mirror of https://gitee.com/openkylin/linux.git
1234 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Hugh Dickins | 8d22a93510 |
mm/memcg: fix refcount error while moving and swapping
It was hard to keep a test running, moving tasks between memcgs with
move_charge_at_immigrate, while swapping: mem_cgroup_id_get_many()'s
refcount is discovered to be 0 (supposedly impossible), so it is then
forced to REFCOUNT_SATURATED, and after thousands of warnings in quick
succession, the test is at last put out of misery by being OOM killed.
This is because of the way moved_swap accounting was saved up until the
task move gets completed in __mem_cgroup_clear_mc(), deferred from when
mem_cgroup_move_swap_account() actually exchanged old and new ids.
Concurrent activity can free up swap quicker than the task is scanned,
bringing id refcount down 0 (which should only be possible when
offlining).
Just skip that optimization: do that part of the accounting immediately.
Fixes:
|
|
Bhupesh Sharma | 82ff165cd3 |
mm/memcontrol: fix OOPS inside mem_cgroup_get_nr_swap_pages()
Prabhakar reported an OOPS inside mem_cgroup_get_nr_swap_pages()
function in a corner case seen on some arm64 boards when kdump kernel
runs with "cgroup_disable=memory" passed to the kdump kernel via
bootargs.
The root-cause behind the same is that currently mem_cgroup_swap_init()
function is implemented as a subsys_initcall() call instead of a
core_initcall(), this means 'cgroup_memory_noswap' still remains set to
the default value (false) even when memcg is disabled via
"cgroup_disable=memory" boot parameter.
This may result in premature OOPS inside mem_cgroup_get_nr_swap_pages()
function in corner cases:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000188
Mem abort info:
ESR = 0x96000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
[0000000000000188] user address but active_mm is swapper
Internal error: Oops: 96000006 [#1] SMP
Modules linked in:
<..snip..>
Call trace:
mem_cgroup_get_nr_swap_pages+0x9c/0xf4
shrink_lruvec+0x404/0x4f8
shrink_node+0x1a8/0x688
do_try_to_free_pages+0xe8/0x448
try_to_free_pages+0x110/0x230
__alloc_pages_slowpath.constprop.106+0x2b8/0xb48
__alloc_pages_nodemask+0x2ac/0x2f8
alloc_page_interleave+0x20/0x90
alloc_pages_current+0xdc/0xf8
atomic_pool_expand+0x60/0x210
__dma_atomic_pool_init+0x50/0xa4
dma_atomic_pool_init+0xac/0x158
do_one_initcall+0x50/0x218
kernel_init_freeable+0x22c/0x2d0
kernel_init+0x18/0x110
ret_from_fork+0x10/0x18
Code: aa1403e3 91106000 97f82a27 14000011 (f940c663)
---[ end trace 9795948475817de4 ]---
Kernel panic - not syncing: Fatal exception
Rebooting in 10 seconds..
Fixes:
|
|
Chris Down | 03960e3318 |
mm/memcontrol.c: prevent missed memory.low load tears
Looks like one of these got missed when massaging in
|
|
Muchun Song | 3a98990ae2 |
mm/memcontrol.c: add missed css_put()
We should put the css reference when memory allocation failed.
Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com
Fixes:
|
|
Johannes Weiner | cd324edce5 |
mm: memcontrol: handle div0 crash race condition in memory.low
Tejun reports seeing rare div0 crashes in memory.low stress testing:
RIP: 0010:mem_cgroup_calculate_protection+0xed/0x150
Code: 0f 46 d1 4c 39 d8 72 57 f6 05 16 d6 42 01 40 74 1f 4c 39 d8 76 1a 4c 39 d1 76 15 4c 29 d1 4c 29 d8 4d 29 d9 31 d2 48 0f af c1 <49> f7 f1 49 01 c2 4c 89 96 38 01 00 00 5d c3 48 0f af c7 31 d2 49
RSP: 0018:ffffa14e01d6fcd0 EFLAGS: 00010246
RAX: 000000000243e384 RBX: 0000000000000000 RCX: 0000000000008f4b
RDX: 0000000000000000 RSI: ffff8b89bee84000 RDI: 0000000000000000
RBP: ffffa14e01d6fcd0 R08: ffff8b89ca7d40f8 R09: 0000000000000000
R10: 0000000000000000 R11: 00000000006422f7 R12: 0000000000000000
R13: ffff8b89d9617000 R14: ffff8b89bee84000 R15: ffffa14e01d6fdb8
FS: 0000000000000000(0000) GS:ffff8b8a1f1c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f93b1fc175b CR3: 000000016100a000 CR4: 0000000000340ea0
Call Trace:
shrink_node+0x1e5/0x6c0
balance_pgdat+0x32d/0x5f0
kswapd+0x1d7/0x3d0
kthread+0x11c/0x160
ret_from_fork+0x1f/0x30
This happens when parent_usage == siblings_protected.
