When we acknowledge a FIN, it is not enough to ack the sequence number
and queue the skb into receive queue. We also have to call tcp_fin()
to properly update socket state and send proper poll() notifications.
It seems we also had the problem if we received a SYN packet with the
FIN flag set, but it does not seem an urgent issue, as no known
implementation can do that.
Fixes: 61d2bcae99 ("tcp: fastopen: accept data/FIN present in SYNACK message")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RFC 7413 (TCP Fast Open) 4.2.2 states that the SYNACK message
MAY include data and/or FIN
This patch adds support for the client side :
If we receive a SYNACK with payload or FIN, queue the skb instead
of ignoring it.
Since we already support the same for SYN, we refactor the existing
code and reuse it. Note we need to clone the skb, so this operation
might fail under memory pressure.
Sara Dickinson pointed out FreeBSD server Fast Open implementation
was planned to generate such SYNACK in the future.
The server side might be implemented on linux later.
Reported-by: Sara Dickinson <sara@sinodun.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There won't be any separate counters for socket memory consumed by
protocols other than TCP in the future. Remove the indirection and link
sockets directly to their owning memory cgroup.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There won't be a tcp control soft limit, so integrating the memcg code
into the global skmem limiting scheme complicates things unnecessarily.
Replace this with simple and clear charge and uncharge calls--hidden
behind a jump label--to account skb memory.
Note that this is not purely aesthetic: as a result of shoehorning the
per-memcg code into the same memory accounting functions that handle the
global level, the old code would compare the per-memcg consumption
against the smaller of the per-memcg limit and the global limit. This
allowed the total consumption of multiple sockets to exceed the global
limit, as long as the individual sockets stayed within bounds. After
this change, the code will always compare the per-memcg consumption to
the per-memcg limit, and the global consumption to the global limit, and
thus close this loophole.
Without a soft limit, the per-memcg memory pressure state in sockets is
generally questionable. However, we did it until now, so we continue to
enter it when the hard limit is hit, and packets are dropped, to let
other sockets in the cgroup know that they shouldn't grow their transmit
windows, either. However, keep it simple in the new callback model and
leave memory pressure lazily when the next packet is accepted (as
opposed to doing it synchroneously when packets are processed). When
packets are dropped, network performance will already be in the toilet,
so that should be a reasonable trade-off.
As described above, consumption is now checked on the per-memcg level
and the global level separately. Likewise, memory pressure states are
maintained on both the per-memcg level and the global level, and a
socket is considered under pressure when either level asserts as much.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the final part required to namespaceify the tcp
keep alive mechanism.
Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is required to have full tcp keepalive mechanism namespace
support.
Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Different net namespaces might have different requirements as to
the keepalive time of tcp sockets. This might be required in cases
where different firewall rules are in place which require tcp
timeout sockets to be increased/decreased independently of the host.
Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Avoids cluttering tcp_v4_send_reset when followup patch extends
it to deal with timewait sockets.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements SOCK_DESTROY for TCP sockets. It causes all
blocking calls on the socket to fail fast with ECONNABORTED and
causes a protocol close of the socket. It informs the other end
of the connection by sending a RST, i.e., initiating a TCP ABORT
as per RFC 793. ECONNABORTED was chosen for consistency with
FreeBSD.
Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Multiple cpus can process duplicates of incoming ACK messages
matching a SYN_RECV request socket. This is a rare event under
normal operations, but definitely can happen.
Only one must win the race, otherwise corruption would occur.
To fix this without adding new atomic ops, we use logic in
inet_ehash_nolisten() to detect the request was present in the same
ehash bucket where we try to insert the new child.
If request socket was not found, we have to undo the child creation.
This actually removes a spin_lock()/spin_unlock() pair in
reqsk_queue_unlink() for the fast path.
Fixes: e994b2f0fb ("tcp: do not lock listener to process SYN packets")
Fixes: 079096f103 ("tcp/dccp: install syn_recv requests into ehash table")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch implements the second half of RACK that uses the the most
recent transmit time among all delivered packets to detect losses.
tcp_rack_mark_lost() is called upon receiving a dubious ACK.
It then checks if an not-yet-sacked packet was sent at least
"reo_wnd" prior to the sent time of the most recently delivered.
If so the packet is deemed lost.
The "reo_wnd" reordering window starts with 1msec for fast loss
detection and changes to min-RTT/4 when reordering is observed.
