Commit Graph

80 Commits

Author SHA1 Message Date
Dave Watson 603f8c3b0d crypto: aesni - Add scatter/gather avx stubs, and use them in C
Add the appropriate scatter/gather stubs to the avx asm.
In the C code, we can now always use crypt_by_sg, since both
sse and asm code now support scatter/gather.

Introduce a new struct, aesni_gcm_tfm, that is initialized on
startup to point to either the SSE, AVX, or AVX2 versions of the
four necessary encryption/decryption routines.

GENX_OPTSIZE is still checked at the start of crypt_by_sg.  The
total size of the data is checked, since the additional overhead
is in the init function, calculating additional HashKeys.

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-12-23 11:52:43 +08:00
Dave Watson 38003cd26c crypto: aesni - Split AAD hash calculation to separate macro
AAD hash only needs to be calculated once for each scatter/gather operation.
Move it to its own macro, and call it from GCM_INIT instead of
INITIAL_BLOCKS.

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-12-23 11:52:42 +08:00
Dave Watson 5350b0f563 crypto: aesni - support 256 byte keys in avx asm
Add support for 192/256-bit keys using the avx gcm/aes routines.
The sse routines were previously updated in e31ac32d3b (Add support
for 192 & 256 bit keys to AESNI RFC4106).

Instead of adding an additional loop in the hotpath as in e31ac32d3b,
this diff instead generates separate versions of the code using macros,
and the entry routines choose which version once.   This results
in a 5% performance improvement vs. adding a loop to the hot path.
This is the same strategy chosen by the intel isa-l_crypto library.

The key size checks are removed from the c code where appropriate.

Note that this diff depends on using gcm_context_data - 256 bit keys
require 16 HashKeys + 15 expanded keys, which is larger than
struct crypto_aes_ctx, so they are stored in struct gcm_context_data.

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-12-23 11:52:42 +08:00
Dave Watson de85fc46b1 crypto: aesni - Introduce gcm_context_data
Add the gcm_context_data structure to the avx asm routines.
This will be necessary to support both 256 bit keys and
scatter/gather.

The pre-computed HashKeys are now stored in the gcm_context_data
struct, which is expanded to hold the greater number of hashkeys
necessary for avx.

Loads and stores to the new struct are always done unlaligned to
avoid compiler issues, see e5b954e8 "Use unaligned loads from
gcm_context_data"

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-12-23 11:52:42 +08:00
Eric Biggers e0db9c48f1 crypto: x86/aes-ni - fix build error following fpu template removal
aesni-intel_glue.c still calls crypto_fpu_init() and crypto_fpu_exit()
to register/unregister the "fpu" template.  But these functions don't
exist anymore, causing a build error.  Remove the calls to them.

Fixes: 944585a64f ("crypto: x86/aes-ni - remove special handling of AES in PCBC mode")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-10-08 13:47:02 +08:00
Ard Biesheuvel 944585a64f crypto: x86/aes-ni - remove special handling of AES in PCBC mode
For historical reasons, the AES-NI based implementation of the PCBC
chaining mode uses a special FPU chaining mode wrapper template to
amortize the FPU start/stop overhead over multiple blocks.

When this FPU wrapper was introduced, it supported widely used
chaining modes such as XTS and CTR (as well as LRW), but currently,
PCBC is the only remaining user.

Since there are no known users of pcbc(aes) in the kernel, let's remove
this special driver, and rely on the generic pcbc driver to encapsulate
the AES-NI core cipher.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-10-05 10:16:56 +08:00
Mikulas Patocka a788848116 crypto: aesni - don't use GFP_ATOMIC allocation if the request doesn't cross a page in gcm
This patch fixes gcmaes_crypt_by_sg so that it won't use memory
allocation if the data doesn't cross a page boundary.

Authenticated encryption may be used by dm-crypt. If the encryption or
decryption fails, it would result in I/O error and filesystem corruption.
The function gcmaes_crypt_by_sg is using GFP_ATOMIC allocation that can
fail anytime. This patch fixes the logic so that it won't attempt the
failing allocation if the data doesn't cross a page boundary.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-14 14:08:53 +08:00
Dave Watson e845520707 crypto: aesni - Update aesni-intel_glue to use scatter/gather
Add gcmaes_crypt_by_sg routine, that will do scatter/gather
by sg. Either src or dst may contain multiple buffers, so
iterate over both at the same time if they are different.
If the input is the same as the output, iterate only over one.