We check that usage is bigger than protected, which should imply
parent_usage being bigger than siblings_protected. However, we don't
read (or even update) these values atomically, and they can be out of
sync as the memory state changes under us. A bit of fluctuation around
the target protection isn't a big deal, but we need to handle the div0
case.
Check the parent state explicitly to make sure we have a reasonable
positive value for the divisor.
Link: http://lkml.kernel.org/r/20200615140658.601684-1-hannes@cmpxchg.org
Fixes:
|
|
Michel Lespinasse | c1e8d7c6a7 |
mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michel Lespinasse | d8ed45c5dc |
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ethon Paul | b8f2935f72 |
mm, memcg: fix some typos in memcontrol.c
There are some typos in comment, fix them. s/responsiblity/responsibility s/oflline/offline Signed-off-by: Ethon Paul <ethp@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200411064246.15781-1-ethp@qq.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 1431d4d11a |
mm: base LRU balancing on an explicit cost model
Currently, scan pressure between the anon and file LRU lists is balanced based on a mixture of reclaim efficiency and a somewhat vague notion of "value" of having certain pages in memory over others. That concept of value is problematic, because it has caused us to count any event that remotely makes one LRU list more or less preferrable for reclaim, even when these events are not directly comparable and impose very different costs on the system. One example is referenced file pages that we still deactivate and referenced anonymous pages that we actually rotate back to the head of the list. There is also conceptual overlap with the LRU algorithm itself. By rotating recently used pages instead of reclaiming them, the algorithm already biases the applied scan pressure based on page value. Thus, when rebalancing scan pressure due to rotations, we should think of reclaim cost, and leave assessing the page value to the LRU algorithm. Lastly, considering both value-increasing as well as value-decreasing events can sometimes cause the same type of event to be counted twice, i.e. how rotating a page increases the LRU value, while reclaiming it succesfully decreases the value. In itself this will balance out fine, but it quietly skews the impact of events that are only recorded once. The abstract metric of "value", the murky relationship with the LRU algorithm, and accounting both negative and positive events make the current pressure balancing model hard to reason about and modify. This patch switches to a balancing model of accounting the concrete, actually observed cost of reclaiming one LRU over another. For now, that cost includes pages that are scanned but rotated back to the list head. Subsequent patches will add consideration for IO caused by refaulting of recently evicted pages. Replace struct zone_reclaim_stat with two cost counters in the lruvec, and make everything that affects cost go through a new lru_note_cost() function. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | a0b5b4147f |
mm: memcontrol: update page->mem_cgroup stability rules
The previous patches have simplified the access rules around page->mem_cgroup somewhat: 1. We never change page->mem_cgroup while the page is isolated by somebody else. This was by far the biggest exception to our rules and it didn't stop at lock_page() or lock_page_memcg(). 2. We charge pages before they get put into page tables now, so the somewhat fishy rule about "can be in page table as long as it's still locked" is now gone and boiled down to having an exclusive reference to the page. Document the new rules. Any of the following will stabilize the page->mem_cgroup association: - the page lock - LRU isolation - lock_page_memcg() - exclusive access to the page Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-20-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | d9eb1ea2bf |
mm: memcontrol: delete unused lrucare handling
Swapin faults were the last event to charge pages after they had already been put on the LRU list. Now that we charge directly on swapin, the lrucare portion of the charge code is unused. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 2d1c498072 |
mm: memcontrol: make swap tracking an integral part of memory control
Without swap page tracking, users that are otherwise memory controlled can easily escape their containment and allocate significant amounts of memory that they're not being charged for. That's because swap does readahead, but without the cgroup records of who owned the page at swapout, readahead pages don't get charged until somebody actually faults them into their page table and we can identify an owner task. This can be maliciously exploited with MADV_WILLNEED, which triggers arbitrary readahead allocations without charging the pages. Make swap swap page tracking an integral part of memcg and remove the Kconfig options. In the first place, it was only made configurable to allow users to save some memory. But the overhead of tracking cgroup ownership per swap page is minimal - 2 byte per page, or 512k per 1G of swap, or 0.04%. Saving that at the expense of broken containment semantics is not something we should present as a coequal option. The swapaccount=0 boot option will continue to exist, and it will eliminate the page_counter overhead and hide the swap control files, but it won't disable swap slot ownership tracking. This patch makes sure we always have the cgroup records at swapin time; the next patch will fix the actual bug by charging readahead swap pages at swapin time rather than at fault time. v2: fix double swap charge bug in cgroup1/cgroup2 code gating [hannes@cmpxchg.org: fix crash with cgroup_disable=memory] Link: http://lkml.kernel.org/r/20200521215855.GB815153@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200508183105.225460-16-hannes@cmpxchg.org Debugged-by: Hugh Dickins <hughd@google.com> Debugged-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | eccb52e788 |
mm: memcontrol: prepare swap controller setup for integration