We found 1msec accommodates well on tiny degree of reordering
(<3 pkts) on faster links. We use min-RTT instead of SRTT because
reordering is more of a path property but SRTT can be inflated by
self-inflicated congestion. The factor of 4 is borrowed from the
delayed early retransmit and seems to work reasonably well.
Since RACK is still experimental, it is now used as a supplemental
loss detection on top of existing algorithms. It is only effective
after the fast recovery starts or after the timeout occurs. The
fast recovery is still triggered by FACK and/or dupack threshold
instead of RACK.
We introduce a new sysctl net.ipv4.tcp_recovery for future
experiments of loss recoveries. For now RACK can be disabled by
setting it to 0.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is the first half of the RACK loss recovery.
RACK loss recovery uses the notion of time instead
of packet sequence (FACK) or counts (dupthresh). It's inspired by the
previous FACK heuristic in tcp_mark_lost_retrans(): when a limited
transmit (new data packet) is sacked, then current retransmitted
sequence below the newly sacked sequence must been lost,
since at least one round trip time has elapsed.
But it has several limitations:
1) can't detect tail drops since it depends on limited transmit
2) is disabled upon reordering (assumes no reordering)
3) only enabled in fast recovery ut not timeout recovery
RACK (Recently ACK) addresses these limitations with the notion
of time instead: a packet P1 is lost if a later packet P2 is s/acked,
as at least one round trip has passed.
Since RACK cares about the time sequence instead of the data sequence
of packets, it can detect tail drops when later retransmission is
s/acked while FACK or dupthresh can't. For reordering RACK uses a
dynamically adjusted reordering window ("reo_wnd") to reduce false
positives on ever (small) degree of reordering.
This patch implements tcp_advanced_rack() which tracks the
most recent transmission time among the packets that have been
delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp
is the key to determine which packet has been lost.
Consider an example that the sender sends six packets:
T1: P1 (lost)
T2: P2
T3: P3
T4: P4
T100: sack of P2. rack.mstamp = T2
T101: retransmit P1
T102: sack of P2,P3,P4. rack.mstamp = T4
T205: ACK of P4 since the hole is repaired. rack.mstamp = T101
We need to be careful about spurious retransmission because it may
falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK
to falsely mark all packets lost, just like a spurious timeout.
We identify spurious retransmission by the ACK's TS echo value.
If TS option is not applicable but the retransmission is acknowledged
less than min-RTT ago, it is likely to be spurious. We refrain from
using the transmission time of these spurious retransmissions.
The second half is implemented in the next patch that marks packet
lost using RACK timestamp.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Kathleen Nichols' algorithm for tracking the minimum RTT of a
data stream over some measurement window. It uses constant space
and constant time per update. Yet it almost always delivers
the same minimum as an implementation that has to keep all
the data in the window. The measurement window is tunable via
sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes.
The algorithm keeps track of the best, 2nd best & 3rd best min
values, maintaining an invariant that the measurement time of
the n'th best >= n-1'th best. It also makes sure that the three
values are widely separated in the time window since that bounds
the worse case error when that data is monotonically increasing
over the window.
Upon getting a new min, we can forget everything earlier because
it has no value - the new min is less than everything else in the
window by definition and it's the most recent. So we restart fresh
on every new min and overwrites the 2nd & 3rd choices. The same
property holds for the 2nd & 3rd best.
Therefore we have to maintain two invariants to maximize the
information in the samples, one on values (1st.v <= 2nd.v <=
3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <=
now). These invariants determine the structure of the code
The RTT input to the windowed filter is the minimum RTT measured
from ACK or SACK, or as the last resort from TCP timestamps.
The accessor tcp_min_rtt() returns the minimum RTT seen in the
window. ~0U indicates it is not available. The minimum is 1usec
even if the true RTT is below that.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At the time of commit fff3269907 ("tcp: reflect SYN queue_mapping into
SYNACK packets") we had little ways to cope with SYN floods.
We no longer need to reflect incoming skb queue mappings, and instead
can pick a TX queue based on cpu cooking the SYNACK, with normal XPS
affinities.
Note that all SYNACK retransmits were picking TX queue 0, this no longer
is a win given that SYNACK rtx are now distributed on all cpus.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If a listen backlog is very big (to avoid syncookies), then
the listener sk->sk_wmem_alloc is the main source of false
sharing, as we need to touch it twice per SYNACK re-transmit
and TX completion.
(One SYN packet takes listener lock once, but up to 6 SYNACK
are generated)
By attaching the skb to the request socket, we remove this
source of contention.
Tested:
listen(fd, 10485760); // single listener (no SO_REUSEPORT)
16 RX/TX queue NIC
Sustain a SYNFLOOD attack of ~320,000 SYN per second,
Sending ~1,400,000 SYNACK per second.
Perf profiles now show listener spinlock being next bottleneck.
20.29% [kernel] [k] queued_spin_lock_slowpath
10.06% [kernel] [k] __inet_lookup_established
5.12% [kernel] [k] reqsk_timer_handler
3.22% [kernel] [k] get_next_timer_interrupt
3.00% [kernel] [k] tcp_make_synack
2.77% [kernel] [k] ipt_do_table
2.70% [kernel] [k] run_timer_softirq
2.50% [kernel] [k] ip_finish_output
2.04% [kernel] [k] cascade
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In this patch, we insert request sockets into TCP/DCCP
regular ehash table (where ESTABLISHED and TIMEWAIT sockets
are) instead of using the per listener hash table.
ACK packets find SYN_RECV pseudo sockets without having
to find and lock the listener.
In nominal conditions, this halves pressure on listener lock.
Note that this will allow for SO_REUSEPORT refinements,
so that we can select a listener using cpu/numa affinities instead
of the prior 'consistent hash', since only SYN packets will
apply this selection logic.
We will shrink listen_sock in the following patch to ease
code review.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Ying Cai <ycai@google.com>
Cc: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When request sockets are no longer in a per listener hash table
but on regular TCP ehash, we need to access listener uid
through req->rsk_listener
get_openreq6() also gets a const for its request socket argument.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
These functions do not change the listener socket.
Goal is to make sure tcp_conn_request() is not messing with
listener in a racy way.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some common IPv4/IPv6 code can be factorized.
Also constify cookie_init_sequence() socket argument.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We'll soon no longer hold listener socket lock, these
functions do not modify the socket in any way.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Factorize code to get tcp header from skb. It makes no sense
to duplicate code in callers.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Once we realize tcp_rcv_synsent_state_process() does not use
its 'len' argument and we get rid of it, then it becomes clear
this argument is no longer used in tcp_rcv_state_process()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We found that a TCP Fast Open passive connection was vulnerable
to reorders, as the exchange might look like
[1] C -> S S <FO ...> <request>
[2] S -> C S. ack request <options>
[3] S -> C . <answer>
packets [2] and [3] can be generated at almost the same time.
If C receives the 3rd packet before the 2nd, it will drop it as
the socket is in SYN_SENT state and expects a SYNACK.
S will have to retransmit the answer.
Current OOO avoidance in linux is defeated because SYNACK
packets are attached to the LISTEN socket, while DATA packets
are attached to the children. They might be sent by different cpus,
and different TX queues might be selected.
It turns out that for TFO, we created a child, which is a
full blown socket in TCP_SYN_RECV state, and we simply can attach
the SYNACK packet to this socket.
This means that at the time tcp_sendmsg() pushes DATA packet,
skb->ooo_okay will be set iff the SYNACK packet had been sent
and TX completed.
This removes the reorder source at the host level.
We also removed the export of tcp_try_fastopen(), as it is no
longer called from IPv6.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is done to make sure we do not change listener socket
while sending SYNACK packets while socket lock is not held.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This documents fact that listener lock might not be held
at the time SYNACK are sent.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
listener socket is not locked when tcp_make_synack() is called.
We better make sure no field is written.
There is one exception : Since SYNACK packets are attached to the listener
at this moment (or SYN_RECV child in case of Fast Open),
sock_wmalloc() needs to update sk->sk_wmem_alloc, but this is done using
atomic operations so this is safe.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When TCP new listener is done, these functions will be called
without socket lock being held. Make sure they don't change
anything.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Soon, listener socket wont be locked when tcp_openreq_init_rwin()
is called. We need to read socket fields once, as their value
could change under us.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Soon, listener socket spinlock will no longer be held,
add const arguments to tcp_v[46]_init_req() to make clear these
functions can not mess socket fields.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK
RTT is often measured as 0ms or sometimes 1ms, which would affect
RTT estimation and min RTT samping used by some congestion control.
This patch improves SYN/ACK RTT to be usec resolution if platform
supports it. While the timestamping of SYN/ACK is done in request
sock, the RTT measurement is carefully arranged to avoid storing
another u64 timestamp in tcp_sock.
For regular handshake w/o SYNACK retransmission, the RTT is sampled
right after the child socket is created and right before the request
sock is released (tcp_check_req() in tcp_minisocks.c)
For Fast Open the child socket is already created when SYN/ACK was
sent, the RTT is sampled in tcp_rcv_state_process() after processing
the final ACK an right before the request socket is released.