Currently both the AAD and TAG must be linear, so copy them out
with scatterlist_map_and_copy.  If first buffer contains the
entire AAD, we can optimize and not copy.   Since the AAD
can be any size, if copied it must be on the heap.  TAG can
be on the stack since it is always < 16 bytes.

Only the SSE routines are updated so far, so leave the previous
gcmaes_en/decrypt routines, and branch to the sg ones if the
keysize is inappropriate for avx, or we are SSE only.

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-02-22 22:16:52 +08:00
Dave Watson fb8986e643 crypto: aesni - Introduce scatter/gather asm function stubs
The asm macros are all set up now, introduce entry points.

GCM_INIT and GCM_COMPLETE have arguments supplied, so that
the new scatter/gather entry points don't have to take all the
arguments, and only the ones they need.

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-02-22 22:16:51 +08:00
Dave Watson 9ee4a5df22 crypto: aesni - Introduce gcm_context_data
Introduce a gcm_context_data struct that will be used to pass
context data between scatter/gather update calls.  It is passed
as the second argument (after crypto keys), other args are
renumbered.

Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-02-22 22:16:47 +08:00
Stephan Mueller 9c674e1e2f crypto: aesni - handle zero length dst buffer
GCM can be invoked with a zero destination buffer. This is possible if
the AAD and the ciphertext have zero lengths and only the tag exists in
the source buffer (i.e. a source buffer cannot be zero). In this case,
the GCM cipher only performs the authentication and no decryption
operation.

When the destination buffer has zero length, it is possible that no page
is mapped to the SG pointing to the destination. In this case,
sg_page(req->dst) is an invalid access. Therefore, page accesses should
only be allowed if the req->dst->length is non-zero which is the
indicator that a page must exist.

This fixes a crash that can be triggered by user space via AF_ALG.

CC: <stable@vger.kernel.org>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-26 01:10:32 +11:00
Sabrina Dubroca fc8517bf62 crypto: aesni - add wrapper for generic gcm(aes)
When I added generic-gcm-aes I didn't add a wrapper like the one
provided for rfc4106(gcm(aes)). We need to add a cryptd wrapper to fall
back on in case the FPU is not available, otherwise we might corrupt the
FPU state.

Fixes: cce2ea8d90 ("crypto: aesni - add generic gcm(aes)")
Cc: <stable@vger.kernel.org>
Reported-by: Ilya Lesokhin <ilyal@mellanox.com>
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Reviewed-by: Stefano Brivio <sbrivio@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-12-22 19:52:46 +11:00
Sabrina Dubroca 106840c410 crypto: aesni - fix typo in generic_gcmaes_decrypt
generic_gcmaes_decrypt needs to use generic_gcmaes_ctx, not
aesni_rfc4106_gcm_ctx. This is actually harmless because the fields in
struct generic_gcmaes_ctx share the layout of the same fields in
aesni_rfc4106_gcm_ctx.

Fixes: cce2ea8d90 ("crypto: aesni - add generic gcm(aes)")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Reviewed-by: Stefano Brivio <sbrivio@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-12-22 19:52:46 +11:00
Corentin LABBE 46d93748e5 crypto: aesni - Use GCM IV size constant
This patch replace GCM IV size value by their constant name.

Signed-off-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-09-22 17:43:14 +08:00
Colin Ian King 1c9fa294fe crypto: aesni - make arrays aesni_simd_skciphers and aesni_simd_skciphers2 static
Arrays aesni_simd_skciphers and aesni_simd_skciphers2 are local to the
source and do not need to be in global scope, so make them static.

Cleans up sparse warnings:
symbol 'aesni_simd_skciphers' was not declared. Should it be static?
symbol 'aesni_simd_skciphers2' was not declared. Should it be static?

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-09-22 17:43:06 +08:00
Ard Biesheuvel 45fe93dff2 crypto: algapi - make crypto_xor() take separate dst and src arguments
There are quite a number of occurrences in the kernel of the pattern

  if (dst != src)
          memcpy(dst, src, walk.total % AES_BLOCK_SIZE);
  crypto_xor(dst, final, walk.total % AES_BLOCK_SIZE);

or

  crypto_xor(keystream, src, nbytes);
  memcpy(dst, keystream, nbytes);

where crypto_xor() is preceded or followed by a memcpy() invocation
that is only there because crypto_xor() uses its output parameter as
one of the inputs. To avoid having to add new instances of this pattern
in the arm64 code, which will be refactored to implement non-SIMD
fallbacks, add an alternative implementation called crypto_xor_cpy(),
taking separate input and output arguments. This removes the need for
the separate memcpy().

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:15 +08:00
Sabrina Dubroca cce2ea8d90 crypto: aesni - add generic gcm(aes)
Now that the asm side of things can support all the valid lengths of ICV
and all lengths of associated data, provide the glue code to expose a
generic gcm(aes) crypto algorithm.

Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-05-18 13:19:55 +08:00
Herbert Xu 34cb582139 Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Merge the crypto tree to pick up arm64 output IV patch.
2017-02-03 18:14:10 +08:00
Herbert Xu c268199000 crypto: aesni - Fix failure when pcbc module is absent
When aesni is built as a module together with pcbc, the pcbc module
must be present for aesni to load.  However, the pcbc module may not
be present for reasons such as its absence on initramfs.  This patch
allows the aesni to function even if the pcbc module is enabled but
not present.

Reported-by: Arkadiusz Miśkiewicz <arekm@maven.pl>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-02-03 17:45:48 +08:00
Herbert Xu 07825f0acd crypto: aesni - Fix failure when built-in with modular pcbc
If aesni is built-in but pcbc is built as a module, then aesni
will fail completely because when it tries to register the pcbc
variant of aes the pcbc template is not available.

This patch fixes this by modifying the pcbc presence test so that
if aesni is built-in then pcbc must also be built-in for it to be
used by aesni.

Fixes: 85671860ca ("crypto: aesni - Convert to skcipher")
Reported-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-12-30 18:20:45 +08:00
Ilya Lesokhin 50fb570424 crypto: aesni-intel - RFC4106 can zero copy when !PageHighMem
In the common case of !PageHighMem we can do zero copy crypto
even if sg crosses a pages boundary.

Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-12-27 17:48:48 +08:00
Linus Torvalds 0f1d6dfe03 Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
 "Here is the crypto update for 4.10:

  API:
   - add skcipher walk interface
   - add asynchronous compression (acomp) interface
   - fix algif_aed AIO handling of zero buffer

  Algorithms:
   - fix unaligned access in poly1305
   - fix DRBG output to large buffers

  Drivers:
   - add support for iMX6UL to caam
   - fix givenc descriptors (used by IPsec) in caam
   - accelerated SHA256/SHA512 for ARM64 from OpenSSL
   - add SSE CRCT10DIF and CRC32 to ARM/ARM64
   - add AEAD support to Chelsio chcr
   - add Armada 8K support to omap-rng"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (148 commits)
  crypto: testmgr - fix overlap in chunked tests again
  crypto: arm/crc32 - accelerated support based on x86 SSE implementation
  crypto: arm64/crc32 - accelerated support based on x86 SSE implementation
  crypto: arm/crct10dif - port x86 SSE implementation to ARM
  crypto: arm64/crct10dif - port x86 SSE implementation to arm64
  crypto: testmgr - add/enhance test cases for CRC-T10DIF
  crypto: testmgr - avoid overlap in chunked tests
  crypto: chcr - checking for IS_ERR() instead of NULL
  crypto: caam - check caam_emi_slow instead of re-lookup platform
  crypto: algif_aead - fix AIO handling of zero buffer
  crypto: aes-ce - Make aes_simd_algs static
  crypto: algif_skcipher - set error code when kcalloc fails
  crypto: caam - make aamalg_desc a proper module
  crypto: caam - pass key buffers with typesafe pointers
  crypto: arm64/aes-ce-ccm - Fix AEAD decryption length
  MAINTAINERS: add crypto headers to crypto entry
  crypt: doc - remove misleading mention of async API
  crypto: doc - fix header file name
  crypto: api - fix comment typo
  crypto: skcipher - Add separate walker for AEAD decryption
  ..
2016-12-14 13:31:29 -08:00
Herbert Xu 85671860ca crypto: aesni - Convert to skcipher
This patch converts aesni (including fpu) over to the skcipher
interface.  The LRW implementation has been removed as the generic
LRW code can now be used directly on top of the accelerated ECB
implementation.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-11-28 21:23:20 +08:00
Arnd Bergmann beae2c9eb5 crypto: aesni: shut up -Wmaybe-uninitialized warning
The rfc4106 encrypy/decrypt helper functions cause an annoying
false-positive warning in allmodconfig if we turn on
-Wmaybe-uninitialized warnings again:

  arch/x86/crypto/aesni-intel_glue.c: In function ‘helper_rfc4106_decrypt’:
  include/linux/scatterlist.h:67:31: warning: ‘dst_sg_walk.sg’ may be used uninitialized in this function [-Wmaybe-uninitialized]

The problem seems to be that the compiler doesn't track the state of the
'one_entry_in_sg' variable across the kernel_fpu_begin/kernel_fpu_end
section.

This takes the easy way out by adding a bogus initialization, which
should be harmless enough to get the patch into v4.9 so we can turn on
this warning again by default without producing useless output.  A
follow-up patch for v4.10 rearranges the code to make the warning go
away.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:45:08 -08:00
Herbert Xu 02fa472afe crypto: aesni - Use crypto_cipher to derive rfc4106 subkey
Currently aesni uses an async ctr(aes) to derive the rfc4106
subkey, which was presumably copied over from the generic rfc4106
code.  Over there it's done that way because we already have a
ctr(aes) spawn.  But it is simply overkill for aesni since we
have to go get a ctr(aes) from scratch anyway.

This patch simplifies the subkey derivation by using a straight
aes cipher instead.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-07-01 23:45:06 +08:00
Herbert Xu 38b2f68b42 crypto: aesni - Fix cryptd reordering problem on gcm
This patch fixes an old bug where gcm requests can be reordered
because some are processed by cryptd while others are processed
directly in softirq context.

The fix is to always postpone to cryptd if there are currently
requests outstanding from the same tfm.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-06-23 18:29:52 +08:00
Borislav Petkov da154e82af x86/cpufeature: Replace cpu_has_avx with boot_cpu_has() usage
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-crypto@vger.kernel.org
Link: http://lkml.kernel.org/r/1459801503-15600-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-13 11:37:40 +02:00
Stephan Mueller 28856a9e52 crypto: xts - consolidate sanity check for keys
The patch centralizes the XTS key check logic into the service function
xts_check_key which is invoked from the different XTS implementations.
With this, the XTS implementations in ARM, ARM64, PPC and S390 have now
a sanity check for the XTS keys similar to the other arches.

In addition, this service function received a check to ensure that the
key != the tweak key which is mandated by FIPS 140-2 IG A.9. As the
check is not present in the standards defining XTS, it is only enforced
in FIPS mode of the kernel.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-02-17 04:07:51 +08:00
Herbert Xu 5e4b8c1fcc crypto: aead - Remove CRYPTO_ALG_AEAD_NEW flag
This patch removes the CRYPTO_ALG_AEAD_NEW flag now that everyone
has been converted.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-08-17 16:53:53 +08:00
Herbert Xu e9b8d2c20a crypto: aesni - Use new IV convention
This patch converts rfc4106 to the new calling convention where
the IV is now in the AD and needs to be skipped.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-14 14:56:47 +08:00
Tadeusz Struk 0fbafd06bd crypto: aesni - fix failing setkey for rfc4106-gcm-aesni
rfc4106(gcm(aes)) uses ctr(aes) to generate hash key. ctr(aes) needs
chainiv, but the chainiv gets initialized after aesni_intel when both
are statically linked so the setkey fails.
This patch forces aesni_intel to be initialized after chainiv.

Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-29 16:06:30 +08:00
Linus Torvalds 44d21c3f3a Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
 "Here is the crypto update for 4.2:

  API:

   - Convert RNG interface to new style.

   - New AEAD interface with one SG list for AD and plain/cipher text.
     All external AEAD users have been converted.

   - New asymmetric key interface (akcipher).

  Algorithms:

   - Chacha20, Poly1305 and RFC7539 support.

   - New RSA implementation.

   - Jitter RNG.

   - DRBG is now seeded with both /dev/random and Jitter RNG.  If kernel
     pool isn't ready then DRBG will be reseeded when it is.

   - DRBG is now the default crypto API RNG, replacing krng.

   - 842 compression (previously part of powerpc nx driver).

  Drivers:

   - Accelerated SHA-512 for arm64.

   - New Marvell CESA driver that supports DMA and more algorithms.

   - Updated powerpc nx 842 support.

   - Added support for SEC1 hardware to talitos"

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (292 commits)
  crypto: marvell/cesa - remove COMPILE_TEST dependency
  crypto: algif_aead - Temporarily disable all AEAD algorithms
  crypto: af_alg - Forbid the use internal algorithms
  crypto: echainiv - Only hold RNG during initialisation
  crypto: seqiv - Add compatibility support without RNG
  crypto: eseqiv - Offer normal cipher functionality without RNG
  crypto: chainiv - Offer normal cipher functionality without RNG
  crypto: user - Add CRYPTO_MSG_DELRNG
  crypto: user - Move cryptouser.h to uapi
  crypto: rng - Do not free default RNG when it becomes unused
  crypto: skcipher - Allow givencrypt to be NULL
  crypto: sahara - propagate the error on clk_disable_unprepare() failure
  crypto: rsa - fix invalid select for AKCIPHER
  crypto: picoxcell - Update to the current clk API
  crypto: nx - Check for bogus firmware properties
  crypto: marvell/cesa - add DT bindings documentation
  crypto: marvell/cesa - add support for Kirkwood and Dove SoCs
  crypto: marvell/cesa - add support for Orion SoCs
  crypto: marvell/cesa - add allhwsupport module parameter
  crypto: marvell/cesa - add support for all armada SoCs
  ...
2015-06-22 21:04:48 -07:00
Herbert Xu b7c89d9e2f crypto: aesni - Convert rfc4106 to new AEAD interface
This patch converts the low-level __gcm-aes-aesni algorithm to
the new AEAD interface.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-03 10:51:24 +08:00
Herbert Xu af05b3009b crypto: aesni - Convert top-level rfc4106 algorithm to new interface
This patch converts rfc4106-gcm-aesni to the new AEAD interface.
The low-level interface remains as is for now because we can't
touch it until cryptd itself is upgraded.

In the conversion I've also removed the duplicate copy of the
context in the top-level algorithm.  Now all processing is carried
out in the low-level __driver-gcm-aes-aesni algorithm.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-03 10:48:36 +08:00
Ingo Molnar df6b35f409 x86/fpu: Rename i387.h to fpu/api.h
We already have fpu/types.h, move i387.h to fpu/api.h.

The file name has become a misnomer anyway: it offers generic FPU APIs,
but is not limited to i387 functionality.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:30 +02:00
Herbert Xu a5a2b4da01 crypto: aesni - Use crypto_aead_set_reqsize helper
This patch uses the crypto_aead_set_reqsize helper to avoid directly
touching the internals of aead.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-05-13 10:31:43 +08:00
Linus Torvalds cb906953d2 Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
 "Here is the crypto update for 4.1:

  New interfaces:
   - user-space interface for AEAD
   - user-space interface for RNG (i.e., pseudo RNG)

  New hashes:
   - ARMv8 SHA1/256
   - ARMv8 AES
   - ARMv8 GHASH
   - ARM assembler and NEON SHA256
   - MIPS OCTEON SHA1/256/512
   - MIPS img-hash SHA1/256 and MD5
   - Power 8 VMX AES/CBC/CTR/GHASH
   - PPC assembler AES, SHA1/256 and MD5
   - Broadcom IPROC RNG driver

  Cleanups/fixes:
   - prevent internal helper algos from being exposed to user-space
   - merge common code from assembly/C SHA implementations
   - misc fixes"

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (169 commits)
  crypto: arm - workaround for building with old binutils
  crypto: arm/sha256 - avoid sha256 code on ARMv7-M
  crypto: x86/sha512_ssse3 - move SHA-384/512 SSSE3 implementation to base layer
  crypto: x86/sha256_ssse3 - move SHA-224/256 SSSE3 implementation to base layer
  crypto: x86/sha1_ssse3 - move SHA-1 SSSE3 implementation to base layer
  crypto: arm64/sha2-ce - move SHA-224/256 ARMv8 implementation to base layer
  crypto: arm64/sha1-ce - move SHA-1 ARMv8 implementation to base layer
  crypto: arm/sha2-ce - move SHA-224/256 ARMv8 implementation to base layer
  crypto: arm/sha256 - move SHA-224/256 ASM/NEON implementation to base layer
  crypto: arm/sha1-ce - move SHA-1 ARMv8 implementation to base layer
  crypto: arm/sha1_neon - move SHA-1 NEON implementation to base layer
  crypto: arm/sha1 - move SHA-1 ARM asm implementation to base layer
  crypto: sha512-generic - move to generic glue implementation
  crypto: sha256-generic - move to generic glue implementation
  crypto: sha1-generic - move to generic glue implementation
  crypto: sha512 - implement base layer for SHA-512
  crypto: sha256 - implement base layer for SHA-256
  crypto: sha1 - implement base layer for SHA-1
  crypto: api - remove instance when test failed
  crypto: api - Move alg ref count init to crypto_check_alg
  ...
2015-04-15 10:42:15 -07:00
Stephan Mueller eabdc320ec crypto: aesni - mark AES-NI helper ciphers
Flag all AES-NI helper ciphers as internal ciphers to prevent them from
being called by normal users.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-03-31 21:21:05 +08:00
Stephan Mueller ccfe8c3f7e crypto: aesni - fix memory usage in GCM decryption
The kernel crypto API logic requires the caller to provide the
length of (ciphertext || authentication tag) as cryptlen for the
AEAD decryption operation. Thus, the cipher implementation must
calculate the size of the plaintext output itself and cannot simply use
cryptlen.

The RFC4106 GCM decryption operation tries to overwrite cryptlen memory
in req->dst. As the destination buffer for decryption only needs to hold
the plaintext memory but cryptlen references the input buffer holding
(ciphertext || authentication tag), the assumption of the destination
buffer length in RFC4106 GCM operation leads to a too large size. This
patch simply uses the already calculated plaintext size.

In addition, this patch fixes the offset calculation of the AAD buffer
pointer: as mentioned before, cryptlen already includes the size of the
tag. Thus, the tag does not need to be added. With the addition, the AAD
will be written beyond the already allocated buffer.

Note, this fixes a kernel crash that can be triggered from user space
via AF_ALG(aead) -- simply use the libkcapi test application
from [1] and update it to use rfc4106-gcm-aes.

Using [1], the changes were tested using CAVS vectors to demonstrate
that the crypto operation still delivers the right results.

[1] http://www.chronox.de/libkcapi.html

CC: Tadeusz Struk <tadeusz.struk@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-03-13 21:32:21 +11:00
Tadeusz Struk 81e397d937 crypto: aesni - make driver-gcm-aes-aesni helper a proper aead alg
Changed the __driver-gcm-aes-aesni to be a proper aead algorithm.
This required a valid setkey and setauthsize functions to be added and also
some changes to make sure that math context is not corrupted when the alg is
used directly.
Note that the __driver-gcm-aes-aesni should not be used directly by modules
that can use it in interrupt context as we don't have a good fallback mechanism
in this case.

Signed-off-by: Adrian Hoban <adrian.hoban@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-02-28 23:31:35 +13:00
Timothy McCaffrey e31ac32d3b crypto: aesni - Add support for 192 & 256 bit keys to AESNI RFC4106
These patches fix the RFC4106 implementation in the aesni-intel
module so it supports 192 & 256 bit keys.

Since the AVX support that was added to this module also only
supports 128 bit keys, and this patch only affects the SSE
implementation, changes were also made to use the SSE version
if key sizes other than 128 are specified.

RFC4106 specifies that 192 & 256 bit keys must be supported (section
8.4).

Also, this should fix Strongswan issue 341 where the aesni module
needs to be unloaded if 256 bit keys are used:

http://wiki.strongswan.org/issues/341

This patch has been tested with Sandy Bridge and Haswell processors.
With 128 bit keys and input buffers > 512 bytes a slight performance
degradation was noticed (~1%).  For input buffers of less than 512
bytes there was no performance impact.  Compared to 128 bit keys,
256 bit key size performance is approx. .5 cycles per byte slower
on Sandy Bridge, and .37 cycles per byte slower on Haswell (vs.
SSE code).

This patch has also been tested with StrongSwan IPSec connections
where it worked correctly.

I created this diff from a git clone of crypto-2.6.git.

Any questions, please feel free to contact me.

Signed-off-by: Timothy McCaffrey <timothy.mccaffrey@unisys.com>
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-14 21:56:51 +11:00
Kees Cook 5d26a105b5 crypto: prefix module autoloading with "crypto-"
This prefixes all crypto module loading with "crypto-" so we never run
the risk of exposing module auto-loading to userspace via a crypto API,
as demonstrated by Mathias Krause:

https://lkml.org/lkml/2013/3/4/70

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-11-24 22:43:57 +08:00
Valentin Rothberg 304576a776 crypto: aesni - remove unnecessary #define
The CPP identifier 'HAS_PCBC' is defined when the Kconfig
option CRYPTO_PCBC is set as 'y' or 'm', and is further
used in two ifdef blocks to conditionally compile source
code. This indirection hides the actual Kconfig dependency
and complicates readability. Moreover, it's inconsistent
with the rest of the ifdef blocks in the file, which
directly reference Kconfig options.

This patch removes 'HAS_PCBC' and replaces its occurrences
with the actual dependency on 'CRYPTO_PCBC' being set as
'y' or 'm'.

Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-11-06 23:14:59 +08:00
Mathias Krause 5cfed7b335 Revert "crypto: aesni - disable "by8" AVX CTR optimization"
This reverts commit 7da4b29d49.

Now, that the issue is fixed, we can re-enable the code.

Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Chandramouli Narayanan <mouli@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-10-02 14:40:28 +08:00
Mathias Krause 7da4b29d49 crypto: aesni - disable "by8" AVX CTR optimization
The "by8" implementation introduced in commit 22cddcc7df ("crypto: aes
- AES CTR x86_64 "by8" AVX optimization") is failing crypto tests as it
handles counter block overflows differently. It only accounts the right
most 32 bit as a counter -- not the whole block as all other
implementations do. This makes it fail the cryptomgr test #4 that
specifically tests this corner case.

As we're quite late in the release cycle, just disable the "by8" variant
for now.

Reported-by: Romain Francoise <romain@orebokech.com>
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Chandramouli Narayanan <mouli@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-09-24 21:15:31 +08:00
chandramouli narayanan 22cddcc7df crypto: aes - AES CTR x86_64 "by8" AVX optimization
This patch introduces "by8" AES CTR mode AVX optimization inspired by
Intel Optimized IPSEC Cryptograhpic library. For additional information,
please see:
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=22972

The functions aes_ctr_enc_128_avx_by8(), aes_ctr_enc_192_avx_by8() and
aes_ctr_enc_256_avx_by8() are adapted from
Intel Optimized IPSEC Cryptographic library. When both AES and AVX features
are enabled in a platform, the glue code in AESNI module overrieds the
existing "by4" CTR mode en/decryption with the "by8"
AES CTR mode en/decryption.

On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, the "by8" CTR mode optimization
shows better performance results across data & key sizes
as measured by tcrypt.

The average performance improvement of the "by8" version over the "by4"
version is as follows:

For 128 bit key and data sizes >= 256 bytes, there is a 10-16% improvement.
For 192 bit key and data sizes >= 256 bytes, there is a 20-22% improvement.
For 256 bit key and data sizes >= 256 bytes, there is a 20-25% improvement.

A typical run of tcrypt with AES CTR mode encryption of the "by4" and "by8"
optimization shows the following results:

tcrypt with "by4" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 343 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 336 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 491 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1130 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7309 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 346 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 361 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 543 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1321 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9649 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 369 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 366 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1531 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10522 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 336 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 350 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 487 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1129 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7287 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 350 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 359 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 635 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1324 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9595 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 364 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 377 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 604 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1527 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10549 cycles (8192 bytes)

tcrypt with "by8" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 340 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 330 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 450 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1043 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6597 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 339 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 352 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 539 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1153 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8458 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 353 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 360 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 512 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1277 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8745 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 348 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 335 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 451 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1030 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6611 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 354 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 346 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 488 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1154 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8390 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 357 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 362 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 515 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1284 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8681 cycles (8192 bytes)

crypto: Incorporate feed back to AES CTR mode optimization patch

Specifically, the following:
a) alignment around main loop in aes_ctrby8_avx_x86_64.S
b) .rodata around data constants used in the assembely code.
c) the use of CONFIG_AVX in the glue code.
d) fix up white space.
e) informational message for "by8" AES CTR mode optimization
f) "by8" AES CTR mode optimization can be simply enabled
if the platform supports both AES and AVX features. The
optimization works superbly on Sandybridge as well.

Testing on Haswell shows no performance change since the last.

Testing on Sandybridge shows that the "by8" AES CTR mode optimization
greatly improves performance.

tcrypt log with "by4" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 408 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 707 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1864 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12813 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 395 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 432 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 780 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2132 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15765 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 416 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 438 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 842 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2383 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16945 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 389 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 409 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 704 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1865 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12783 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 409 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 434 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 792 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2151 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15804 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 421 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 444 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 840 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2394 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16928 cycles (8192 bytes)

tcrypt log with "by8" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 401 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 522 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1136 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7046 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 394 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 418 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 559 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1263 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9072 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 408 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 428 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1385 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9224 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 390 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 402 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 530 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1135 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7079 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 414 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 417 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 572 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1312 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9073 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 415 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 454 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 598 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1407 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9288 cycles (8192 bytes)

crypto: Fix redundant checks

a) Fix the redundant check for cpu_has_aes
b) Fix the key length check when invoking the CTR mode "by8"
encryptor/decryptor.

crypto: fix typo in AES ctr mode transform

Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:58 +08:00
Andy Shevchenko 8610d7bf60 crypto: aesni - fix build on x86 (32bit)
It seems commit d764593a "crypto: aesni - AVX and AVX2 version of AESNI-GCM
encode and decode" breaks a build on x86_32 since it's designed only for
x86_64. This patch makes a compilation unit conditional to CONFIG_64BIT and
functions usage to CONFIG_X86_64.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-12-31 19:47:46 +08:00
Tim Chen d764593af9 crypto: aesni - AVX and AVX2 version of AESNI-GCM encode and decode
We have added AVX and AVX2 routines that optimize AESNI-GCM encode/decode.
These routines are optimized for encrypt and decrypt of large buffers.
In tests we have seen up to 6% speedup for 1K, 11% speedup for 2K and
18% speedup for 8K buffer over the existing SSE version.  These routines
should provide even better speedup for future Intel x86_64 cpus.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-12-20 20:06:24 +08:00
Daniel Borkmann fed286110f crypto: arch - use crypto_memneq instead of memcmp
Replace remaining occurences (just as we did in crypto/) under arch/*/crypto/
that make use of memcmp() for comparing keys or authentication tags for
usage with crypto_memneq(). It can simply be used as a drop-in replacement
for the normal memcmp().

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: James Yonan <james@openvpn.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-12-20 20:06:24 +08:00
Ard Biesheuvel 801201aa25 crypto: move x86 to the generic version of ablk_helper
Move all users of ablk_helper under x86/ to the generic version
and delete the x86 specific version.

Acked-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-24 06:02:24 +10:00