A few cleanups to streamline the swap controller setup: - Replace the do_swap_account flag with cgroup_memory_noswap. This brings it in line with other functionality that is usually available unless explicitly opted out of - nosocket, nokmem. - Remove the really_do_swap_account flag that stores the boot option and is later used to switch the do_swap_account. It's not clear why this indirection is/was necessary. Use do_swap_account directly. - Minor coding style polishing Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-15-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | f0e45fb4da |
mm: memcontrol: drop unused try/commit/cancel charge API
There are no more users. RIP in peace. [arnd@arndb.de: fix an unused-function warning] Link: http://lkml.kernel.org/r/20200528095640.151454-1-arnd@arndb.de Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-14-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 468c398233 |
mm: memcontrol: switch to native NR_ANON_THPS counter
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the native NR_ANON_THPS accounting sites. [hannes@cmpxchg.org: fixes] Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> [build-tested] Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | be5d0a74c6 |
mm: memcontrol: switch to native NR_ANON_MAPPED counter
Memcg maintains a private MEMCG_RSS counter. This divergence from the generic VM accounting means unnecessary code overhead, and creates a dependency for memcg that page->mapping is set up at the time of charging, so that page types can be told apart. Convert the generic accounting sites to mod_lruvec_page_state and friends to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED. We use lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the same way we do for NR_FILE_MAPPED. With the previous patch removing MEMCG_CACHE and the private NR_SHMEM counter, this patch finally eliminates the need to have page->mapping set up at charge time. However, we need to have page->mem_cgroup set up by the time rmap runs and does the accounting, so switch the commit and the rmap callbacks around. v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo) Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 0d1c20722a |
mm: memcontrol: switch to native NR_FILE_PAGES and NR_SHMEM counters
Memcg maintains private MEMCG_CACHE and NR_SHMEM counters. This divergence from the generic VM accounting means unnecessary code overhead, and creates a dependency for memcg that page->mapping is set up at the time of charging, so that page types can be told apart. Convert the generic accounting sites to mod_lruvec_page_state and friends to maintain the per-cgroup vmstat counters of NR_FILE_PAGES and NR_SHMEM. The page is already locked in these places, so page->mem_cgroup is stable; we only need minimal tweaks of two mem_cgroup_migrate() calls to ensure it's set up in time. Then replace MEMCG_CACHE with NR_FILE_PAGES and delete the private NR_SHMEM accounting sites. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-10-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 9da7b52168 |
mm: memcontrol: prepare cgroup vmstat infrastructure for native anon counters
Anonymous compound pages can be mapped by ptes, which means that if we want to track NR_MAPPED_ANON, NR_ANON_THPS on a per-cgroup basis, we have to be prepared to see tail pages in our accounting functions. Make mod_lruvec_page_state() and lock_page_memcg() deal with tail pages correctly, namely by redirecting to the head page which has the page->mem_cgroup set up. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-9-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 49e50d277b |
mm: memcontrol: prepare move_account for removal of private page type counters
When memcg uses the generic vmstat counters, it doesn't need to do anything at charging and uncharging time. It does, however, need to migrate counts when pages move to a different cgroup in move_account. Prepare the move_account function for the arrival of NR_FILE_PAGES, NR_ANON_MAPPED, NR_ANON_THPS etc. by having a branch for files and a branch for anon, which can then divided into sub-branches. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-8-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 9f762dbe19 |
mm: memcontrol: prepare uncharging for removal of private page type counters
The uncharge batching code adds up the anon, file, kmem counts to determine the total number of pages to uncharge and references to drop. But the next patches will remove the anon and file counters. Maintain an aggregate nr_pages in the uncharge_gather struct. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-7-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 3fea5a499d |
mm: memcontrol: convert page cache to a new mem_cgroup_charge() API
The try/commit/cancel protocol that memcg uses dates back to when pages used to be uncharged upon removal from the page cache, and thus couldn't be committed before the insertion had succeeded. Nowadays, pages are uncharged when they are physically freed; it doesn't matter whether the insertion was successful or not. For the page cache, the transaction dance has become unnecessary. Introduce a mem_cgroup_charge() function that simply charges a newly allocated page to a cgroup and sets up page->mem_cgroup in one single step. If the insertion fails, the caller doesn't have to do anything but free/put the page. Then switch the page cache over to this new API. Subsequent patches will also convert anon pages, but it needs a bit more prep work. Right now, memcg depends on page->mapping being already set up at the time of charging, so that it can maintain its own MEMCG_CACHE and MEMCG_RSS counters. For anon, page->mapping is set under the same pte lock under which the page is publishd, so a single charge point that can block doesn't work there just yet. The following prep patches will replace the private memcg counters with the generic vmstat counters, thus removing the page->mapping dependency, then complete the transition to the new single-point charge API and delete the old transactional scheme. v2: leave shmem swapcache when charging fails to avoid double IO (Joonsoo) v3: rebase on preceeding shmem simplification patch Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-6-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 6caa6a0703 |
mm: memcontrol: move out cgroup swaprate throttling