If the SYN/ACK was retransmistted or SYN-cookie was used, we rely
on TCP timestamps to measure the RTT. The sample is taken at the
same place in tcp_rcv_state_process() after the timestamp values
are validated in tcp_validate_incoming(). Note that we do not store
TS echo value in request_sock for SYN-cookies, because the value
is already stored in tp->rx_opt used by tcp_ack_update_rtt().
One side benefit is that the RTT measurement now happens before
initializing congestion control (of the passive side). Therefore
the congestion control can use the SYN/ACK RTT.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the following case doesn't use DCTCP, even if it should:
A responder has f.e. Cubic as system wide default, but for a specific
route to the initiating host, DCTCP is being set in RTAX_CC_ALGO. The
initiating host then uses DCTCP as congestion control, but since the
initiator sets ECT(0), tcp_ecn_create_request() doesn't set ecn_ok,
and we have to fall back to Reno after 3WHS completes.
We were thinking on how to solve this in a minimal, non-intrusive
way without bloating tcp_ecn_create_request() needlessly: lets cache
the CA ecn option flag in RTAX_FEATURES. In other words, when ECT(0)
is set on the SYN packet, set ecn_ok=1 iff route RTAX_FEATURES
contains the unexposed (internal-only) DST_FEATURE_ECN_CA. This allows
to only do a single metric feature lookup inside tcp_ecn_create_request().
Joint work with Florian Westphal.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
When TCP pacing was added back in linux-3.12, we chose
to apply a fixed ratio of 200 % against current rate,
to allow probing for optimal throughput even during
slow start phase, where cwnd can be doubled every other gRTT.
At Google, we found it was better applying a different ratio
while in Congestion Avoidance phase.
This ratio was set to 120 %.
We've used the normal tcp_in_slow_start() helper for a while,
then tuned the condition to select the conservative ratio
as soon as cwnd >= ssthresh/2 :
- After cwnd reduction, it is safer to ramp up more slowly,
as we approach optimal cwnd.
- Initial ramp up (ssthresh == INFINITY) still allows doubling
cwnd every other RTT.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
slow start after idle might reduce cwnd, but we perform this
after first packet was cooked and sent.
With TSO/GSO, it means that we might send a full TSO packet
even if cwnd should have been reduced to IW10.
Moving the SSAI check in skb_entail() makes sense, because
we slightly reduce number of times this check is done,
especially for large send() and TCP Small queue callbacks from
softirq context.
As Neal pointed out, we also need to perform the check
if/when receive window opens.
Tested:
Following packetdrill test demonstrates the problem
// Test of slow start after idle
`sysctl -q net.ipv4.tcp_slow_start_after_idle=1`
0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1) = 0
+0 < S 0:0(0) win 65535 <mss 1000,sackOK,nop,nop,nop,wscale 7>
+0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6>
+.100 < . 1:1(0) ack 1 win 511
+0 accept(3, ..., ...) = 4
+0 setsockopt(4, SOL_SOCKET, SO_SNDBUF, [200000], 4) = 0
+0 write(4, ..., 26000) = 26000
+0 > . 1:5001(5000) ack 1
+0 > . 5001:10001(5000) ack 1
+0 %{ assert tcpi_snd_cwnd == 10 }%
+.100 < . 1:1(0) ack 10001 win 511
+0 %{ assert tcpi_snd_cwnd == 20, tcpi_snd_cwnd }%
+0 > . 10001:20001(10000) ack 1
+0 > P. 20001:26001(6000) ack 1
+.100 < . 1:1(0) ack 26001 win 511
+0 %{ assert tcpi_snd_cwnd == 36, tcpi_snd_cwnd }%
+4 write(4, ..., 20000) = 20000
// If slow start after idle works properly, we should send 5 MSS here (cwnd/2)
+0 > . 26001:31001(5000) ack 1
+0 %{ assert tcpi_snd_cwnd == 10, tcpi_snd_cwnd }%
+0 > . 31001:36001(5000) ack 1
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the original design slow start is only used to raise cwnd
when cwnd is stricly below ssthresh. It makes little sense
to slow start when cwnd == ssthresh: especially
when hystart has set ssthresh in the initial ramp, or after
recovery when cwnd resets to ssthresh. Not doing so will
also help reduce the buffer bloat slightly.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a helper to test the slow start condition in various congestion
control modules and other places. This is to prepare a slight improvement
in policy as to exactly when to slow start.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit cd7d8498c9 ("tcp: change tcp_skb_pcount() location") we stored
gso_segs in a temporary cache hot location.
