I noticed that the soft IRQ thread looked pretty busy under heavy
I/O workloads. perf suggested one area that was expensive was the
queue_work() call in rpcrdma_wc_receive. That gave me some ideas.
Instead of scheduling a separate worker to process RPC Replies,
promote the Receive completion handler to IB_POLL_WORKQUEUE, and
invoke rpcrdma_reply_handler directly.
Note that the poll workqueue is single-threaded. In order to keep
memory invalidation from serializing all RPC Replies, handle any
necessary invalidation tasks in a separate multi-threaded workqueue.
This provides a two-tier scheme, similar to OS I/O interrupt
handlers: A fast interrupt handler that schedules the slow handler
and re-enables the interrupt, and a slower handler that is invoked
for any needed heavy lifting.
Benefits include:
- One less context switch for RPCs that don't register memory
- Receive completion handling is moved out of soft IRQ context to
make room for other users of soft IRQ
- The same CPU core now DMA syncs and XDR decodes the Receive buffer
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: I'd like to be able to invoke the tail of
rpcrdma_reply_handler in two different places. Split the tail out
into its own helper function.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Make it easier to pass the decoded XID, vers, credits, and
proc fields around by moving these variables into struct rpcrdma_rep.
Note: the credits field will be handled in a subsequent patch.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: There are no remaining callers of this method.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Adopt the use of xprt_pin_rqst to eliminate contention between
Call-side users of rb_lock and the use of rb_lock in
rpcrdma_reply_handler.
This replaces the mechanism introduced in 431af645cf ("xprtrdma:
Fix client lock-up after application signal fires").
Use recv_lock to quickly find the completing rqst, pin it, then
drop the lock. At that point invalidation and pull-up of the Reply
XDR can be done. Both are often expensive operations.
Finally, take recv_lock again to signal completion to the RPC
layer. It also protects adjustment of "cwnd".
This greatly reduces the amount of time a lock is held by the
reply handler. Comparing lock_stat results shows a marked decrease
in contention on rb_lock and recv_lock.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[trond.myklebust@primarydata.com: Remove call to rpcrdma_buffer_put() from
the "out_norqst:" path in rpcrdma_reply_handler.]
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
To reduce false cacheline sharing, separate counters that are likely
to be accessed in the Call path from those accessed in the Reply
path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Re-arrange the pointer arithmetic in the chunk list encoders to
eliminate several more integer multiplication instructions during
Transport Header encoding.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Initialize an xdr_stream at the top of rpcrdma_marshal_req(), and
use it to encode the fixed transport header fields. This xdr_stream
will be used to encode the chunk lists in a subsequent patch.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The caller already has rpcrdma_xprt, so pass that directly
instead. And provide a documenting comment for this critical
function.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Replace C-structure based XDR decoding for consistency
with other areas.
struct rpcrdma_rep is rearranged slightly so that the relevant fields
are in cache when the Receive completion handler is invoked.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This field is no longer used outside the Receive completion handler.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Transport header decoding deals with untrusted input data, therefore
decoding this header needs to be hardened.
Adopt the same infrastructure that is used when XDR decoding NFS
replies. This is slightly more CPU-intensive than the replaced code,
but we're not adding new atomics, locking, or context switches. The
cost is manageable.
Start by initializing an xdr_stream in rpcrdma_reply_handler().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After a signal, the RPC client aborts synchronous RPCs running on
behalf of the signaled application.
The server is still executing those RPCs, and will write the results
back into the client's memory when it's done. By the time the server
writes the results, that memory is likely being used for other
purposes. Therefore xprtrdma has to immediately invalidate all
memory regions used by those aborted RPCs to prevent the server's
writes from clobbering that re-used memory.
With FMR memory registration, invalidation takes a relatively long
time. In fact, the invalidation is often still running when the
server tries to write the results into the memory regions that are
being invalidated.
This sets up a race between two processes:
1. After the signal, xprt_rdma_free calls ro_unmap_safe.
2. While ro_unmap_safe is still running, the server replies and
rpcrdma_reply_handler runs, calling ro_unmap_sync.
Both processes invoke ib_unmap_fmr on the same FMR.
The mlx4 driver allows two ib_unmap_fmr calls on the same FMR at
the same time, but HCAs generally don't tolerate this. Sometimes
this can result in a system crash.
If the HCA happens to survive, rpcrdma_reply_handler continues. It
removes the rpc_rqst from rq_list and releases the transport_lock.
This enables xprt_rdma_free to run in another process, and the
rpc_rqst is released while rpcrdma_reply_handler is still waiting
for the ib_unmap_fmr call to finish.
But further down in rpcrdma_reply_handler, the transport_lock is
taken again, and "rqst" is dereferenced. If "rqst" has already been
released, this triggers a general protection fault. Since bottom-
halves are disabled, the system locks up.
Address both issues by reversing the order of the xprt_lookup_rqst
call and the ro_unmap_sync call. Introduce a separate lookup
mechanism for rpcrdma_req's to enable calling ro_unmap_sync before
xprt_lookup_rqst. Now the handler takes the transport_lock once
and holds it for the XID lookup and RPC completion.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305
Fixes: 68791649a7 ('xprtrdma: Invalidate in the RPC reply ... ')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: I'm about to use the rl_free field for purposes other than
a free list. So use a more generic name.
This is a refactoring change only.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305
Fixes: 68791649a7 ('xprtrdma: Invalidate in the RPC reply ... ')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There are rare cases where an rpcrdma_req can be re-used (via
rpcrdma_buffer_put) while the RPC reply handler is still running.
This is due to a signal firing at just the wrong instant.
Since commit 9d6b040978 ("xprtrdma: Place registered MWs on a
per-req list"), rpcrdma_mws are self-contained; ie., they fully
describe an MR and scatterlist, and no part of that information is
stored in struct rpcrdma_req.
As part of closing the above race window, pass only the req's list
of registered MRs to ro_unmap_sync, rather than the rpcrdma_req
itself.
Some extra transport header sanity checking is removed. Since the
client depends on its own recollection of what memory had been
registered, there doesn't seem to be a way to abuse this change.
And, the check was not terribly effective. If the client had sent
Read chunks, the "list_empty" test is negative in both of the
removed cases, which are actually looking for Write or Reply
chunks.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305
Fixes: 68791649a7 ('xprtrdma: Invalidate in the RPC reply ... ')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There are rare cases where an rpcrdma_req and its matched
rpcrdma_rep can be re-used, via rpcrdma_buffer_put, while the RPC
reply handler is still using that req. This is typically due to a
signal firing at just the wrong instant.
As part of closing this race window, avoid using the wrong
rpcrdma_rep to detect remotely invalidated MRs. Mark MRs as
invalidated while we are sure the rep is still OK to use.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305
Fixes: 68791649a7 ('xprtrdma: Invalidate in the RPC reply ... ')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Since commit 1e465fd4ff ("xprtrdma: Replace send and receive
arrays"), this field is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The device driver for the underlying physical device associated
with an RPC-over-RDMA transport can be removed while RPC-over-RDMA
transports are still in use (ie, while NFS filesystems are still
mounted and active). The IB core performs a connection event upcall
to request that consumers free all RDMA resources associated with
a transport.
There may be pending RPCs when this occurs. Care must be taken to
release associated resources without leaving references that can
trigger a subsequent crash if a signal or soft timeout occurs. We
rely on the caller of the transport's ->close method to ensure that
the previous RPC task has invoked xprt_release but the transport
remains write-locked.
A DEVICE_REMOVE upcall forces a disconnect then sleeps. When ->close
is invoked, it destroys the transport's H/W resources, then wakes
the upcall, which completes and allows the core driver unload to
continue.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=266
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When the underlying device driver is reloaded, ia->ri_device will be
replaced. All cached copies of that device pointer have to be
updated as well.
Commit 54cbd6b0c6 ("xprtrdma: Delay DMA mapping Send and Receive
buffers") added the rg_device field to each regbuf. As part of
handling a device removal, rpcrdma_dma_unmap_regbuf is invoked on
all regbufs for a transport.
Simply calling rpcrdma_dma_map_regbuf for each Receive buffer after
the driver has been reloaded should reinitialize rg_device correctly
for every case except rpcrdma_wc_receive, which still uses
rpcrdma_rep::rr_device.
Ensure the same device that was used to map a Receive buffer is also
used to sync it in rpcrdma_wc_receive by using rg_device there
instead of rr_device.
This is the only use of rr_device, so it can be removed.
The use of regbufs in the send path is also updated, for
completeness.
Fixes: 54cbd6b0c6 ("xprtrdma: Delay DMA mapping Send and ... ")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In order to unload a device driver and reload it, xprtrdma will need
to close a transport's interface adapter, and then call
rpcrdma_ia_open again, possibly finding a different interface
adapter.
Make rpcrdma_ia_open safe to call on the same transport multiple
times.
This is a refactoring change only.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
We no longer need to accommodate an xdr_buf whose pages start at an
offset and cross extra page boundaries. If there are more partial or
whole pages to send than there are available SGEs, the marshaling
logic is now smart enough to use a Read chunk instead of failing.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The MAX_SEND_SGES check introduced in commit 655fec6987
("xprtrdma: Use gathered Send for large inline messages") fails
for devices that have a small max_sge.
Instead of checking for a large fixed maximum number of SGEs,
check for a minimum small number. RPC-over-RDMA will switch to
using a Read chunk if an xdr_buf has more pages than can fit in
the device's max_sge limit. This is considerably better than
failing all together to mount the server.
This fix supports devices that have as few as three send SGEs
available.
Reported-by: Selvin Xavier <selvin.xavier@broadcom.com>
Reported-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reported-by: Honggang Li <honli@redhat.com>
Reported-by: Ram Amrani <Ram.Amrani@cavium.com>
Fixes: 655fec6987 ("xprtrdma: Use gathered Send for large ...")
Cc: stable@vger.kernel.org # v4.9+
Tested-by: Honggang Li <honli@redhat.com>
Tested-by: Ram Amrani <Ram.Amrani@cavium.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Parav Pandit <parav@mellanox.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Pad optimization is changed by echoing into
/proc/sys/sunrpc/rdma_pad_optimize. This is a global setting,
affecting all RPC-over-RDMA connections to all servers.
The marshaling code picks up that value and uses it for decisions
about how to construct each RPC-over-RDMA frame. Having it change
suddenly in mid-operation can result in unexpected failures. And
some servers a client mounts might need chunk round-up, while
others don't.
So instead, copy the pad_optimize setting into each connection's
rpcrdma_ia when the transport is created, and use the copy, which
can't change during the life of the connection, instead.
This also removes a hack: rpcrdma_convert_iovs was using
the remote-invalidation-expected flag to predict when it could leave
out Write chunk padding. This is because the Linux server handles
implicit XDR padding on Write chunks correctly, and only Linux
servers can set the connection's remote-invalidation-expected flag.
It's more sensible to use the pad optimization setting instead.
Fixes: 677eb17e94 ("xprtrdma: Fix XDR tail buffer marshalling")
Cc: stable@vger.kernel.org # v4.9+
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Some devices (such as the Mellanox CX-4) can register, under a
single R_key, a set of memory regions that are not contiguous. When
this is done, all the segments in a Reply list, say, can then be
invalidated in a single LocalInv Work Request (or via Remote
Invalidation, which can invalidate exactly one R_key when completing
a Receive).
This means a single FastReg WR is used to register, and one or zero
LocalInv WRs can invalidate, the memory involved with RDMA transfers
on behalf of an RPC.
In addition, xprtrdma constructs some Reply chunks from three or
more segments. By registering them with SG_GAP, only one segment
is needed for the Reply chunk, allowing the whole chunk to be
invalidated remotely.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Verbs providers may perform house-keeping on the Send Queue during
each signaled send completion. It is necessary therefore for a verbs
consumer (like xprtrdma) to occasionally force a signaled send
completion if it runs unsignaled most of the time.
xprtrdma does not require signaled completions for Send or FastReg
Work Requests, but does signal some LocalInv Work Requests. To
ensure that Send Queue house-keeping can run before the Send Queue
is more than half-consumed, xprtrdma forces a signaled completion
on occasion by counting the number of Send Queue Entries it
consumes. It currently does this by counting each ib_post_send as
one Entry.
Commit c9918ff56d ("xprtrdma: Add ro_unmap_sync method for FRWR")
introduced the ability for frwr_op_unmap_sync to post more than one
Work Request with a single post_send. Thus the underlying assumption
of one Send Queue Entry per ib_post_send is no longer true.
Also, FastReg Work Requests are currently never signaled. They
should be signaled once in a while, just as Send is, to keep the
accounting of consumed SQEs accurate.
While we're here, convert the CQCOUNT macros to the currently
preferred kernel coding style, which is inline functions.
Fixes: c9918ff56d ("xprtrdma: Add ro_unmap_sync method for FRWR")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When a LOCALINV WR is flushed, the frmr is marked STALE, then
frwr_op_unmap_sync DMA-unmaps the frmr's SGL. These STALE frmrs
are then recovered when frwr_op_map hunts for an INVALID frmr to
use.
All other cases that need frmr recovery leave that SGL DMA-mapped.
The FRMR recovery path unconditionally DMA-unmaps the frmr's SGL.
To avoid DMA unmapping the SGL twice for flushed LOCAL_INV WRs,
alter the recovery logic (rather than the hot frwr_op_unmap_sync
path) to distinguish among these cases. This solution also takes
care of the case where multiple LOCAL_INV WRs are issued for the
same rpcrdma_req, some complete successfully, but some are flushed.
Reported-by: Vasco Steinmetz <linux@kyberraum.net>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Vasco Steinmetz <linux@kyberraum.net>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: the extra layer of indirection doesn't add value.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC Call message that is sent inline but that has a data payload
(ie, one or more items in rq_snd_buf's page list) must be "pulled
up:"
- call_allocate has to reserve enough RPC Call buffer space to
accommodate the data payload
- call_transmit has to memcopy the rq_snd_buf's page list and tail
into its head iovec before it is sent
As the inline threshold is increased beyond its current 1KB default,
however, this means data payloads of more than a few KB are copied
by the host CPU. For example, if the inline threshold is increased
just to 4KB, then NFS WRITE requests up to 4KB would involve a
memcpy of the NFS WRITE's payload data into the RPC Call buffer.
This is an undesirable amount of participation by the host CPU.
The inline threshold may be much larger than 4KB in the future,
after negotiation with a peer server.
Instead of copying the components of rq_snd_buf into its head iovec,
construct a gather list of these components, and send them all in
place. The same approach is already used in the Linux server's
RPC-over-RDMA reply path.
This mechanism also eliminates the need for rpcrdma_tail_pullup,
which is used to manage the XDR pad and trailing inline content when
a Read list is present.
This requires that the pages in rq_snd_buf's page list be DMA-mapped
during marshaling, and unmapped when a data-bearing RPC is
completed. This is slightly less efficient for very small I/O
payloads, but significantly more efficient as data payload size and
inline threshold increase past a kilobyte.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Have frwr's ro_unmap_sync recognize an invalidated rkey that appears
as part of a Receive completion. Local invalidation can be skipped
for that rkey.
Use an out-of-band signaling mechanism to indicate to the server
that the client is prepared to receive RDMA Send With Invalidate.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Send an RDMA-CM private message on connect, and look for one during
a connection-established event.
Both sides can communicate their various implementation limits.
Implementations that don't support this sideband protocol ignore it.
Once the client knows the server's inline threshold maxima, it can
adjust the use of Reply chunks, and eliminate most use of Position
Zero Read chunks. Moderately-sized I/O can be done using a pure
inline RDMA Send instead of RDMA operations that require memory
registration.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The fields in the recv_wr do not vary. There is no need to
initialize them before each ib_post_recv(). This removes a large-ish
data structure from the stack.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Most of the fields in each send_wr do not vary. There is
no need to initialize them before each ib_post_send(). This removes
a large-ish data structure from the stack.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
Since commit fc66448549 ("xprtrdma: Split the completion queue"),
rpcrdma_ep_post_recv() no longer uses the "ep" argument.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up. The "ia" argument is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently, each regbuf is allocated and DMA mapped at the same time.
This is done during transport creation.
When a device driver is unloaded, every DMA-mapped buffer in use by
a transport has to be unmapped, and then remapped to the new
device if the driver is loaded again. Remapping will have to be done
_after_ the connect worker has set up the new device.
But there's an ordering problem:
call_allocate, which invokes xprt_rdma_allocate which calls
rpcrdma_alloc_regbuf to allocate Send buffers, happens _before_
the connect worker can run to set up the new device.
Instead, at transport creation, allocate each buffer, but leave it
unmapped. Once the RPC carries these buffers into ->send_request, by
which time a transport connection should have been established,
check to see that the RPC's buffers have been DMA mapped. If not,
map them there.
When device driver unplug support is added, it will simply unmap all
the transport's regbufs, but it doesn't have to deallocate the
underlying memory.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The use of DMA_BIDIRECTIONAL is discouraged by DMA-API.txt.
Fortunately, xprtrdma now knows which direction I/O is going as
soon as it allocates each regbuf.
The RPC Call and Reply buffers are no longer the same regbuf. They
can each be labeled correctly now. The RPC Reply buffer is never
part of either a Send or Receive WR, but it can be part of Reply
chunk, which is mapped and registered via ->ro_map . So it is not
DMA mapped when it is allocated (DMA_NONE), to avoid a double-
mapping.
Since Receive buffers are no longer DMA_BIDIRECTIONAL and their
contents are never modified by the host CPU, DMA-API-HOWTO.txt
suggests that a DMA sync before posting each buffer should be
unnecessary. (See my_card_interrupt_handler).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 949317464b ("xprtrdma: Limit number of RDMA segments in
RPC-over-RDMA headers") capped the number of chunks that may appear
in RPC-over-RDMA headers. The maximum header size can be estimated
and fixed to avoid allocating buffer space that is never used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA needs to separate its RPC call and reply buffers.
o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA
Send operation using DMA_TO_DEVICE
o If the client expects a large RPC reply, it DMA maps rq_rcv_buf
as part of a Reply chunk using DMA_FROM_DEVICE
The two mappings are for data movement in opposite directions.
DMA-API.txt suggests that if these mappings share a DMA cacheline,
bad things can happen. This could occur in the final bytes of
rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers
happen to share a DMA cacheline.
On x86_64 the cacheline size is typically 8 bytes, and RPC call
messages are usually much smaller than the send buffer, so this
hasn't been a noticeable problem. But the DMA cacheline size can be
larger on other platforms.
Also, often rq_rcv_buf starts most of the way into a page, thus
an additional RDMA segment is needed to map and register the end of
that buffer. Try to avoid that scenario to reduce the cost of
registering and invalidating Reply chunks.
Instead of carrying a single regbuf that covers both rq_snd_buf and
rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for
rq_snd_buf and one regbuf for rq_rcv_buf.
Some incidental changes worth noting:
- To clear out some spaghetti, refactor xprt_rdma_allocate.
- The value stored in rg_size is the same as the value stored in
the iov.length field, so eliminate rg_size
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently there's a hidden and indirect mechanism for finding the
rpcrdma_req that goes with an rpc_rqst. It depends on getting from
the rq_buffer pointer in struct rpc_rqst to the struct
rpcrdma_regbuf that controls that buffer, and then to the struct
rpcrdma_req it goes with.
This was done back in the day to avoid the need to add a per-rqst
pointer or to alter the buf_free API when support for RPC-over-RDMA
was introduced.
I'm about to change the way regbuf's work to support larger inline
thresholds. Now is a good time to replace this indirect mechanism
with something that is more straightforward. I guess this should be
considered a clean up.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma needs to allocate the Call and Reply buffers separately.
TBH, the reliance on using a single buffer for the pair of XDR
buffers is transport implementation-specific.
Instead of passing just the rq_buffer into the buf_free method, pass
the task structure and let buf_free take care of freeing both
XDR buffers at once.
There's a micro-optimization here. In the common case, both
xprt_release and the transport's buf_free method were checking if
rq_buffer was NULL. Now the check is done only once per RPC.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: r_xprt is already available everywhere these macros are
invoked, so just dereference that directly.
RPCRDMA_INLINE_PAD_VALUE is no longer used, so it can simply be
removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC can terminate before its reply arrives, if a credential
problem or a soft timeout occurs. After this happens, xprtrdma
reports it is out of Receive buffers.
A Receive buffer is posted before each RPC is sent, and returned to
the buffer pool when a reply is received. If no reply is received
for an RPC, that Receive buffer remains posted. But xprtrdma tries
to post another when the next RPC is sent.
If this happens a few dozen times, there are no receive buffers left
to be posted at send time. I don't see a way for a transport
connection to recover at that point, and it will spit warnings and
unnecessarily delay RPCs on occasion for its remaining lifetime.
Commit 1e465fd4ff ("xprtrdma: Replace send and receive arrays")
removed a little bit of logic to detect this case and not provide
a Receive buffer so no more buffers are posted, and then transport
operation continues correctly. We didn't understand what that logic
did, and it wasn't commented, so it was removed as part of the
overhaul to support backchannel requests.
Restore it, but be wary of the need to keep extra Receives posted
to deal with backchannel requests.
Fixes: 1e465fd4ff ("xprtrdma: Replace send and receive arrays")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Currently, all three chunk list encoders each use a portion of the
one rl_segments array in rpcrdma_req. This is because the MWs for
each chunk list were preserved in rl_segments so that ro_unmap could
find and invalidate them after the RPC was complete.
However, now that MWs are placed on a per-req linked list as they
are registered, there is no longer any information in rpcrdma_mr_seg
that is shared between ro_map and ro_unmap_{sync,safe}, and thus
nothing in rl_segments needs to be preserved after
rpcrdma_marshal_req is complete.
Thus the rl_segments array can be used now just for the needs of
each rpcrdma_convert_iovs call. Once each chunk list is encoded, the
next chunk list encoder is free to re-use all of rl_segments.
This means all three chunk lists in one RPC request can now each
encode a full size data payload with no increase in the size of
rl_segments.
This is a key requirement for Kerberos support, since both the Call
and Reply for a single RPC transaction are conveyed via Long
messages (RDMA Read/Write). Both can be large.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of placing registered MWs sparsely into the rl_segments
array, place these MWs on a per-req list.
ro_unmap_{sync,safe} can then simply pull those MWs off the list
instead of walking through the array.
This change significantly reduces the size of struct rpcrdma_req
by removing nsegs and rl_mw from every array element.
As an additional clean-up, chunk co-ordinates are returned in the
"*mw" output argument so they are no longer needed in every
array element.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Frequent MR list exhaustion can impact I/O throughput, so enough MRs
are always created during transport set-up to prevent running out.
This means more MRs are created than most workloads need.
Commit 94f58c58c0 ("xprtrdma: Allow Read list and Reply chunk
simultaneously") introduced support for sending two chunk lists per
RPC, which consumes more MRs per RPC.
Instead of trying to provision more MRs, introduce a mechanism for
allocating MRs on demand. A few MRs are allocated during transport
set-up to kick things off.
This significantly reduces the average number of MRs per transport
while allowing the MR count to grow for workloads or devices that
need more MRs.
FRWR with mlx4 allocated almost 400 MRs per transport before this
patch. Now it starts with 32.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: ALLPHYSICAL is gone and FMR has been converted to use
scatterlists. There are no more users of these functions.
This patch shrinks the size of struct rpcrdma_req by about 3500
bytes on x86_64. There is one of these structs for each RPC credit
(128 credits per transport connection).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
No HCA or RNIC in the kernel tree requires the use of ALLPHYSICAL.
ALLPHYSICAL advertises in the clear on the network fabric an R_key
that is good for all of the client's memory. No known exploit
exists, but theoretically any user on the server can use that R_key
on the client's QP to read or update any part of the client's memory.
ALLPHYSICAL exposes the client to server bugs, including:
o base/bounds errors causing data outside the i/o buffer to be
accessed
o RDMA access after reply causing data corruption and/or integrity
fail
ALLPHYSICAL can't protect application memory regions from server
update after a local signal or soft timeout has terminated an RPC.
ALLPHYSICAL chunks are no larger than a page. Special cases to
handle small chunks and long chunk lists have been a source of
implementation complexity and bugs.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
I found that commit ead3f26e35 ("xprtrdma: Add ro_unmap_safe
memreg method"), which introduces ro_unmap_safe, never wired up the
FMR recovery worker.
The FMR and FRWR recovery work queues both do the same thing.
Instead of setting up separate individual work queues for this,
schedule a delayed worker to deal with them, since recovering MRs is
not performance-critical.
Fixes: ead3f26e35 ("xprtrdma: Add ro_unmap_safe memreg method")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Use the same naming convention used in other
RPC/RDMA-related data structures.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: FMR is about to replace the rpcrdma_map_one code with
scatterlists. Move the scatterlist fields out of the FRWR-specific
union and into the generic part of rpcrdma_mw.
One minor change: -EIO is now returned if FRWR registration fails.
The RPC is terminated immediately, since the problem is likely due
to a software bug, thus retrying likely won't help.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
After "xprtrdma: Remove ro_unmap() from all registration modes",
there are no longer any sites that take rpcrdma_ia::qplock for read.
The one site that takes it for write is always single-threaded. It
is safe to remove it.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The ro_unmap method is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
There needs to be a safe method of releasing registered memory
resources when an RPC terminates. Safe can mean a number of things:
+ Doesn't have to sleep
+ Doesn't rely on having a QP in RTS
ro_unmap_safe will be that safe method. It can be used in cases
where synchronous memory invalidation can deadlock, or needs to have
an active QP.
The important case is fencing an RPC's memory regions after it is
signaled (^C) and before it exits. If this is not done, there is a
window where the server can write an RPC reply into memory that the
client has released and re-used for some other purpose.
Note that this is a full solution for FRWR, but FMR and physical
still have some gaps where a particularly bad server can wreak
some havoc on the client. These gaps are not made worse by this
patch and are expected to be exceptionally rare and timing-based.
They are noted in documenting comments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In a subsequent patch, the fr_xprt and fr_worker fields will be
needed by another memory registration mode. Move them into the
generic rpcrdma_mw structure that wraps struct rpcrdma_frmr.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Move the the I/O direction field from rpcrdma_mr_seg into the
rpcrdma_frmr.
This makes it possible to DMA-unmap the frwr long after an RPC has
exited and its rpcrdma_mr_seg array has been released and re-used.
This might occur if an RPC times out while waiting for a new
connection to be established.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Follow same naming convention as other fields in struct
rpcrdma_frwr.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
rpcrdma_marshal_req() makes a simplifying assumption: that NFS
operations with large Call messages have small Reply messages, and
vice versa. Therefore with RPC-over-RDMA, only one chunk type is
ever needed for each Call/Reply pair, because one direction needs
chunks, the other direction will always fit inline.
In fact, this assumption is asserted in the code:
if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
__func__);
return -EIO;
}
But RPCGSS_SEC breaks this assumption. Because krb5i and krb5p
perform data transformation on RPC messages before they are
transmitted, direct data placement techniques cannot be used, thus
RPC messages must be sent via a Long call in both directions.
All such calls are sent with a Position Zero Read chunk, and all
such replies are handled with a Reply chunk. Thus the client must
provide every Call/Reply pair with both a Read list and a Reply
chunk.
Without any special security in effect, NFSv4 WRITEs may now also
use the Read list and provide a Reply chunk. The marshal_req
logic was preventing that, meaning an NFSv4 WRITE with a large
payload that included a GETATTR result larger than the inline
threshold would fail.
The code that encodes each chunk list is now completely contained in
its own function. There is some code duplication, but the trade-off
is that the overall logic should be more clear.
Note that all three chunk lists now share the rl_segments array.
Some additional per-req accounting is necessary to track this
usage. For the same reasons that the above simplifying assumption
has held true for so long, I don't expect more array elements are
needed at this time.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When deciding whether to send a Call inline, rpcrdma_marshal_req
doesn't take into account header bytes consumed by chunk lists.
This results in Call messages on the wire that are sometimes larger
than the inline threshold.
Likewise, when a Write list or Reply chunk is in play, the server's
reply has to emit an RDMA Send that includes a larger-than-minimal
RPC-over-RDMA header.
The actual size of a Call message cannot be estimated until after
the chunk lists have been registered. Thus the size of each
RPC-over-RDMA header can be estimated only after chunks are
registered; but the decision to register chunks is based on the size
of that header. Chicken, meet egg.
The best a client can do is estimate header size based on the
largest header that might occur, and then ensure that inline content
is always smaller than that.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Send buffer space is shared between the RPC-over-RDMA header and
an RPC message. A large RPC-over-RDMA header means less space is
available for the associated RPC message, which then has to be
moved via an RDMA Read or Write.
As more segments are added to the chunk lists, the header increases
in size. Typical modern hardware needs only a few segments to
convey the maximum payload size, but some devices and registration
modes may need a lot of segments to convey data payload. Sometimes
so many are needed that the remaining space in the Send buffer is
not enough for the RPC message. Sending such a message usually
fails.
To ensure a transport can always make forward progress, cap the
number of RDMA segments that are allowed in chunk lists. This
prevents less-capable devices and memory registrations from
consuming a large portion of the Send buffer by reducing the
maximum data payload that can be conveyed with such devices.
For now I choose an arbitrary maximum of 8 RDMA segments. This
allows a maximum size RPC-over-RDMA header to fit nicely in the
current 1024 byte inline threshold with over 700 bytes remaining
for an inline RPC message.
The current maximum data payload of NFS READ or WRITE requests is
one megabyte. To convey that payload on a client with 4KB pages,
each chunk segment would need to handle 32 or more data pages. This
is well within the capabilities of FMR. For physical registration,
the maximum payload size on platforms with 4KB pages is reduced to
32KB.
For FRWR, a device's maximum page list depth would need to be at
least 34 to support the maximum 1MB payload. A device with a smaller
maximum page list depth means the maximum data payload is reduced
when using that device.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RPC-over-RDMA transports have a limit on how large a backward
direction (backchannel) RPC message can be. Ensure that the NFSv4.x
CREATE_SESSION operation advertises this limit to servers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, xprtrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post its own operations on a consumer's QP, and handle
the completions itself, without changes to the consumer.
Send completions were previously handled entirely in the completion
upcall handler (ie, deferring to a process context is unneeded).
Thus IB_POLL_SOFTIRQ is a direct replacement for the current
xprtrdma send code path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Calling ib_poll_cq() to sort through WCs during a completion is a
common pattern amongst RDMA consumers. Since commit 14d3a3b249
("IB: add a proper completion queue abstraction"), WC sorting can
be handled by the IB core.
By converting to this new API, xprtrdma is made a better neighbor to
other RDMA consumers, as it allows the core to schedule the delivery
of completions more fairly amongst all active consumers.
Because each ib_cqe carries a pointer to a completion method, the
core can now post its own operations on a consumer's QP, and handle
the completions itself, without changes to the consumer.
xprtrdma's reply processing is already handled in a work queue, but
there is some initial order-dependent processing that is done in the
soft IRQ context before a work item is scheduled.
IB_POLL_SOFTIRQ is a direct replacement for the current xprtrdma
receive code path.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@broadcom.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit fe97b47cd6 ("xprtrdma: Use workqueue to process RPC/RDMA
replies") replaced the reply tasklet with a workqueue that allows
RPC replies to be processed in parallel. Thus the credit values in
RPC-over-RDMA replies can be applied in a different order than in
which the server sent them.
To fix this, revert commit eba8ff660b ("xprtrdma: Move credit
update to RPC reply handler"). Reverting is done by hand to
accommodate code changes that have occurred since then.
Fixes: fe97b47cd6 ("xprtrdma: Use workqueue to process . . .")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed through the
RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to dependencies,
acknowledged by Bruce)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWoSygAAoJELgmozMOVy/dDjsP/2vbTda2MvQfkfkGEZBQdJSg
095RN0gQgCJdg78lAl8yuaK8r4VN/7uefpDtFdudH1I/Pei7X0wxN9R1UzFNG4KR
AD53lz92IVPs15328SbPR2kvNWISR9aBFQo3rlElq3Grqlp0EMn2Ou1vtu87rekF
aMllxr8Nl0uZhP+eWusOsYpJUUtwirLgRnrAyfqo2UxZh/TMIroT0TCx1KXjVcAg
dhDARiZAdu3OgSc6OsWqmH+DELEq6dFVA5F+DDBGAb8bFZqlJc7cuMHWInwNsNXT
so4bnEQ835alTbsdYtqs5DUNS8heJTAJP4Uz0ehkTh/uNCcvnKeUTw1c2P/lXI1k
7s33gMM+0FXj0swMBw0kKwAF2d9Hhus9UAN7NwjBuOyHcjGRd5q7SAnfWkvKx000
s9jVW19slb2I38gB58nhjOh8s+vXUArgxnV1+kTia1+bJSR5swvVoWRicRXdF0vh
TvLX/BjbSIU73g1TnnLNYoBTV3ybFKQ6bVdQW7fzSTDs54dsI1vvdHXi3bYZCpnL
HVwQTZRfEzkvb0AdKbcvf8p/TlaAHem3ODqtO1eHvO4if1QJBSn+SptTEeJVYYdK
n4B3l/dMoBH4JXJUmEHB9jwAvYOpv/YLAFIvdL7NFwbqGNsC3nfXFcmkVORB1W3B
KEMcM2we4bz+uyKMjEAD
=5oO7
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma updates from Doug Ledford:
"Initial roundup of 4.5 merge window patches
- Remove usage of ib_query_device and instead store attributes in
ib_device struct
- Move iopoll out of block and into lib, rename to irqpoll, and use
in several places in the rdma stack as our new completion queue
polling library mechanism. Update the other block drivers that
already used iopoll to use the new mechanism too.
- Replace the per-entry GID table locks with a single GID table lock
- IPoIB multicast cleanup
- Cleanups to the IB MR facility
- Add support for 64bit extended IB counters
- Fix for netlink oops while parsing RDMA nl messages
- RoCEv2 support for the core IB code
- mlx4 RoCEv2 support
- mlx5 RoCEv2 support
- Cross Channel support for mlx5
- Timestamp support for mlx5
- Atomic support for mlx5
- Raw QP support for mlx5
- MAINTAINERS update for mlx4/mlx5
- Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
- Add support for remote invalidate to the iSER driver (pushed
through the RDMA tree due to dependencies, acknowledged by nab)
- Update to NFSoRDMA (pushed through the RDMA tree due to
dependencies, acknowledged by Bruce)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (169 commits)
IB/mlx5: Unify CQ create flags check
IB/mlx5: Expose Raw Packet QP to user space consumers
{IB, net}/mlx5: Move the modify QP operation table to mlx5_ib
IB/mlx5: Support setting Ethernet priority for Raw Packet QPs
IB/mlx5: Add Raw Packet QP query functionality
IB/mlx5: Add create and destroy functionality for Raw Packet QP
IB/mlx5: Refactor mlx5_ib_qp to accommodate other QP types
IB/mlx5: Allocate a Transport Domain for each ucontext
net/mlx5_core: Warn on unsupported events of QP/RQ/SQ
net/mlx5_core: Add RQ and SQ event handling
net/mlx5_core: Export transport objects
IB/mlx5: Expose CQE version to user-space
IB/mlx5: Add CQE version 1 support to user QPs and SRQs
IB/mlx5: Fix data validation in mlx5_ib_alloc_ucontext
IB/sa: Fix netlink local service GFP crash
IB/srpt: Remove redundant wc array
IB/qib: Improve ipoib UD performance
IB/mlx4: Advertise RoCE v2 support
IB/mlx4: Create and use another QP1 for RoCEv2
IB/mlx4: Enable send of RoCE QP1 packets with IP/UDP headers
...
To support the server-side of an NFSv4.1 backchannel on RDMA
connections, add a transport class that enables backward
direction messages on an existing forward channel connection.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Instead, use the cached copy of the attributes present on the device.
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The root of the problem was that sends (especially unsignalled
FASTREG and LOCAL_INV Work Requests) were not properly flow-
controlled, which allowed a send queue overrun.
Now that the RPC/RDMA reply handler waits for invalidation to
complete, the send queue is properly flow-controlled. Thus this
limit is no longer necessary.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
FRWR's ro_unmap is asynchronous. The new ro_unmap_sync posts
LOCAL_INV Work Requests and waits for them to complete before
returning.
Note also, DMA unmapping is now done _after_ invalidation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In the current xprtrdma implementation, some memreg strategies
implement ro_unmap synchronously (the MR is knocked down before the
method returns) and some asynchonously (the MR will be knocked down
and returned to the pool in the background).
To guarantee the MR is truly invalid before the RPC consumer is
allowed to resume execution, we need an unmap method that is
always synchronous, invoked from the RPC/RDMA reply handler.
The new method unmaps all MRs for an RPC. The existing ro_unmap
method unmaps only one MR at a time.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For FRWR FASTREG and LOCAL_INV, move the ib_*_wr structure off
the stack. This allows frwr_op_map and frwr_op_unmap to chain
WRs together without limit to register or invalidate a set of MRs
with a single ib_post_send().
(This will be for chaining LOCAL_INV requests).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Features:
- RDMA client backchannel from Chuck
- Support for NFSv4.2 file CLONE using the btrfs ioctl
Bugfixes + cleanups
- Move socket data receive out of the bottom halves and into a workqueue
- Refactor NFSv4 error handling so synchronous and asynchronous RPC handles
errors identically.
- Fix a panic when blocks or object layouts reads return a bad data length
- Fix nfsroot so it can handle a 1024 byte long path.
- Fix bad usage of page offset in bl_read_pagelist
- Various NFSv4 callback cleanups+fixes
- Fix GETATTR bitmap verification
- Support hexadecimal number for sunrpc debug sysctl files
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWQPMXAAoJEGcL54qWCgDy6ZUQAL32vpgyMXe7R4jcxoQxm52+
tn8FrY8aBZAqucvQsIGCrYfE01W/s8goDTQdZODn0MCcoor12BTPVYNIR42/J/no
MNnRTDF0dJ4WG+inX9G87XGG6sFN3wDaQcCaexknkQZlFNF4KthxojzR2BgjmRVI
p3WKkLSNTt6DYQQ8eDetvKoDT0AjR/KCYm89tiE8GMhKYcaZl6dTazJxwOcp2CX9
YDW6+fQbsv8qp5v2ay03e88O/DSmcNRFoxy/KUGT9OwJgdN08IN8fTt6GG38yycT
D9tb9uObBRcll4PnucouadBcykGr6jAP0z8HklE266LH1dwYLOHQoDFdgAs0QGtq
nlySiKvToj6CYXonXoPOjZF3P/lxlkj5ViZ2enBxgxrPmyWl172cUSa6NTXOMO46
kPpxw50xa1gP5kkBVwIZ6XZuzl/5YRhB3BRP3g6yuJCbAwVBJvawYU7riC+6DEB9
zygVfm21vi9juUQXJ37zXVRBTtoFhFjuSxcAYxc63o181lWYShKQ3IiRYg+zTxnq
7DOhXa0ZNGvMgJJi0tH9Es3/S6TrGhyKh5gKY/o2XUjY0hCSsCSdP6jw6Mb9Ax1s
0LzByHAikxBKPt2OFeoUgwycI2xqow4iAfuFk071iP7n0nwC804cUHSkGxW67dBZ
Ve5Skkg1CV+oWQYxGmGZ
=py1V
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.4-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
New features:
- RDMA client backchannel from Chuck
- Support for NFSv4.2 file CLONE using the btrfs ioctl
Bugfixes + cleanups:
- Move socket data receive out of the bottom halves and into a
workqueue
- Refactor NFSv4 error handling so synchronous and asynchronous RPC
handles errors identically.
- Fix a panic when blocks or object layouts reads return a bad data
length
- Fix nfsroot so it can handle a 1024 byte long path.
- Fix bad usage of page offset in bl_read_pagelist
- Various NFSv4 callback cleanups+fixes
- Fix GETATTR bitmap verification
- Support hexadecimal number for sunrpc debug sysctl files"
* tag 'nfs-for-4.4-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (53 commits)
Sunrpc: Supports hexadecimal number for sysctl files of sunrpc debug
nfs: Fix GETATTR bitmap verification
nfs: Remove unused xdr page offsets in getacl/setacl arguments
fs/nfs: remove unnecessary new_valid_dev check
SUNRPC: fix variable type
NFS: Enable client side NFSv4.1 backchannel to use other transports
pNFS/flexfiles: Add support for FF_FLAGS_NO_IO_THRU_MDS
pNFS/flexfiles: When mirrored, retry failed reads by switching mirrors
SUNRPC: Remove the TCP-only restriction in bc_svc_process()
svcrdma: Add backward direction service for RPC/RDMA transport
xprtrdma: Handle incoming backward direction RPC calls
xprtrdma: Add support for sending backward direction RPC replies
xprtrdma: Pre-allocate Work Requests for backchannel
xprtrdma: Pre-allocate backward rpc_rqst and send/receive buffers
SUNRPC: Abstract backchannel operations
xprtrdma: Saving IRQs no longer needed for rb_lock
xprtrdma: Remove reply tasklet
xprtrdma: Use workqueue to process RPC/RDMA replies
xprtrdma: Replace send and receive arrays
xprtrdma: Refactor reply handler error handling
...
Forechannel transports get their own "bc_up" method to create an
endpoint for the backchannel service.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[Anna Schumaker: Add forward declaration of struct net to xprt.h]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Introduce a code path in the rpcrdma_reply_handler() to catch
incoming backward direction RPC calls and route them to the ULP's
backchannel server.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Backward direction RPC replies are sent via the client transport's
send_request method, the same way forward direction RPC calls are
sent.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Pre-allocate extra send and receive Work Requests needed to handle
backchannel receives and sends.
The transport doesn't know how many extra WRs to pre-allocate until
the xprt_setup_backchannel() call, but that's long after the WRs are
allocated during forechannel setup.
So, use a fixed value for now.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
xprtrdma's backward direction send and receive buffers are the same
size as the forechannel's inline threshold, and must be pre-
registered.
The consumer has no control over which receive buffer the adapter
chooses to catch an incoming backwards-direction call. Any receive
buffer can be used for either a forward reply or a backward call.
Thus both types of RPC message must all be the same size.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The reply tasklet is fast, but it's single threaded. After reply
traffic saturates a single CPU, there's no more reply processing
capacity.
Replace the tasklet with a workqueue to spread reply handling across
all CPUs. This also moves RPC/RDMA reply handling out of the soft
IRQ context and into a context that allows sleeps.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The rb_send_bufs and rb_recv_bufs arrays are used to implement a
pair of stacks for keeping track of free rpcrdma_req and rpcrdma_rep
structs. Replace those arrays with free lists.
To allow more than 512 RPCs in-flight at once, each of these arrays
would be larger than a page (assuming 8-byte addresses and 4KB
pages). Allowing up to 64K in-flight RPCs (as TCP now does), each
buffer array would have to be 128 pages. That's an order-6
allocation. (Not that we're going there.)
A list is easier to expand dynamically. Instead of allocating a
larger array of pointers and copying the existing pointers to the
new array, simply append more buffers to each list.
This also makes it simpler to manage receive buffers that might
catch backwards-direction calls, or to post receive buffers in
bulk to amortize the overhead of ib_post_recv.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The error cases in rpcrdma_reply_handler() almost never
execute. Ensure the compiler places them out of the hot path.
No behavior change expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 8301a2c047 ("xprtrdma: Limit work done by completion
handler") was supposed to prevent xprtrdma's upcall handlers from
starving other softIRQ work by letting them return to the provider
before all CQEs have been polled.
The logic assumes the provider will call the upcall handler again
immediately if the CQ is re-armed while there are still queued CQEs.
This assumption is invalid. The IBTA spec says that after a CQ is
armed, the hardware must interrupt only when a new CQE is inserted.
xprtrdma can't rely on the provider calling again, even though some
providers do.
Therefore, leaving CQEs on queue makes sense only when there is
another mechanism that ensures all remaining CQEs are consumed in a
timely fashion. xprtrdma does not have such a mechanism. If a CQE
remains queued, the transport can wait forever to send the next RPC.
Finally, move the wcs array back onto the stack to ensure that the
poll array is always local to the CPU where the completion upcall is
running.
Fixes: 8301a2c047 ("xprtrdma: Limit work done by completion ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Instead of maintaining a fastreg page list, keep an sg table
and convert an array of pages to a sg list. Then call ib_map_mr_sg
and construct ib_reg_wr.
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Selvin Xavier <selvin.xavier@avagotech.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The core API has changed so that devices that do not have a global
DMA lkey automatically create an mr, per-PD, and make that lkey
available. The global DMA lkey interface is going away in favor of
the per-PD DMA lkey.
The per-PD DMA lkey is always available. Convert xprtrdma to use the
device's per-PD DMA lkey for regbufs, no matter which memory
registration scheme is in use.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Cc: linux-nfs <linux-nfs@vger.kernel.org>
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Highlights include:
Stable patches:
- Fix atomicity of pNFS commit list updates
- Fix NFSv4 handling of open(O_CREAT|O_EXCL|O_RDONLY)
- nfs_set_pgio_error sometimes misses errors
- Fix a thinko in xs_connect()
- Fix borkage in _same_data_server_addrs_locked()
- Fix a NULL pointer dereference of migration recovery ops for v4.2 client
- Don't let the ctime override attribute barriers.
- Revert "NFSv4: Remove incorrect check in can_open_delegated()"
- Ensure flexfiles pNFS driver updates the inode after write finishes
- flexfiles must not pollute the attribute cache with attrbutes from the DS
- Fix a protocol error in layoutreturn
- Fix a protocol issue with NFSv4.1 CLOSE stateids
Bugfixes + cleanups
- pNFS blocks bugfixes from Christoph
- Various cleanups from Anna
- More fixes for delegation corner cases
- Don't fsync twice for O_SYNC/IS_SYNC files
- Fix pNFS and flexfiles layoutstats bugs
- pnfs/flexfiles: avoid duplicate tracking of mirror data
- pnfs: Fix layoutget/layoutreturn/return-on-close serialisation issues.
- pnfs/flexfiles: error handling retries a layoutget before fallback to MDS
Features:
- Full support for the OPEN NFS4_CREATE_EXCLUSIVE4_1 mode from Kinglong
- More RDMA client transport improvements from Chuck
- Removal of the deprecated ib_reg_phys_mr() and ib_rereg_phys_mr() verbs
from the SUNRPC, Lustre and core infiniband tree.
- Optimise away the close-to-open getattr if there is no cached data
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV7chgAAoJEGcL54qWCgDyqJQP/3kto9VXnXcatC382jF9Pfj5
F55XeSnviOXH7CyiKA4nSBhnxg/sLuWOTpbkVI/4Y+VyWhLby9h+mtcKURHOlBnj
d5BFoPwaBVDnUiKlHFQDkRjIyxjj2Sb6/uEb2V/u3v+3znR5AZZ4lzFx4cD85oaz
mcru7yGiSxaQCIH6lHExcCEKXaDP5YdvS9YFsyQfv2976JSaQHM9ZG04E0v6MzTo
E5wwC4CLMKmhuX9kmQMj85jzs1ASAKZ3N7b4cApTIo6F8DCDH0vKQphq/nEQC497
ECjEs5/fpxtNJUpSBu0gT7G4LCiW3PzE7pHa+8bhbaAn9OzxIR5+qWujKsfGYQhO
Oomp3K9zO6omshAc5w4MkknPpbImjoZjGAj/q/6DbtrDpnD7DzOTirwYY2yX0CA8
qcL81uJUb8+j4jJj4RTO+lTUBItrM1XTqTSd/3eSMr5DDRVZj+ERZxh17TaxRBZL
YrbrLHxCHrcbdSbPlovyvY+BwjJUUFJRcOxGQXLmNYR9u92fF59rb53bzVyzcRRO
wBozzrNRCFL+fPgfNPLEapIb6VtExdM3rl2HYsJGckHj4DPQdnoB3ytIT9iEFZEN
+/rE14XEZte7kuH3OP4el2UsP/hVsm7A49mtwrkdbd7rxMWD6XfQUp8DAggWUEtI
1H6T7RC1Y6wsu0X1fnVz
=knJA
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.3-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix atomicity of pNFS commit list updates
- Fix NFSv4 handling of open(O_CREAT|O_EXCL|O_RDONLY)
- nfs_set_pgio_error sometimes misses errors
- Fix a thinko in xs_connect()
- Fix borkage in _same_data_server_addrs_locked()
- Fix a NULL pointer dereference of migration recovery ops for v4.2
client
- Don't let the ctime override attribute barriers.
- Revert "NFSv4: Remove incorrect check in can_open_delegated()"
- Ensure flexfiles pNFS driver updates the inode after write finishes
- flexfiles must not pollute the attribute cache with attrbutes from
the DS
- Fix a protocol error in layoutreturn
- Fix a protocol issue with NFSv4.1 CLOSE stateids
Bugfixes + cleanups
- pNFS blocks bugfixes from Christoph
- Various cleanups from Anna
- More fixes for delegation corner cases
- Don't fsync twice for O_SYNC/IS_SYNC files
- Fix pNFS and flexfiles layoutstats bugs
- pnfs/flexfiles: avoid duplicate tracking of mirror data
- pnfs: Fix layoutget/layoutreturn/return-on-close serialisation
issues
- pnfs/flexfiles: error handling retries a layoutget before fallback
to MDS
Features:
- Full support for the OPEN NFS4_CREATE_EXCLUSIVE4_1 mode from
Kinglong
- More RDMA client transport improvements from Chuck
- Removal of the deprecated ib_reg_phys_mr() and ib_rereg_phys_mr()
verbs from the SUNRPC, Lustre and core infiniband tree.
- Optimise away the close-to-open getattr if there is no cached data"
* tag 'nfs-for-4.3-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (108 commits)
NFSv4: Respect the server imposed limit on how many changes we may cache
NFSv4: Express delegation limit in units of pages
Revert "NFS: Make close(2) asynchronous when closing NFS O_DIRECT files"
NFS: Optimise away the close-to-open getattr if there is no cached data
NFSv4.1/flexfiles: Clean up ff_layout_write_done_cb/ff_layout_commit_done_cb
NFSv4.1/flexfiles: Mark the layout for return in ff_layout_io_track_ds_error()
nfs: Remove unneeded checking of the return value from scnprintf
nfs: Fix truncated client owner id without proto type
NFSv4.1/flexfiles: Mark layout for return if the mirrors are invalid
NFSv4.1/flexfiles: RW layouts are valid only if all mirrors are valid
NFSv4.1/flexfiles: Fix incorrect usage of pnfs_generic_mark_devid_invalid()
NFSv4.1/flexfiles: Fix freeing of mirrors
NFSv4.1/pNFS: Don't request a minimal read layout beyond the end of file
NFSv4.1/pnfs: Handle LAYOUTGET return values correctly
NFSv4.1/pnfs: Don't ask for a read layout for an empty file.
NFSv4.1: Fix a protocol issue with CLOSE stateids
NFSv4.1/flexfiles: Don't mark the entire deviceid as bad for file errors
SUNRPC: Prevent SYN+SYNACK+RST storms
SUNRPC: xs_reset_transport must mark the connection as disconnected
NFSv4.1/pnfs: Ensure layoutreturn reserves space for the opaque payload
...
Both commit 0380a3f375 ("svcrdma: Add a separate "max data segs"
macro for svcrdma") and commit 7e5be28827 ("svcrdma: advertise
the correct max payload") are incorrect. This commit reverts both
changes, restoring the server's maximum payload size to 1MB.
Commit 7e5be28827 based the server's maximum payload on the
_client's_ RPCRDMA_MAX_DATA_SEGS value. That was wrong.
Commit 0380a3f375 tried to fix this so that the client maximum
payload size could be raised without affecting the server, but
managed to confuse matters more on the server side.
More importantly, limiting the advertised maximum payload size was
meant to be a workaround, not the actual fix. We need to revisit
https://bugzilla.linux-nfs.org/show_bug.cgi?id=270
A Linux client on a platform with 64KB pages can overrun and crash
an x86_64 NFS/RDMA server when the r/wsize is 1MB. An x86/64 Linux
client seems to work fine using 1MB reads and writes when the Linux
server's maximum payload size is restored to 1MB.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=270
Fixes: 0380a3f375 ("svcrdma: Add a separate "max data segs" macro")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
RDMA_NOMSG type calls are less efficient than RDMA_MSG. Count NOMSG
calls so administrators can tell if they happen to be used more than
expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
RDMA_MSGP type calls insert a zero pad in the middle of the RPC
message to align the RPC request's data payload to the server's
alignment preferences. A server can then "page flip" the payload
into place to avoid a data copy in certain circumstances. However:
1. The client has to have a priori knowledge of the server's
preferred alignment
2. Requests eligible for RDMA_MSGP are requests that are small
enough to have been sent inline, and convey a data payload
at the _end_ of the RPC message
Today 1. is done with a sysctl, and is a global setting that is
copied during mount. Linux does not support CCP to query the
server's preferences (RFC 5666, Section 6).
A small-ish NFSv3 WRITE might use RDMA_MSGP, but no NFSv4
compound fits bullet 2.
Thus the Linux client currently leaves RDMA_MSGP disabled. The
Linux server handles RDMA_MSGP, but does not use any special
page flipping, so it confers no benefit.
Clean up the marshaling code by removing the logic that constructs
RDMA_MSGP type calls. This also reduces the maximum send iovec size
from four to just two elements.
/proc/sys/sunrpc/rdma_inline_write_padding is a kernel API, and
thus is left in place.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Untangle the end of rpcrdma_ia_open() by moving DMA MR set-up, which
is different for each registration method, to the .ro_open functions.
This is refactoring only. No behavior change is expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
All HCA providers have an ib_get_dma_mr() verb. Thus
rpcrdma_ia_open() will either grab the device's local_dma_key if one
is available, or it will call ib_get_dma_mr(). If ib_get_dma_mr()
fails, rpcrdma_ia_open() fails and no transport is created.
Therefore execution never reaches the ib_reg_phys_mr() call site in
rpcrdma_register_internal(), so it can be removed.
The remaining logic in rpcrdma_{de}register_internal() is folded
into rpcrdma_{alloc,free}_regbuf().
This is clean up only. No behavior change is expected.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-By: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The point of larger rsize and wsize is to reduce the per-byte cost
of memory registration and deregistration. Modern HCAs can typically
handle a megabyte or more with a single registration operation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-By: Sagi Grimberg <sagig@mellanox.com>
Tested-by: Devesh Sharma <devesh.sharma@avagotech.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in some
circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVlWQgAAoJEGcL54qWCgDyXtcP/2Y3HJ9xu5qU3Bo/jzCAw4E1
jPPMSFAz4kqy/LGoslyc1cNDEiKGzJYWU8TtCGI3KAyNxb6n3pT1mEE1tvIsSdis
D8bpV13M452PPpZYrBawIf4+OuohXmuYHpFiVNSpLbH3Uo7dthvFFnbqCGaGlnqY
rXYZHAnx637OGBcJsT4AXCUz12ILvxMYRnqwW6Xn+j9JmwR1coQX3v8W8e7SMf6i
J+zOny7Uetjrg1U9C9uQB6ZvIoxUMo9QOVmtGCwsBl8lM3fLmzaQfcUf9fm76pMT
yTrKJs4jBLvVf00bRHFDv9EHWCy97oqCkeQEw1EY2lnxp/lmM5SiI4zQqjbf0QTW
5VQScT1MK6xwHoUbuI/sYdXXR8KGDVT1xCFFHUNcg69CvgqdgWslPQY7xLJMvUJZ
vBWfWDd8ppdCw2ZVX4ae/bnhfc+/mVh4wRPF7tgVAjT0pobBV9xMOeMkF4mo76Wa
pvo/nTRMt68hpESVSvq9dYEMVhy5haqFhPrSbyAGOpT4SE2V3RCCZQfhu15TMKdW
BdvItG+mdAVPbIHqhx7vRdAudcOEZKyxbFA+l3E5FyCAXLV7XS3M8CEl3P1w7gmm
Ccr8DW9abKFJf1RAKdX3stexIoJLGTwciSMR5smsbup/xNcx/fRgx2f1w31JMPxb
kG3Izfk25w9uGSsbR39D
=AREr
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in
some circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles"
* tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (87 commits)
nfs: Remove invalid tk_pid from debug message
nfs: Remove invalid NFS_ATTR_FATTR_V4_REFERRAL checking in nfs4_get_rootfh
nfs: Drop bad comment in nfs41_walk_client_list()
nfs: Remove unneeded micro checking of CONFIG_PROC_FS
nfs: Don't setting FILE_CREATED flags always
nfs: Use remove_proc_subtree() instead remove_proc_entry()
nfs: Remove unused argument in nfs_server_set_fsinfo()
nfs: Fix a memory leak when meeting an unsupported state protect
nfs: take extra reference to fl->fl_file when running a LOCKU operation
NFSv4: When returning a delegation, don't reclaim an incompatible open mode.
NFSv4.2: LAYOUTSTATS is optional to implement
NFSv4.2: Fix up a decoding error in layoutstats
pNFS/flexfiles: Fix the reset of struct pgio_header when resending
pNFS/flexfiles: Turn off layoutcommit for servers that don't need it
pnfs/flexfiles: protect ktime manipulation with mirror lock
nfs: provide pnfs_report_layoutstat when NFS42 is disabled
nfs: verify open flags before allowing open
nfs: always update creds in mirror, even when we have an already connected ds
nfs: fix potential credential leak in ff_layout_update_mirror_cred
pnfs/flexfiles: report layoutstat regularly
...
fmr_op_map() declares a 64 element array of u64 in automatic
storage. This is 512 bytes (8 * 64) on the stack.
Instead, when FMR memory registration is in use, pre-allocate a
physaddr array for each rpcrdma_mw.
This is a pre-requisite for increasing the r/wsize maximum for
FMR on platforms with 4KB pages.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
/proc/lock_stat showed contention between rpcrdma_buffer_get/put
and the MR allocation functions during I/O intensive workloads.
Now that MRs are no longer allocated in rpcrdma_buffer_get(),
there's no reason the rb_mws list has to be managed using the
same lock as the send/receive buffers. Split that lock. The
new lock does not need to disable interrupts because buffer
get/put is never called in an interrupt context.
struct rpcrdma_buffer is re-arranged to ensure rb_mwlock and rb_mws
are always in a different cacheline than rb_lock and the buffer
pointers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
An RPC can exit at any time. When it does so, xprt_rdma_free() is
called, and it calls ->op_unmap().
If ->ro_reset() is running due to a transport disconnect, the two
methods can race while processing the same rpcrdma_mw. The results
are unpredictable.
Because of this, in previous patches I've altered ->ro_map() to
handle MR reset. ->ro_reset() is no longer needed and can be
removed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
After a transport disconnect, FRMRs can be left in an undetermined
state. In particular, the MR's rkey is no good.
Currently, FRMRs are fixed up by the transport connect worker, but
that can race with ->ro_unmap if an RPC happens to exit while the
transport connect worker is running.
A better way of dealing with broken FRMRs is to detect them before
they are re-used by ->ro_map. Such FRMRs are either already invalid
or are owned by the sending RPC, and thus no race with ->ro_unmap
is possible.
Introduce a mechanism for handing broken FRMRs to a workqueue to be
reset in a context that is appropriate for allocating resources
(ie. an ib_alloc_fast_reg_mr() API call).
This mechanism is not yet used, but will be in subsequent patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Steve Wise <swise@opengridcomputing.com>
Reviewed-By: Devesh Sharma <devesh.sharma@avagotech.com>
Tested-By: Devesh Sharma <devesh.sharma@avagotech.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>