The cgroup swaprate throttling is about matching new anon allocations to the rate of available IO when that is being throttled. It's the io controller hooking into the VM, rather than a memory controller thing. Rename mem_cgroup_throttle_swaprate() to cgroup_throttle_swaprate(), and drop the @memcg argument which is only used to check whether the preceding page charge has succeeded and the fault is proceeding. We could decouple the call from mem_cgroup_try_charge() here as well, but that would cause unnecessary churn: the following patches convert all callsites to a new charge API and we'll decouple as we go along. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-5-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 3fba69a56e |
mm: memcontrol: drop @compound parameter from memcg charging API
The memcg charging API carries a boolean @compound parameter that tells whether the page we're dealing with is a hugepage. mem_cgroup_commit_charge() has another boolean @lrucare that indicates whether the page needs LRU locking or not while charging. The majority of callsites know those parameters at compile time, which results in a lot of naked "false, false" argument lists. This makes for cryptic code and is a breeding ground for subtle mistakes. Thankfully, the huge page state can be inferred from the page itself and doesn't need to be passed along. This is safe because charging completes before the page is published and somebody may split it. Simplify the callsites by removing @compound, and let memcg infer the state by using hpage_nr_pages() unconditionally. That function does PageTransHuge() to identify huge pages, which also helpfully asserts that nobody passes in tail pages by accident. The following patches will introduce a new charging API, best not to carry over unnecessary weight. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-4-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | abb242f571 |
mm: memcontrol: fix stat-corrupting race in charge moving
The move_lock is a per-memcg lock, but the VM accounting code that needs to acquire it comes from the page and follows page->mem_cgroup under RCU protection. That means that the page becomes unlocked not when we drop the move_lock, but when we update page->mem_cgroup. And that assignment doesn't imply any memory ordering. If that pointer write gets reordered against the reads of the page state - page_mapped, PageDirty etc. the state may change while we rely on it being stable and we can end up corrupting the counters. Place an SMP memory barrier to make sure we're done with all page state by the time the new page->mem_cgroup becomes visible. Also replace the open-coded move_lock with a lock_page_memcg() to make it more obvious what we're serializing against. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-3-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Shakeel Butt | dd8657b6c1 |
mm/memcg: optimize memory.numa_stat like memory.stat
Currently reading memory.numa_stat traverses the underlying memcg tree multiple times to accumulate the stats to present the hierarchical view of the memcg tree. However the kernel already maintains the hierarchical view of the stats and use it in memory.stat. Just use the same mechanism in memory.numa_stat as well. I ran a simple benchmark which reads root_mem_cgroup's memory.numa_stat file in the presense of 10000 memcgs. The results are: Without the patch: $ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null real 0m0.700s user 0m0.001s sys 0m0.697s With the patch: $ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null real 0m0.001s user 0m0.001s sys 0m0.000s [akpm@linux-foundation.org: avoid forcing out-of-line code generation] Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200304022058.248270-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Zefan Li | 50d53d7c72 |
memcg: fix memcg_kmem_bypass() for remote memcg charging
While trying to use remote memcg charging in an out-of-tree kernel module I found it's not working, because the current thread is a workqueue thread. As we will probably encounter this issue in the future as the users of memalloc_use_memcg() grow, and it's nothing wrong for this usage, it's better we fix it now. Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/1d202a12-26fe-0012-ea14-f025ddcd044a@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jakub Kicinski | 4b82ab4f28 |
mm/memcg: automatically penalize tasks with high swap use
Add a memory.swap.high knob, which can be used to protect the system from SWAP exhaustion. The mechanism used for penalizing is similar to memory.high penalty (sleep on return to user space). That is not to say that the knob itself is equivalent to memory.high. The objective is more to protect the system from potentially buggy tasks consuming a lot of swap and impacting other tasks, or even bringing the whole system to stand still with complete SWAP exhaustion. Hopefully without the need to find per-task hard limits. Slowing misbehaving tasks down gradually allows user space oom killers or other protection mechanisms to react. oomd and earlyoom already do killing based on swap exhaustion, and memory.swap.high protection will help implement such userspace oom policies more reliably. We can use one counter for number of pages allocated under pressure to save struct task space and avoid two separate hierarchy walks on the hot path. The exact overage is calculated on return to user space, anyway. Take the new high limit into account when determining if swap is "full". Borrowing the explanation from Johannes: The idea behind "swap full" is that as long as the workload has plenty of swap space available and it's not changing its memory contents, it makes sense to generously hold on to copies of data in the swap device, even after the swapin. A later reclaim cycle can drop the page without any IO. Trading disk space for IO. But the only two ways to reclaim a swap slot is when they're faulted in and the references go away, or by scanning the virtual address space like swapoff does - which is very expensive (one could argue it's too expensive even for swapoff, it's often more practical to just reboot). So at some point in the fill level, we have to start freeing up swap slots on fault/swapin. Otherwise we could eventually run out of swap slots while they're filled with copies of data that is also in RAM. We don't want to OOM a workload because its available swap space is filled with redundant cache. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Chris Down <chris@chrisdown.name> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jakub Kicinski | d1663a907b |
mm/memcg: move cgroup high memory limit setting into struct page_counter
High memory limit is currently recorded directly in struct mem_cgroup. We are about to add a high limit for swap, move the field to struct page_counter and add some helpers. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Chris Down <chris@chrisdown.name> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200527195846.102707-4-kuba@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jakub Kicinski | ff144e69f7 |
mm/memcg: move penalty delay clamping out of calculate_high_delay()
We will want to call calculate_high_delay() twice - once for memory and once for swap, and we should apply the clamp value to sum of the penalties. Clamping has to be applied outside of calculate_high_delay(). Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Chris Down <chris@chrisdown.name> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200527195846.102707-3-kuba@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jakub Kicinski | 8a5dbc657e |
mm/memcg: prepare for swap over-high accounting and penalty calculation
Patch series "memcg: Slow down swap allocation as the available space gets depleted", v6. Tejun describes the problem as follows: When swap runs out, there's an abrupt change in system behavior - the anonymous memory suddenly becomes unmanageable which readily breaks any sort of memory isolation and can bring down the whole system. To avoid that, oomd [1] monitors free swap space and triggers kills when it drops below the specific threshold (e.g. 15%). While this works, it's far from ideal: - Depending on IO performance and total swap size, a given headroom might not be enough or too much. - oomd has to monitor swap depletion in addition to the usual pressure metrics and it currently doesn't consider memory.swap.max. Solve this by adapting parts of the approach that memory.high uses - slow down allocation as the resource gets depleted turning the depletion behavior from abrupt cliff one to gradual degradation observable through memory pressure metric. [1] https://github.com/facebookincubator/oomd This patch (of 4): Slice the memory overage calculation logic a little bit so we can reuse it to apply a similar penalty to the swap. The logic which accesses the memory-specific fields (use and high values) has to be taken out of calculate_high_delay(). Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200527195846.102707-1-kuba@kernel.org Link: http://lkml.kernel.org/r/20200527195846.102707-2-kuba@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Shakeel Butt | 54b512e96d |
memcg: expose root cgroup's memory.stat
One way to measure the efficiency of memory reclaim is to look at the ratio (pgscan+pfrefill)/pgsteal. However at the moment these stats are not updated consistently at the system level and the ratio of these are not very meaningful. The pgsteal and pgscan are updated for only global reclaim while pgrefill gets updated for global as well as cgroup reclaim. Please note that this difference is only for system level vmstats. The cgroup stats returned by memory.stat are actually consistent. The cgroup's pgsteal contains number of reclaimed pages for global as well as cgroup reclaim. So, one way to get the system level stats is to get these stats from root's memory.stat, so, expose memory.stat for the root cgroup. From Johannes Weiner: There are subtle differences between /proc/vmstat and memory.stat, and cgroup-aware code that wants to watch the full hierarchy currently has to know about these intricacies and translate semantics back and forth. Generally having the fully recursive memory.stat at the root level could help a broader range of usecases. Why not fix the stats by including both the global and cgroup reclaim activity instead of exposing root cgroup's memory.stat? The reason is the benefit of having metrics exposing the activity that happens purely due to machine capacity rather than localized activity that happens due to the limits throughout the cgroup tree. Additionally there are userspace tools like sysstat(sar) which reads these stats to inform about the system level reclaim activity. So, we should not break such use-cases. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200508170630.94406-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kaixu Xia | 1c4448edb7 |
mm: memcontrol: simplify value comparison between count and limit
When the variables count and limit have the same value(count == limit), the result of min(margin, limit - count) statement should be 0 and the variable margin is set to 0. So in this case, the min() statement is not necessary and we can directly set the variable margin to 0. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/1587479661-27237-1-git-send-email-kaixuxia@tencent.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yafang Shao | a6f5576bb1 |
mm, memcg: add workingset_restore in memory.stat
There's a new workingset counter introduced in commit
|
|
NeilBrown | 8d92890bd6 |
mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds. If the COMMIT fails, the page will be
re-written.
These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count. This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g. releasepage() used to
send a COMMIT). However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit
|
|
Yafang Shao | 11d6761218 |
mm, memcg: fix error return value of mem_cgroup_css_alloc()
When I run my memcg testcase which creates lots of memcgs, I found
there're unexpected out of memory logs while there're still enough
available free memory. The error log is
mkdir: cannot create directory 'foo.65533': Cannot allocate memory
The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs,
an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right
errno should be -ENOSPC "No space left on device", which is an
appropriate errno for userspace's failed mkdir.