This patch does the same for gso_size.
This allows to save 2 cache line misses in tcp xmit path for
the last packet that is considered but not sent because of
various conditions (cwnd, tso defer, receiver window, TSQ...)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
IPv4 and IPv6 share same implementation of get_cookie_sock(),
and there is no point inlining it.
We add tcp_ prefix to the common helper name and export it.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work as a follow-up of commit f7b3bec6f5 ("net: allow setting ecn
via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing
ECN connections. In other words, this work adds a retry with a non-ECN
setup SYN packet, as suggested from the RFC on the first timeout:
[...] A host that receives no reply to an ECN-setup SYN within the
normal SYN retransmission timeout interval MAY resend the SYN and
any subsequent SYN retransmissions with CWR and ECE cleared. [...]
Schematic client-side view when assuming the server is in tcp_ecn=2 mode,
that is, Linux default since 2009 via commit 255cac91c3 ("tcp: extend
ECN sysctl to allow server-side only ECN"):
1) Normal ECN-capable path:
SYN ECE CWR ----->
<----- SYN ACK ECE
ACK ----->
2) Path with broken middlebox, when client has fallback:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ----->
<----- SYN ACK
ACK ----->
In case we would not have the fallback implemented, the middlebox drop
point would basically end up as:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
In any case, it's rather a smaller percentage of sites where there would
occur such additional setup latency: it was found in end of 2014 that ~56%
of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate
ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect
when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the
fallback would mitigate with a slight latency trade-off. Recent related
paper on this topic:
Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth,
Gorry Fairhurst, and Richard Scheffenegger:
"Enabling Internet-Wide Deployment of Explicit Congestion Notification."
Proc. PAM 2015, New York.
http://ecn.ethz.ch/ecn-pam15.pdf
Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168,
section 6.1.1.1. fallback on timeout. For users explicitly not wanting this
which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that
allows for disabling the fallback.
tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but
rather we let tcp_ecn_rcv_synack() take that over on input path in case a
SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent
ECN being negotiated eventually in that case.
Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf
Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch>
Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Dave That <dave.taht@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce an optimized version of sk_under_memory_pressure()
for TCP. Our intent is to use it in fast paths.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We plan to use sk_forced_wmem_schedule() in input path as well,
so make it non static and rename it.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now we allow storing more request socks per listener, we might
hit syncookie mode less often and hit following bug in our stack :
When we send a burst of syncookies, then exit this mode,
tcp_synq_no_recent_overflow() can return false if the ACK packets coming
from clients are coming three seconds after the end of syncookie
episode.
This is a way too strong requirement and conflicts with rest of
syncookie code which allows ACK to be aged up to 2 minutes.
Perfectly valid ACK packets are dropped just because clients might be
in a crowded wifi environment or on another planet.
So let's fix this, and also change tcp_synq_overflow() to not
dirty a cache line for every syncookie we send, as we are under attack.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Florian Westphal <fw@strlen.de>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diagnosing problems related to Window Probes has been hard because
we lack a counter.
TCPWinProbe counts the number of ACK packets a sender has to send
at regular intervals to make sure a reverse ACK packet opening back
a window had not been lost.
TCPKeepAlive counts the number of ACK packets sent to keep TCP
flows alive (SO_KEEPALIVE)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the advent of small rto timers in datacenter TCP,
(ip route ... rto_min x), the following can happen :
1) Qdisc is full, transmit fails.
TCP sets a timer based on icsk_rto to retry the transmit, without
exponential backoff.
With low icsk_rto, and lot of sockets, all cpus are servicing timer
interrupts like crazy.
Intent of the code was to retry with a timer between 200 (TCP_RTO_MIN)
and 500ms (TCP_RESOURCE_PROBE_INTERVAL)
2) Receivers can send zero windows if they don't drain their receive queue.
TCP sends zero window probes, based on icsk_rto current value, with
exponential backoff.
With /proc/sys/net/ipv4/tcp_retries2 being 15 (or even smaller in
some cases), sender can abort in less than one or two minutes !
If receiver stops the sender, it obviously doesn't care of very tight
rto. Probability of dropping the ACK reopening the window is not
worth the risk.
Lets change the base timer to be at least 200ms (TCP_RTO_MIN) for these
events (but not normal RTO based retransmits)
A followup patch adds a new SNMP counter, as it would have helped a lot
diagnosing this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>