Commit 37868fe113 ("x86/ldt: Make modify_ldt synchronous")
introduced a new struct ldt_struct anchored at mm->context.ldt.
Adapt the x86 fpu emulation code to use that new structure.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: <stable@vger.kernel.org> # On top of: 37868fe113ff: x86/ldt: Make modify_ldt synchronous
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: billm@melbpc.org.au
Link: http://lkml.kernel.org/r/1438883674-1240-1-git-send-email-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So 6 years ago we made the FPU fpstate dynamically allocated:
aa283f4927 ("x86, fpu: lazy allocation of FPU area - v5")
61c4628b53 ("x86, fpu: split FPU state from task struct - v5")
In hindsight this was a mistake:
- it complicated context allocation failure handling, such as:
/* kthread execs. TODO: cleanup this horror. */
if (WARN_ON(fpstate_alloc_init(fpu)))
force_sig(SIGKILL, tsk);
- it caused us to enable irqs in fpu__restore():
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (fpstate_alloc_init(fpu)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
- it (slightly) slowed down task creation/destruction by adding
slab allocation/free pattens.
- it made access to context contents (slightly) slower by adding
one more pointer dereference.
The motivation for the dynamic allocation was two-fold:
- reduce memory consumption by non-FPU tasks
- allocate and handle only the necessary amount of context for
various XSAVE processors that have varying hardware frame
sizes.
These days, with glibc using SSE memcpy by default and GCC optimizing
for SSE/AVX by default, the scope of FPU using apps on an x86 system is
much larger than it was 6 years ago.
For example on a freshly installed Fedora 21 desktop system, with a
recent kernel, all non-kthread tasks have used the FPU shortly after
bootup.
Also, even modern embedded x86 CPUs try to support the latest vector
instruction set - so they'll too often use the larger xstate frame
sizes.
So remove the dynamic allocation complication by embedding the FPU
fpstate in task_struct again. This should make the FPU a lot more
accessible to all sorts of atomic contexts.
We could still optimize for the xstate frame size in the future,
by moving the state structure to the last element of task_struct,
and allocating only a part of that.
This change is kept minimal by still keeping the ctx_alloc()/free()
routines (that now do nothing substantial) - we'll remove them in
the following patches.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Unbreak FPU emulation, broken by checkin
86603283326c9e95e5ad4e9fdddeec93cac5d9ad:
x86: Introduce 'struct fpu' and related API
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1273135546-29690-3-git-send-email-avi@redhat.com>
do_device_not_available() is the handler for #NM and it declares that
it takes a unsigned long and calls math_emu(), which takes a long
argument and surprisingly expects the stack frame starting at the zero
argument would match struct math_emu_info, which isn't true regardless
of configuration in the current code.
This patch makes do_device_not_available() take struct pt_regs like
other exception handlers and initialize struct math_emu_info with
pointer to it and pass pointer to the math_emu_info to math_emulate()
like normal C functions do. This way, unless gcc makes a copy of
struct pt_regs in do_device_not_available(), the register frame is
correctly accessed regardless of kernel configuration or compiler
used.
This doesn't fix all math_emu problems but it at least gets it
somewhat working.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
* Come on, struct info? s/struct info/struct math_emu_info/
* Use struct pt_regs and kernel_vm86_regs instead of defining its own
register frame structure.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Split the FPU save area from the task struct. This allows easy migration
of FPU context, and it's generally cleaner. It also allows the following
two optimizations:
1) only allocate when the application actually uses FPU, so in the first
lazy FPU trap. This could save memory for non-fpu using apps. Next patch
does this lazy allocation.
2) allocate the right size for the actual cpu rather than 512 bytes always.
Patches enabling xsave/xrstor support (coming shortly) will take advantage
of this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>