As the errno really misled me, we should make it right. After this
patch, the error log will be
mkdir: cannot create directory 'foo.65533': No space left on device
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
Fixes:
|
|
Jakub Kicinski | 9b8b17541f |
mm, memcg: do not high throttle allocators based on wraparound
If a cgroup violates its memory.high constraints, we may end up unduly
penalising it. For example, for the following hierarchy:
A: max high, 20 usage
A/B: 9 high, 10 usage
A/C: max high, 10 usage
We would end up doing the following calculation below when calculating
high delay for A/B:
A/B: 10 - 9 = 1...
A: 20 - PAGE_COUNTER_MAX = 21, so set max_overage to 21.
This gets worse with higher disparities in usage in the parent.
I have no idea how this disappeared from the final version of the patch,
but it is certainly Not Good(tm). This wasn't obvious in testing because,
for a simple cgroup hierarchy with only one child, the result is usually
roughly the same. It's only in more complex hierarchies that things go
really awry (although still, the effects are limited to a maximum of 2
seconds in schedule_timeout_killable at a maximum).
[chris@chrisdown.name: changelog]
Fixes:
|
|
Joe Perches | e4a9bc5896 |
mm: use fallthrough;
Convert the various /* fallthrough */ comments to the pseudo-keyword fallthrough; Done via script: https://lore.kernel.org/lkml/b56602fcf79f849e733e7b521bb0e17895d390fa.1582230379.git.joe@perches.com/ Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Link: http://lkml.kernel.org/r/f62fea5d10eb0ccfc05d87c242a620c261219b66.camel@perches.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | 4bf173072c |
mm, memcg: bypass high reclaim iteration for cgroup hierarchy root
The root of the hierarchy cannot have high set, so we will never reclaim based on it. This makes that clearer and avoids another entry. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200312164137.GA1753625@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Roman Gushchin | 48fe267c50 |
mm: memcg: make memory.oom.group tolerable to task migration
If a task is getting moved out of the OOMing cgroup, it might result in unexpected OOM killings if memory.oom.group is used anywhere in the cgroup tree. Imagine the following example: A (oom.group = 1) / \ (OOM) B C Let's say B's memory.max is exceeded and it's OOMing. The OOM killer selects a task in B as a victim, but someone asynchronously moves the task into C. mem_cgroup_get_oom_group() will iterate over all ancestors of C up to the root cgroup. In theory it had to stop at the oom_domain level - the memory cgroup which is OOMing. But because B is not an ancestor of C, it's not happening. Instead it chooses A (because it's oom.group is set), and kills all tasks in A. This behavior is wrong because the OOM happened in B, so there is no reason to kill anything outside. Fix this by checking it the memory cgroup to which the task belongs is a descendant of the oom_domain. If not, memory.oom.group should be ignored, and the OOM killer should kill only the victim task. Reported-by: Dan Schatzberg <dschatzberg@fb.com> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/20200316223510.3176148-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | b3a7822e5e |
mm, memcg: prevent mem_cgroup_protected store tearing
The read side of this is all protected, but we can still tear if multiple iterations of mem_cgroup_protected are going at the same time. There's some intentional racing in mem_cgroup_protected which is ok, but load/store tearing should be avoided. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/d1e9fbc0379fe8db475d82c8b6fbe048876e12ae.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | 32d087cdd9 |
mm, memcg: prevent memory.swap.max load tearing
The write side of this is xchg()/smp_mb(), so that's all good. Just a few sites missing a READ_ONCE. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/bbec2c3d822217334855c8877a9d28b2a6d395fb.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | c3d5320086 |
mm, memcg: prevent memory.min load/store tearing
This can be set concurrently with reads, which may cause the wrong value to be propagated. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/e809b4e6b0c1626dac6945970de06409a180ee65.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | 15b42562d4 |
mm, memcg: prevent memory.max load tearing
This one is a bit more nuanced because we have memcg_max_mutex, which is mostly just used for enforcing invariants, but we still need to READ_ONCE since (despite its name) it doesn't really protect memory.max access. On write (page_counter_set_max() and memory_max_write()) we use xchg(), which uses smp_mb(), so that's already fine. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/50a31e5f39f8ae6c8fb73966ba1455f0924e8f44.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | f6f989c5ce |
mm, memcg: prevent memory.high load/store tearing
A mem_cgroup's high attribute can be concurrently set at the same time as we are trying to read it -- for example, if we are in memory_high_write at the same time as we are trying to do high reclaim. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/2f66f7038ed1d4688e59de72b627ae0ea52efa83.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vincenzo Frascino | c1514c0aac |
mm/memcontrol.c: make mem_cgroup_id_get_many() __maybe_unused
mem_cgroup_id_get_many() is currently used only when MMU or MEMCG_SWAP configuration options are enabled. Having them disabled triggers the following warning at compile time: linux/mm/memcontrol.c:4797:13: warning: `mem_cgroup_id_get_many' defined but not used [-Wunused-function] static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) Make mem_cgroup_id_get_many() __maybe_unused to address the issue. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200305164354.48147-1-vincenzo.frascino@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Shakeel Butt | 8965aa28cd |
memcg: css_tryget_online cleanups
Currently multiple locations in memcg code, css_tryget_online() is being used. However it doesn't matter whether the cgroup is online for the callers. Online used to matter when we had reparenting on offlining and we needed a way to prevent new ones from showing up. The failure case for couple of these css_tryget_online usage is to fallback to root_mem_cgroup which kind of make bypassing the memcg limits possible for some workloads. For example creating an inotify group in a subcontainer and then deleting that container after moving the process to a different container will make all the event objects allocated for that group to the root_mem_cgroup. So, using css_tryget_online() is dangerous for such cases. Two locations still use the online version. The swapin of offlined memcg's pages and the memcg kmem cache creation. The kmem cache indeed needs the online version as the kernel does the reparenting of memcg kmem caches. For the swapin case, it has been left for later as the fallback is not really that concerning. With swap accounting enabled, if the memcg of the swapped out page is not online then the memcg extracted from the given 'mm' will be charged and if 'mm' is NULL then root memcg will be charged. However I could not find a code path where the given 'mm' will be NULL for swap-in case. Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/20200302203109.179417-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 8a931f8013 |
mm: memcontrol: recursive memory.low protection
Right now, the effective protection of any given cgroup is capped by its own explicit memory.low setting, regardless of what the parent says. The reasons for this are mostly historical and ease of implementation: to make delegation of memory.low safe, effective protection is the min() of all memory.low up the tree. Unfortunately, this limitation makes it impossible to protect an entire subtree from another without forcing the user to make explicit protection allocations all the way to the leaf cgroups - something that is highly undesirable in real life scenarios. Consider memory in a data center host. At the cgroup top level, we have a distinction between system management software and the actual workload the system is executing. Both branches are further subdivided into individual services, job components etc. We want to protect the workload as a whole from the system management software, but that doesn't mean we want to protect and prioritize individual workload wrt each other. Their memory demand can vary over time, and we'd want the VM to simply cache the hottest data within the workload subtree. Yet, the current memory.low limitations force us to allocate a fixed amount of protection to each workload component in order to get protection from system management software in general. This results in very inefficient resource distribution. Another concern with mandating downward allocation is that, as the complexity of the cgroup tree grows, it gets harder for the lower levels to be informed about decisions made at the host-level. Consider a container inside a namespace that in turn creates its own nested tree of cgroups to run multiple workloads. It'd be extremely difficult to configure memory.low parameters in those leaf cgroups that on one hand balance pressure among siblings as the container desires, while also reflecting the host-level protection from e.g. rpm upgrades, that lie beyond one or more delegation and namespacing points in the tree. It's highly unusual from a cgroup interface POV that nested levels have to be aware of and reflect decisions made at higher levels for them to be effective. To enable such use cases and scale configurability for complex trees, this patch implements a resource inheritance model for memory that is similar to how the CPU and the IO controller implement work-conserving resource allocations: a share of a resource allocated to a subree always applies to the entire subtree recursively, while allowing, but not mandating, children to further specify distribution rules. That means that if protection is explicitly allocated among siblings, those configured shares are being followed during page reclaim just like they are now. However, if the memory.low set at a higher level is not fully claimed by the children in that subtree, the "floating" remainder is applied to each cgroup in the tree in proportion to its size. Since reclaim pressure is applied in proportion to size as well, each child in that tree gets the same boost, and the effect is neutral among siblings - with respect to each other, they behave as if no memory control was enabled at all, and the VM simply balances the memory demands optimally within the subtree. But collectively those cgroups enjoy a boost over the cgroups in neighboring trees. E.g. a leaf cgroup with a memory.low setting of 0 no longer means that it's not getting a share of the hierarchically assigned resource, just that it doesn't claim a fixed amount of it to protect from its siblings. This allows us to recursively protect one subtree (workload) from another (system management), while letting subgroups compete freely among each other - without having to assign fixed shares to each leaf, and without nested groups having to echo higher-level settings. The floating protection composes naturally with fixed protection. Consider the following example tree: A A: low = 2G / \ A1: low = 1G A1 A2 A2: low = 0G As outside pressure is applied to this tree, A1 will enjoy a fixed protection from A2 of 1G, but the remaining, unclaimed 1G from A is split evenly among A1 and A2, coming out to 1.5G and 0.5G. There is a slight risk of regressing theoretical setups where the top-level cgroups don't know about the true budgeting and set bogusly high "bypass" values that are meaningfully allocated down the tree. Such setups would rely on unclaimed protection to be discarded, and distributing it would change the intended behavior. Be safe and hide the new behavior behind a mount option, 'memory_recursiveprot'. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | bc50bcc6e0 |
mm: memcontrol: clean up and document effective low/min calculations
The effective protection of any given cgroup is a somewhat complicated construct that depends on the ancestor's configuration, siblings' configurations, as well as current memory utilization in all these groups. It's done this way to satisfy hierarchical delegation requirements while also making the configuration semantics flexible and expressive in complex real life scenarios. Unfortunately, all the rules and requirements are sparsely documented, and the code is a little too clever in merging different scenarios into a single min() expression. This makes it hard to reason about the implementation and avoid breaking semantics when making changes to it. This patch documents each semantic rule individually and splits out the handling of the overcommit case from the regular case. Michal Koutný also points out that the points of equilibrium as described in the existing example scenarios aren't actually accurate. Delete these examples for now to avoid confusion. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-3-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 503970e423 |
mm: memcontrol: fix memory.low proportional distribution
Patch series "mm: memcontrol: recursive memory.low protection", v3. The current memory.low (and memory.min) semantics require protection to be assigned to a cgroup in an untinterrupted chain from the top-level cgroup all the way to the leaf. In practice, we want to protect entire cgroup subtrees from each other (system management software vs. workload), but we would like the VM to balance memory optimally *within* each subtree, without having to make explicit weight allocations among individual components. The current semantics make that impossible. They also introduce unmanageable complexity into more advanced resource trees. For example: host root `- system.slice `- rpm upgrades `- logging `- workload.slice `- a container `- system.slice `- workload.slice `- job A `- component 1 `- component 2 `- job B At a host-level perspective, we would like to protect the outer workload.slice subtree as a whole from rpm upgrades, logging etc. But for that to be effective, right now we'd have to propagate it down through the container, the inner workload.slice, into the job cgroup and ultimately the component cgroups where memory is actually, physically allocated. This may cross several tree delegation points and namespace boundaries, which make such a setup near impossible. CPU and IO on the other hand are already distributed recursively. The user would simply configure allowances at the host level, and they would apply to the entire subtree without any downward propagation. To enable the above-mentioned usecases and bring memory in line with other resource controllers, this patch series extends memory.low/min such that settings apply recursively to the entire subtree. Users can still assign explicit shares in subgroups, but if they don't, any ancestral protection will be distributed such that children compete freely amongst each other - as if no memory control were enabled inside the subtree - but enjoy protection from neighboring trees. In the above example, the user would then be able to configure shares of CPU, IO and memory at the host level to comprehensively protect and isolate the workload.slice as a whole from system.slice activity. Patch #1 fixes an existing bug that can give a cgroup tree more protection than it should receive as per ancestor configuration. Patch #2 simplifies and documents the existing code to make it easier to reason about the changes in the next patch. Patch #3 finally implements recursive memory protection semantics. Because of a risk of regressing legacy setups, the new semantics are hidden behind a cgroup2 mount option, 'memory_recursiveprot'. More details in patch #3. This patch (of 3): When memory.low is overcommitted - i.e. the children claim more protection than their shared ancestor grants them - the allowance is distributed in proportion to how much each sibling uses their own declared protection: low_usage = min(memory.low, memory.current) elow = parent_elow * (low_usage / siblings_low_usage) However, siblings_low_usage is not the sum of all low_usages. It sums up the usages of *only those cgroups that are within their memory.low* That means that low_usage can be *bigger* than siblings_low_usage, and consequently the total protection afforded to the children can be bigger than what the ancestor grants the subtree. Consider three groups where two are in excess of their protection: A/memory.low = 10G A/A1/memory.low = 10G, memory.current = 20G A/A2/memory.low = 10G, memory.current = 20G A/A3/memory.low = 10G, memory.current = 8G siblings_low_usage = 8G (only A3 contributes) A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(8G) = 10.0G (the 12.5G are capped to the explicit memory.low setting of 10G) With that, the sum of all awarded protection below A is 30G, when A only grants 10G for the entire subtree. What does this mean in practice? A1 and A2 would still be in excess of their 10G allowance and would be reclaimed, whereas A3 would not. As they eventually drop below their protection setting, they would be counted in siblings_low_usage again and the error would right itself. When reclaim was applied in a binary fashion (cgroup is reclaimed when it's above its protection, otherwise it's skipped) this would actually work out just fine. However, since |
|
Roman Gushchin | 4b13f64de2 |
mm: kmem: rename (__)memcg_kmem_(un)charge_memcg() to __memcg_kmem_(un)charge()
Drop the _memcg suffix from (__)memcg_kmem_(un)charge functions. It's shorter and more obvious. These are the most basic functions which are just (un)charging the given cgroup with the given amount of pages. Also fix up the corresponding comments. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-7-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |