it's called on a freed object. Link: https://lkml.kernel.org/r/cbcf7b02be0a1ca11de4f833f2ff0b3f2c9b00c8.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
928501344f |
kasan, mm: don't save alloc stacks twice
Patch series "kasan: optimizations and fixes for HW_TAGS", v4. This patchset makes the HW_TAGS mode more efficient, mostly by reworking poisoning approaches and simplifying/inlining some internal helpers. With this change, the overhead of HW_TAGS annotations excluding setting and checking memory tags is ~3%. The performance impact caused by tags will be unknown until we have hardware that supports MTE. As a side-effect, this patchset speeds up generic KASAN by ~15%. This patch (of 13): Currently KASAN saves allocation stacks in both kasan_slab_alloc() and kasan_kmalloc() annotations. This patch changes KASAN to save allocation stacks for slab objects from kmalloc caches in kasan_kmalloc() only, and stacks for other slab objects in kasan_slab_alloc() only. This change requires ____kasan_kmalloc() knowing whether the object belongs to a kmalloc cache. This is implemented by adding a flag field to the kasan_info structure. That flag is only set for kmalloc caches via a new kasan_cache_create_kmalloc() annotation. Link: https://lkml.kernel.org/r/cover.1612546384.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/7c673ebca8d00f40a7ad6f04ab9a2bddeeae2097.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
d3fb45f370 |
mm, kfence: insert KFENCE hooks for SLAB
Inserts KFENCE hooks into the SLAB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
611806b4bf |
kasan: fix bug detection via ksize for HW_TAGS mode
The currently existing kasan_check_read/write() annotations are intended to be used for kernel modules that have KASAN compiler instrumentation disabled. Thus, they are only relevant for the software KASAN modes that rely on compiler instrumentation. However there's another use case for these annotations: ksize() checks that the object passed to it is indeed accessible before unpoisoning the whole object. This is currently done via __kasan_check_read(), which is compiled away for the hardware tag-based mode that doesn't rely on compiler instrumentation. This leads to KASAN missing detecting some memory corruptions. Provide another annotation called kasan_check_byte() that is available for all KASAN modes. As the implementation rename and reuse kasan_check_invalid_free(). Use this new annotation in ksize(). To avoid having ksize() as the top frame in the reported stack trace pass _RET_IP_ to __kasan_check_byte(). Also add a new ksize_uaf() test that checks that a use-after-free is detected via ksize() itself, and via plain accesses that happen later. Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5 Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
96403bfe50 |
mm: memcontrol: fix slub memory accounting
SLUB currently account kmalloc() and kmalloc_node() allocations larger
than order-1 page per-node. But it forget to update the per-memcg
vmstats. So it can lead to inaccurate statistics of "slab_unreclaimable"
which is from memory.stat. Fix it by using mod_lruvec_page_state instead
of mod_node_page_state.
Link: https://lkml.kernel.org/r/20210223092423.42420-1-songmuchun@bytedance.com
Fixes:
|
|
![]() |
59450bbc12 |
mm, slab, slub: stop taking cpu hotplug lock
SLAB has been using get/put_online_cpus() around creating, destroying and shrinking kmem caches since |
|
![]() |
7e1fa93def |
mm, slab, slub: stop taking memory hotplug lock
Since commit |
|
![]() |
3754000872 |
mm/sl?b.c: remove ctor argument from kmem_cache_flags
This argument hasn't been used since
|
|
![]() |
8e7f37f2aa |
mm: Add mem_dump_obj() to print source of memory block
There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
![]() |
e86f8b09f2 |
kasan, mm: allow cache merging with no metadata
The reason cache merging is disabled with KASAN is because KASAN puts its metadata right after the allocated object. When the merged caches have slightly different sizes, the metadata ends up in different places, which KASAN doesn't support. It might be possible to adjust the metadata allocation algorithm and make it friendly to the cache merging code. Instead this change takes a simpler approach and allows merging caches when no metadata is present. Which is the case for hardware tag-based KASAN with kasan.mode=prod. Link: https://lkml.kernel.org/r/37497e940bfd4b32c0a93a702a9ae4cf061d5392.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Ia114847dfb2244f297d2cb82d592bf6a07455dba Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
cebd0eb29a |
kasan: rename (un)poison_shadow to (un)poison_range
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory. Rename external annotation kasan_unpoison_shadow() to kasan_unpoison_range(), and introduce internal functions (un)poison_range() (without kasan_ prefix). Co-developed-by: Marco Elver <elver@google.com> Link: https://lkml.kernel.org/r/fccdcaa13dc6b2211bf363d6c6d499279a54fe3a.1606161801.git.andreyknvl@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
15d5de496b |
mm: slab: clarify krealloc()'s behavior with __GFP_ZERO
Patch series "slab: provide and use krealloc_array()", v3. Andy brought to my attention the fact that users allocating an array of equally sized elements should check if the size multiplication doesn't overflow. This is why we have helpers like kmalloc_array(). However we don't have krealloc_array() equivalent and there are many users who do their own multiplication when calling krealloc() for arrays. This series provides krealloc_array() and uses it in a couple places. A separate series will follow adding devm_krealloc_array() which is needed in the xilinx adc driver. This patch (of 9): __GFP_ZERO is ignored by krealloc() (unless we fall-back to kmalloc() path, in which case it's honored). Point that out in the kerneldoc. Link: https://lkml.kernel.org/r/20201109110654.12547-1-brgl@bgdev.pl Link: https://lkml.kernel.org/r/20201109110654.12547-2-brgl@bgdev.pl Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Gustavo Padovan <gustavo@padovan.org> Cc: Christian Knig <christian.koenig@amd.com> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Cc: James Morse <james.morse@arm.com> Cc: Robert Richter <rric@kernel.org> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Thomas Zimmermann <tzimmermann@suse.de> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: "Michael S . Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Cc: Borislav Petkov <bp@suse.de> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Takashi Iwai <tiwai@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
7714304f3b |
mm/slab_common.c: use list_for_each_entry in dump_unreclaimable_slab()
dump_unreclaimable_slab() acquires the slab_mutex first, and it won't remove any slab_caches list entry when itering the slab_caches lists. Thus we do not need list_for_each_entry_safe here, which is against removal of list entry. Link: https://lkml.kernel.org/r/20200926043440.GA180545@rlk Signed-off-by: Hui Su <sh_def@163.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
081a06fa29 |
mm/slab_common.c: delete duplicated word
Drop the repeated word "and". Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200801173822.14973-12-rdunlap@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
10befea91b |
mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and non-accounted allocations and the second one shared by all accounted allocations, we can use just one. The idea is simple: space for obj_cgroup metadata can be allocated on demand and filled only for accounted allocations. It allows to remove a bunch of code which is required to handle kmem_cache clones for accounted allocations. There is no more need to create them, accumulate statistics, propagate attributes, etc. It's a quite significant simplification. Also, because the total number of slab_caches is reduced almost twice (not all kmem_caches have a memcg clone), some additional memory savings are expected. On my devvm it additionally saves about 3.5% of slab memory. [guro@fb.com: fix build on MIPS] Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
15999eef7f |
mm: memcg/slab: remove redundant check in memcg_accumulate_slabinfo()
memcg_accumulate_slabinfo() is never called with a non-root kmem_cache as a first argument, so the is_root_cache(s) check is redundant and can be removed without any functional change. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-17-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
c7094406fc |
mm: memcg/slab: deprecate slab_root_caches
Currently there are two lists of kmem_caches: 1) slab_caches, which contains all kmem_caches, 2) slab_root_caches, which contains only root kmem_caches. And there is some preprocessor magic to have a single list if CONFIG_MEMCG_KMEM isn't enabled. It was required earlier because the number of non-root kmem_caches was proportional to the number of memory cgroups and could reach really big values. Now, when it cannot exceed the number of root kmem_caches, there is really no reason to maintain two lists. We never iterate over the slab_root_caches list on any hot paths, so it's perfectly fine to iterate over slab_caches and filter out non-root kmem_caches. It allows to remove a lot of config-dependent code and two pointers from the kmem_cache structure. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-16-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
272911a4ad |
mm: memcg/slab: remove memcg_kmem_get_cache()
The memcg_kmem_get_cache() function became really trivial, so let's just inline it into the single call point: memcg_slab_pre_alloc_hook(). It will make the code less bulky and can also help the compiler to generate a better code. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
d797b7d054 |
mm: memcg/slab: simplify memcg cache creation
Because the number of non-root kmem_caches doesn't depend on the number of memory cgroups anymore and is generally not very big, there is no more need for a dedicated workqueue. Also, as there is no more need to pass any arguments to the memcg_create_kmem_cache() except the root kmem_cache, it's possible to just embed the work structure into the kmem_cache and avoid the dynamic allocation of the work structure. This will also simplify the synchronization: for each root kmem_cache there is only one work. So there will be no more concurrent attempts to create a non-root kmem_cache for a root kmem_cache: the second and all following attempts to queue the work will fail. On the kmem_cache destruction path there is no more need to call the expensive flush_workqueue() and wait for all pending works to be finished. Instead, cancel_work_sync() can be used to cancel/wait for only one work. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
9855609bde |
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
4330a26bc4 |
mm: memcg/slab: deprecate memory.kmem.slabinfo
Deprecate memory.kmem.slabinfo. An empty file will be presented if corresponding config options are enabled. The interface is implementation dependent, isn't present in cgroup v2, and is generally useful only for core mm debugging purposes. In other words, it doesn't provide any value for the absolute majority of users. A drgn-based replacement can be found in tools/cgroup/memcg_slabinfo.py. It does support cgroup v1 and v2, mimics memory.kmem.slabinfo output and also allows to get any additional information without a need to recompile the kernel. If a drgn-based solution is too slow for a task, a bpf-based tracing tool can be used, which can easily keep track of all slab allocations belonging to a memory cgroup. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
d42f3245c7 |
mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
444050990d |
mm, slab: check GFP_SLAB_BUG_MASK before alloc_pages in kmalloc_order
kmalloc cannot allocate memory from HIGHMEM. Allocating large amounts of memory currently bypasses the check and will simply leak the memory when page_address() returns NULL. To fix this, factor the GFP_SLAB_BUG_MASK check out of slab & slub, and call it from kmalloc_order() as well. In order to make the code clear, the warning message is put in one place. Signed-off-by: Long Li <lonuxli.64@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200704035027.GA62481@lilong Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
fa9ba3aa89 |
mm: ksize() should silently accept a NULL pointer
Other mm routines such as kfree() and kzfree() silently do the right thing if passed a NULL pointer, so ksize() should do the same. Signed-off-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200616225409.4670-1-william.kucharski@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
453431a549 |
mm, treewide: rename kzfree() to kfree_sensitive()
As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
d38a2b7a9c |
mm: memcg/slab: fix memory leak at non-root kmem_cache destroy
If the kmem_cache refcount is greater than one, we should not mark the
root kmem_cache as dying. If we mark the root kmem_cache dying
incorrectly, the non-root kmem_cache can never be destroyed. It
resulted in memory leak when memcg was destroyed. We can use the
following steps to reproduce.
1) Use kmem_cache_create() to create a new kmem_cache named A.
2) Coincidentally, the kmem_cache A is an alias for kmem_cache B,
so the refcount of B is just increased.
3) Use kmem_cache_destroy() to destroy the kmem_cache A, just
decrease the B's refcount but mark the B as dying.
4) Create a new memory cgroup and alloc memory from the kmem_cache
B. It leads to create a non-root kmem_cache for allocating memory.
5) When destroy the memory cgroup created in the step 4), the
non-root kmem_cache can never be destroyed.
If we repeat steps 4) and 5), this will cause a lot of memory leak. So
only when refcount reach zero, we mark the root kmem_cache as dying.
Fixes:
|
|
![]() |
8982ae527f |
mm/slab: use memzero_explicit() in kzfree()
The kzfree() function is normally used to clear some sensitive
information, like encryption keys, in the buffer before freeing it back to
the pool. Memset() is currently used for buffer clearing. However
unlikely, there is still a non-zero probability that the compiler may
choose to optimize away the memory clearing especially if LTO is being
used in the future.
To make sure that this optimization will never happen,
memzero_explicit(), which is introduced in v3.18, is now used in
kzfree() to future-proof it.
Link: http://lkml.kernel.org/r/20200616154311.12314-2-longman@redhat.com
Fixes:
|
|
![]() |
49f2d2419d |
usercopy: mark dma-kmalloc caches as usercopy caches
We have seen a "usercopy: Kernel memory overwrite attempt detected to SLUB object 'dma-kmalloc-1 k' (offset 0, size 11)!" error on s390x, as IUCV uses kmalloc() with __GFP_DMA because of memory address restrictions. The issue has been discussed [2] and it has been noted that if all the kmalloc caches are marked as usercopy, there's little reason not to mark dma-kmalloc caches too. The 'dma' part merely means that __GFP_DMA is used to restrict memory address range. As Jann Horn put it [3]: "I think dma-kmalloc slabs should be handled the same way as normal kmalloc slabs. When a dma-kmalloc allocation is freshly created, it is just normal kernel memory - even if it might later be used for DMA -, and it should be perfectly fine to copy_from_user() into such allocations at that point, and to copy_to_user() out of them at the end. If you look at the places where such allocations are created, you can see things like kmemdup(), memcpy() and so on - all normal operations that shouldn't conceptually be different from usercopy in any relevant way." Thus this patch marks the dma-kmalloc-* caches as usercopy. [1] https://bugzilla.suse.com/show_bug.cgi?id=1156053 [2] https://lore.kernel.org/kernel-hardening/bfca96db-bbd0-d958-7732-76e36c667c68@suse.cz/ [3] https://lore.kernel.org/kernel-hardening/CAG48ez1a4waGk9kB0WLaSbs4muSoK0AYAVk8=XYaKj4_+6e6Hg@mail.gmail.com/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Jiri Slaby <jslaby@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Christopher Lameter <cl@linux.com> Cc: Julian Wiedmann <jwi@linux.ibm.com> Cc: Ursula Braun <ubraun@linux.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: David Windsor <dave@nullcore.net> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Laura Abbott <labbott@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Dave Kleikamp <dave.kleikamp@oracle.com> Cc: Jan Kara <jack@suse.cz> Cc: Luis de Bethencourt <luisbg@kernel.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rik van Riel <riel@surriel.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Michal Kubecek <mkubecek@suse.cz> Link: http://lkml.kernel.org/r/7d810f6d-8085-ea2f-7805-47ba3842dc50@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
b991cee567 |
mm, slab_common: fix a typo in comment "eariler"->"earlier"
There is a typo in comment, fix it. s/eariler/earlier/ Signed-off-by: Qiujun Huang <hqjagain@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux.com> Link: http://lkml.kernel.org/r/20200405160544.1246-1-hqjagain@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
d919b33daf |
proc: faster open/read/close with "permanent" files
Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
a87425a36f |
mm, memcg: fix build error around the usage of kmem_caches
When I manually set default n to MEMCG_KMEM in init/Kconfig, bellow error
occurs,
mm/slab_common.c: In function 'memcg_slab_start':
mm/slab_common.c:1530:30: error: 'struct mem_cgroup' has no member named
'kmem_caches'
return seq_list_start(&memcg->kmem_caches, *pos);
^
mm/slab_common.c: In function 'memcg_slab_next':
mm/slab_common.c:1537:32: error: 'struct mem_cgroup' has no member named
'kmem_caches'
return seq_list_next(p, &memcg->kmem_caches, pos);
^
mm/slab_common.c: In function 'memcg_slab_show':
mm/slab_common.c:1551:16: error: 'struct mem_cgroup' has no member named
'kmem_caches'
if (p == memcg->kmem_caches.next)
^
CC arch/x86/xen/smp.o
mm/slab_common.c: In function 'memcg_slab_start':
mm/slab_common.c:1531:1: warning: control reaches end of non-void function
[-Wreturn-type]
}
^
mm/slab_common.c: In function 'memcg_slab_next':
mm/slab_common.c:1538:1: warning: control reaches end of non-void function
[-Wreturn-type]
}
^
That's because kmem_caches is defined only when CONFIG_MEMCG_KMEM is set,
while memcg_slab_start() will use it no matter CONFIG_MEMCG_KMEM is defined
or not.
By the way, the reason I mannuly undefined CONFIG_MEMCG_KMEM is to verify
whether my some other code change is still stable when CONFIG_MEMCG_KMEM is
not set. Unfortunately, the existing code has been already unstable since
v4.11.
Fixes:
|
|
![]() |
97a32539b9 |
proc: convert everything to "struct proc_ops"
The most notable change is DEFINE_SHOW_ATTRIBUTE macro split in seq_file.h. Conversion rule is: llseek => proc_lseek unlocked_ioctl => proc_ioctl xxx => proc_xxx delete ".owner = THIS_MODULE" line [akpm@linux-foundation.org: fix drivers/isdn/capi/kcapi_proc.c] [sfr@canb.auug.org.au: fix kernel/sched/psi.c] Link: http://lkml.kernel.org/r/20200122180545.36222f50@canb.auug.org.au Link: http://lkml.kernel.org/r/20191225172546.GB13378@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
1c948715a1 |
mm: remove __krealloc
Since 5.5-rc1 the last user of this function is gone, so remove the
functionality.
See commit
|
|
![]() |
2fe20210fc |
mm: memcg/slab: call flush_memcg_workqueue() only if memcg workqueue is valid
When booting with amd_iommu=off, the following WARNING message
appears:
AMD-Vi: AMD IOMMU disabled on kernel command-line
------------[ cut here ]------------
WARNING: CPU: 0 PID: 0 at kernel/workqueue.c:2772 flush_workqueue+0x42e/0x450
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.5.0-rc3-amd-iommu #6
Hardware name: Lenovo ThinkSystem SR655-2S/7D2WRCZ000, BIOS D8E101L-1.00 12/05/2019
RIP: 0010:flush_workqueue+0x42e/0x450
Code: ff 0f 0b e9 7a fd ff ff 4d 89 ef e9 33 fe ff ff 0f 0b e9 7f fd ff ff 0f 0b e9 bc fd ff ff 0f 0b e9 a8 fd ff ff e8 52 2c fe ff <0f> 0b 31 d2 48 c7 c6 e0 88 c5 95 48 c7 c7 d8 ad f0 95 e8 19 f5 04
Call Trace:
kmem_cache_destroy+0x69/0x260
iommu_go_to_state+0x40c/0x5ab
amd_iommu_prepare+0x16/0x2a
irq_remapping_prepare+0x36/0x5f
enable_IR_x2apic+0x21/0x172
default_setup_apic_routing+0x12/0x6f
apic_intr_mode_init+0x1a1/0x1f1
x86_late_time_init+0x17/0x1c
start_kernel+0x480/0x53f
secondary_startup_64+0xb6/0xc0
---[ end trace 30894107c3749449 ]---
x2apic: IRQ remapping doesn't support X2APIC mode
x2apic disabled
The warning is caused by the calling of 'kmem_cache_destroy()'
in free_iommu_resources(). Here is the call path:
free_iommu_resources
kmem_cache_destroy
flush_memcg_workqueue
flush_workqueue
The root cause is that the IOMMU subsystem runs before the workqueue
subsystem, which the variable 'wq_online' is still 'false'. This leads
to the statement 'if (WARN_ON(!wq_online))' in flush_workqueue() is
'true'.
Since the variable 'memcg_kmem_cache_wq' is not allocated during the
time, it is unnecessary to call flush_memcg_workqueue(). This prevents
the WARNING message triggered by flush_workqueue().
Link: http://lkml.kernel.org/r/20200103085503.1665-1-ahuang12@lenovo.com
Fixes:
|
|
![]() |
a264df74df |
mm: memcg/slab: wait for !root kmem_cache refcnt killing on root kmem_cache destruction
Christian reported a warning like the following obtained during running
some KVM-related tests on s390:
WARNING: CPU: 8 PID: 208 at lib/percpu-refcount.c:108 percpu_ref_exit+0x50/0x58
Modules linked in: kvm(-) xt_CHECKSUM xt_MASQUERADE bonding xt_tcpudp ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ip6table_na>
CPU: 8 PID: 208 Comm: kworker/8:1 Not tainted 5.2.0+ #66
Hardware name: IBM 2964 NC9 712 (LPAR)
Workqueue: events sysfs_slab_remove_workfn
Krnl PSW : 0704e00180000000 0000001529746850 (percpu_ref_exit+0x50/0x58)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 00000000ffff8808 0000001529746740 000003f4e30e8e18 0036008100000000
0000001f00000000 0035008100000000 0000001fb3573ab8 0000000000000000
0000001fbdb6de00 0000000000000000 0000001529f01328 0000001fb3573b00
0000001fbb27e000 0000001fbdb69300 000003e009263d00 000003e009263cd0
Krnl Code: 0000001529746842: f0a0000407fe srp 4(11,%r0),2046,0
0000001529746848: 47000700 bc 0,1792
#000000152974684c: a7f40001 brc 15,152974684e
>0000001529746850: a7f4fff2 brc 15,1529746834
0000001529746854: 0707 bcr 0,%r7
0000001529746856: 0707 bcr 0,%r7
0000001529746858: eb8ff0580024 stmg %r8,%r15,88(%r15)
000000152974685e: a738ffff lhi %r3,-1
Call Trace:
([<000003e009263d00>] 0x3e009263d00)
[<00000015293252ea>] slab_kmem_cache_release+0x3a/0x70
[<0000001529b04882>] kobject_put+0xaa/0xe8
[<000000152918cf28>] process_one_work+0x1e8/0x428
[<000000152918d1b0>] worker_thread+0x48/0x460
[<00000015291942c6>] kthread+0x126/0x160
[<0000001529b22344>] ret_from_fork+0x28/0x30
[<0000001529b2234c>] kernel_thread_starter+0x0/0x10
Last Breaking-Event-Address:
[<000000152974684c>] percpu_ref_exit+0x4c/0x58
---[ end trace b035e7da5788eb09 ]---
The problem occurs because kmem_cache_destroy() is called immediately
after deleting of a memcg, so it races with the memcg kmem_cache
deactivation.
flush_memcg_workqueue() at the beginning of kmem_cache_destroy() is
supposed to guarantee that all deactivation processes are finished, but
failed to do so. It waits for an rcu grace period, after which all
children kmem_caches should be deactivated. During the deactivation
percpu_ref_kill() is called for non root kmem_cache refcounters, but it
requires yet another rcu grace period to finish the transition to the
atomic (dead) state.
So in a rare case when not all children kmem_caches are destroyed at the
moment when the root kmem_cache is about to be gone, we need to wait
another rcu grace period before destroying the root kmem_cache.
This issue can be triggered only with dynamically created kmem_caches
which are used with memcg accounting. In this case per-memcg child
kmem_caches are created. They are deactivated from the cgroup removing
path. If the destruction of the root kmem_cache is racing with the
removal of the cgroup (both are quite complicated multi-stage
processes), the described issue can occur. The only known way to
trigger it in the real life, is to unload some kernel module which
creates a dedicated kmem_cache, used from different memory cgroups with
GFP_ACCOUNT flag. If the unloading happens immediately after calling
rmdir on the corresponding cgroup, there is some chance to trigger the
issue.
Link: http://lkml.kernel.org/r/20191129025011.3076017-1-guro@fb.com
Fixes:
|
|
![]() |
13657d0ad9 |
mm, slab_common: use enum kmalloc_cache_type to iterate over kmalloc caches
The type of local variable *type* of new_kmalloc_cache() should be enum kmalloc_cache_type instead of int, so correct it. Link: http://lkml.kernel.org/r/1569241648-26908-4-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
![]() |
dc0a7f7558 |
mm, slab: remove unused kmalloc_size()
The size of kmalloc can be obtained from kmalloc_info[], so remove kmalloc_size() that will not be used anymore. Link: http://lkml.kernel.org/r/1569241648-26908-3-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |