This reverts commit 5492830370.
It builds on the commit that is being reverted next.
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit e098223b78,
which has a dependency on other commits being reverted.
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit fd717f1101.
It was reported to cause Machine Check Exceptions (bug 104091).
Reported-by: harn-solo@gmx.de
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Shifting pvclock_vcpu_time_info.system_time on write to KVM system time
MSR is a change of ABI. Probably only 2.6.16 based SLES 10 breaks due
to its custom enhancements to kvmclock, but KVM never declared the MSR
only for one-shot initialization. (Doc says that only one write is
needed.)
This reverts commit b7e60c5aed.
And adds a note to the definition of PVCLOCK_COUNTS_FROM_ZERO.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel CPUID on AMD host or vice versa is a weird case, but it can
happen. Handle it by checking the host CPU vendor instead of the
guest's in reset_tdp_shadow_zero_bits_mask. For speed, the
check uses the fact that Intel EPT has an X (executable) bit while
AMD NPT has NX.
Reported-by: Borislav Petkov <bp@alien8.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_set_cr0 may want to call kvm_zap_gfn_range and thus access the
memslots array (SRCU protected). Using a mini SRCU critical section
is ugly, and adding it to kvm_arch_vcpu_create doesn't work because
the VMX vcpu_create callback calls synchronize_srcu.
Fixes this lockdep splat:
===============================
[ INFO: suspicious RCU usage. ]
4.3.0-rc1+ #1 Not tainted
-------------------------------
include/linux/kvm_host.h:488 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
1 lock held by qemu-system-i38/17000:
#0: (&(&kvm->mmu_lock)->rlock){+.+...}, at: kvm_zap_gfn_range+0x24/0x1a0 [kvm]
[...]
Call Trace:
dump_stack+0x4e/0x84
lockdep_rcu_suspicious+0xfd/0x130
kvm_zap_gfn_range+0x188/0x1a0 [kvm]
kvm_set_cr0+0xde/0x1e0 [kvm]
init_vmcb+0x760/0xad0 [kvm_amd]
svm_create_vcpu+0x197/0x250 [kvm_amd]
kvm_arch_vcpu_create+0x47/0x70 [kvm]
kvm_vm_ioctl+0x302/0x7e0 [kvm]
? __lock_is_held+0x51/0x70
? __fget+0x101/0x210
do_vfs_ioctl+0x2f4/0x560
? __fget_light+0x29/0x90
SyS_ioctl+0x4c/0x90
entry_SYSCALL_64_fastpath+0x16/0x73
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These have roughly the same purpose as the SMRR, which we do not need
to implement in KVM. However, Linux accesses MSR_K8_TSEG_ADDR at
boot, which causes problems when running a Xen dom0 under KVM.
Just return 0, meaning that processor protection of SMRAM is not
in effect.
Reported-by: M A Young <m.a.young@durham.ac.uk>
Cc: stable@vger.kernel.org
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When INIT/SIPI sequence is sent to VCPU which before that
was in use by OS, VMRUN might fail with:
KVM: entry failed, hardware error 0xffffffff
EAX=00000000 EBX=00000000 ECX=00000000 EDX=000006d3
ESI=00000000 EDI=00000000 EBP=00000000 ESP=00000000
EIP=00000000 EFL=00000002 [-------] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0000 00000000 0000ffff 00009300
CS =9a00 0009a000 0000ffff 00009a00
[...]
CR0=60000010 CR2=b6f3e000 CR3=01942000 CR4=000007e0
[...]
EFER=0000000000000000
with corresponding SVM error:
KVM: FAILED VMRUN WITH VMCB:
[...]
cpl: 0 efer: 0000000000001000
cr0: 0000000080010010 cr2: 00007fd7fe85bf90
cr3: 0000000187d0c000 cr4: 0000000000000020
[...]
What happens is that VCPU state right after offlinig:
CR0: 0x80050033 EFER: 0xd01 CR4: 0x7e0
-> long mode with CR3 pointing to longmode page tables
and when VCPU gets INIT/SIPI following transition happens
CR0: 0 -> 0x60000010 EFER: 0x0 CR4: 0x7e0
-> paging disabled with stale CR3
However SVM under the hood puts VCPU in Paged Real Mode*
which effectively translates CR0 0x60000010 -> 80010010 after
svm_vcpu_reset()
-> init_vmcb()
-> kvm_set_cr0()
-> svm_set_cr0()
but from kvm_set_cr0() perspective CR0: 0 -> 0x60000010
only caching bits are changed and
commit d81135a57a
("KVM: x86: do not reset mmu if CR0.CD and CR0.NW are changed")'
regressed svm_vcpu_reset() which relied on MMU being reset.
As result VMRUN after svm_vcpu_reset() tries to run
VCPU in Paged Real Mode with stale MMU context (longmode page tables),
which causes some AMD CPUs** to bail out with VMEXIT_INVALID.
Fix issue by unconditionally resetting MMU context
at init_vmcb() time.
* AMD64 Architecture Programmer’s Manual,
Volume 2: System Programming, rev: 3.25
15.19 Paged Real Mode
** Opteron 1216
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Fixes: d81135a57a
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reference SDM 28.1:
The current VPID is 0000H in the following situations:
- Outside VMX operation. (This includes operation in system-management
mode under the default treatment of SMIs and SMM with VMX operation;
see Section 34.14.)
- In VMX root operation.
- In VMX non-root operation when the “enable VPID” VM-execution control
is 0.
The VPID should never be 0000H in non-root operation when "enable VPID"
VM-execution control is 1. However, commit 34a1cd60 ("kvm: x86: vmx:
move some vmx setting from vmx_init() to hardware_setup()") remove the
codes which reserve 0000H for VMX root operation.
This patch fix it by again reserving 0000H for VMX root operation.
Cc: stable@vger.kernel.org # 3.19+
Fixes: 34a1cd60d1
Reported-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This new statistic can help diagnosing VCPUs that, for any reason,
trigger bad behavior of halt_poll_ns autotuning.
For example, say halt_poll_ns = 480000, and wakeups are spaced exactly
like 479us, 481us, 479us, 481us. Then KVM always fails polling and wastes
10+20+40+80+160+320+480 = 1110 microseconds out of every
479+481+479+481+479+481+479 = 3359 microseconds. The VCPU then
is consuming about 30% more CPU than it would use without
polling. This would show as an abnormally high number of
attempted polling compared to the successful polls.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com<
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two concepts that have some confusing naming:
1. Extended State Component numbers (currently called
XFEATURE_BIT_*)
2. Extended State Component masks (currently called XSTATE_*)
The numbers are (currently) from 0-9. State component 3 is the
bounds registers for MPX, for instance.
But when we want to enable "state component 3", we go set a bit
in XCR0. The bit we set is 1<<3. We can check to see if a
state component feature is enabled by looking at its bit.
The current 'xfeature_bit's are at best xfeature bit _numbers_.
Calling them bits is at best inconsistent with ending the enum
list with 'XFEATURES_NR_MAX'.
This patch renames the enum to be 'xfeature'. These also
happen to be what the Intel documentation calls a "state
component".
We also want to differentiate these from the "XSTATE_*" macros.
The "XSTATE_*" macros are a mask, and we rename them to match.
These macros are reasonably widely used so this patch is a
wee bit big, but this really is just a rename.
The only non-mechanical part of this is the
s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/
We need a better name for it, but that's another patch.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com
[ Ported to v4.3-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge third patch-bomb from Andrew Morton:
- even more of the rest of MM
- lib/ updates
- checkpatch updates
- small changes to a few scruffy filesystems
- kmod fixes/cleanups
- kexec updates
- a dma-mapping cleanup series from hch
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (81 commits)
dma-mapping: consolidate dma_set_mask
dma-mapping: consolidate dma_supported
dma-mapping: cosolidate dma_mapping_error
dma-mapping: consolidate dma_{alloc,free}_noncoherent
dma-mapping: consolidate dma_{alloc,free}_{attrs,coherent}
mm: use vma_is_anonymous() in create_huge_pmd() and wp_huge_pmd()
mm: make sure all file VMAs have ->vm_ops set
mm, mpx: add "vm_flags_t vm_flags" arg to do_mmap_pgoff()
mm: mark most vm_operations_struct const
namei: fix warning while make xmldocs caused by namei.c
ipc: convert invalid scenarios to use WARN_ON
zlib_deflate/deftree: remove bi_reverse()
lib/decompress_unlzma: Do a NULL check for pointer
lib/decompressors: use real out buf size for gunzip with kernel
fs/affs: make root lookup from blkdev logical size
sysctl: fix int -> unsigned long assignments in INT_MIN case
kexec: export KERNEL_IMAGE_SIZE to vmcoreinfo
kexec: align crash_notes allocation to make it be inside one physical page
kexec: remove unnecessary test in kimage_alloc_crash_control_pages()
kexec: split kexec_load syscall from kexec core code
...
There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.
And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.
The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.
Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.
Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compiler warning:
CC [M] arch/x86/kvm/emulate.o
arch/x86/kvm/emulate.c: In function "__do_insn_fetch_bytes":
arch/x86/kvm/emulate.c:814:9: warning: "linear" may be used uninitialized in this function [-Wmaybe-uninitialized]
GCC is smart enough to realize that the inlined __linearize may return before
setting the value of linear, but not smart enough to realize the same
X86EMU_CONTINUE blocks actual use of the value. However, the value of
'linear' can only be set to one value, so hoisting the one line of code
upwards makes GCC happy with the code.
Reported-by: Aruna Hewapathirane <aruna.hewapathirane@gmail.com>
Tested-by: Aruna Hewapathirane <aruna.hewapathirane@gmail.com>
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The process_smi_save_seg_64() function called only in the
process_smi_save_state_64() if the CONFIG_X86_64 is set. This
patch adds #ifdef CONFIG_X86_64 around process_smi_save_seg_64()
to prevent following warning message:
arch/x86/kvm/x86.c:5946:13: warning: ‘process_smi_save_seg_64’ defined but not used [-Wunused-function]
static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
^
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This does not show up on all compiler versions, so it sneaked into the
first 4.3 pull request. The fix is to mimic the logic of the "print
sptes" loop in the "fill array" loop. Then leaf and root can be
both initialized unconditionally.
Note that "leaf" now points to the first unused element of the array,
not the last filled element.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 asm changes from Ingo Molnar:
"The biggest changes in this cycle were:
- Revamp, simplify (and in some cases fix) Time Stamp Counter (TSC)
primitives. (Andy Lutomirski)
- Add new, comprehensible entry and exit handlers written in C.
(Andy Lutomirski)
- vm86 mode cleanups and fixes. (Brian Gerst)
- 32-bit compat code cleanups. (Brian Gerst)
The amount of simplification in low level assembly code is already
palpable:
arch/x86/entry/entry_32.S | 130 +----
arch/x86/entry/entry_64.S | 197 ++-----
but more simplifications are planned.
There's also the usual laudry mix of low level changes - see the
changelog for details"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (83 commits)
x86/asm: Drop repeated macro of X86_EFLAGS_AC definition
x86/asm/msr: Make wrmsrl() a function
x86/asm/delay: Introduce an MWAITX-based delay with a configurable timer
x86/asm: Add MONITORX/MWAITX instruction support
x86/traps: Weaken context tracking entry assertions
x86/asm/tsc: Add rdtscll() merge helper
selftests/x86: Add syscall_nt selftest
selftests/x86: Disable sigreturn_64
x86/vdso: Emit a GNU hash
x86/entry: Remove do_notify_resume(), syscall_trace_leave(), and their TIF masks
x86/entry/32: Migrate to C exit path
x86/entry/32: Remove 32-bit syscall audit optimizations
x86/vm86: Rename vm86->v86flags and v86mask
x86/vm86: Rename vm86->vm86_info to user_vm86
x86/vm86: Clean up vm86.h includes
x86/vm86: Move the vm86 IRQ definitions to vm86.h
x86/vm86: Use the normal pt_regs area for vm86
x86/vm86: Eliminate 'struct kernel_vm86_struct'
x86/vm86: Move fields from 'struct kernel_vm86_struct' to 'struct vm86'
x86/vm86: Move vm86 fields out of 'thread_struct'
...
s390: timekeeping changes, cleanups and fixes
x86: support for Hyper-V MSRs to report crashes, and a bunch of cleanups.
One interesting feature that was planned for 4.3 (emulating the local
APIC in kernel while keeping the IOAPIC and 8254 in userspace) had to
be delayed because Intel complained about my reading of the manual.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJVznW4AAoJEL/70l94x66Dt+gH/3vydhh6kv+mKhnR+kADaGfM
gaunw0CUpJLU6gkOkYOm5M32WGhsT9Hd3WtRTJO6PhSo7cQ88hMx24u4XAffoewo
Os5tDwAaHeV2enVSTri6xX8e2F2mgPDghGcYJPUBwnmMjRzZ8tj2VHUcbxqVT6Pb
pX3V8ZxOZ81+ACZU2tdNRzLUd2H1v4d74gtVS7ove1Vb0CvPOBdHf1KQuUCUa2Pi
73fvnaEuSaFYtSWZIP1PYxLnsQHpApH3Kco/5kHeqUPpYaGa/g2bnfncHRw20Svr
gb3opwbfyiq91xfGbRVR3+E63Cw4G6aTl5MDNv9UFJ+xFKuj8WJ72xXXTSwzUi4=
=HgT+
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.3-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"A very small release for x86 and s390 KVM.
- s390: timekeeping changes, cleanups and fixes
- x86: support for Hyper-V MSRs to report crashes, and a bunch of
cleanups.
One interesting feature that was planned for 4.3 (emulating the local
APIC in kernel while keeping the IOAPIC and 8254 in userspace) had to
be delayed because Intel complained about my reading of the manual"
* tag 'kvm-4.3-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
x86/kvm: Rename VMX's segment access rights defines
KVM: x86/vPMU: Fix unnecessary signed extension for AMD PERFCTRn
kvm: x86: Fix error handling in the function kvm_lapic_sync_from_vapic
KVM: s390: Fix assumption that kvm_set_irq_routing is always run successfully
KVM: VMX: drop ept misconfig check
KVM: MMU: fully check zero bits for sptes
KVM: MMU: introduce is_shadow_zero_bits_set()
KVM: MMU: introduce the framework to check zero bits on sptes
KVM: MMU: split reset_rsvds_bits_mask_ept
KVM: MMU: split reset_rsvds_bits_mask
KVM: MMU: introduce rsvd_bits_validate
KVM: MMU: move FNAME(is_rsvd_bits_set) to mmu.c
KVM: MMU: fix validation of mmio page fault
KVM: MTRR: Use default type for non-MTRR-covered gfn before WARN_ON
KVM: s390: host STP toleration for VMs
KVM: x86: clean/fix memory barriers in irqchip_in_kernel
KVM: document memory barriers for kvm->vcpus/kvm->online_vcpus
KVM: x86: remove unnecessary memory barriers for shared MSRs
KVM: move code related to KVM_SET_BOOT_CPU_ID to x86
KVM: s390: log capability enablement and vm attribute changes
...
VMX encodes access rights differently from LAR, and the latter is
most likely what x86 people think of when they think of "access
rights".
Rename them to avoid confusion.
Cc: kvm@vger.kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to AMD programmer's manual, AMD PERFCTRn is 64-bit MSR which,
unlike Intel perf counters, doesn't require signed extension. This
patch removes the unnecessary conversion in SVM vPMU code when PERFCTRn
is being updated.
Signed-off-by: Wei Huang <wei@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This fixes error handling in the function kvm_lapic_sync_from_vapic
by checking if the call to kvm_read_guest_cached has returned a
error code to signal to its caller the call to this function has
failed and due to this we must immediately return to the caller
of kvm_lapic_sync_from_vapic to avoid incorrectly call apic_set_tpc
if a error has occurred here.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When kvm_set_msr_common() handles a guest's write to
MSR_IA32_TSC_ADJUST, it will calcuate an adjustment based on the data
written by guest and then use it to adjust TSC offset by calling a
call-back adjust_tsc_offset(). The 3rd parameter of adjust_tsc_offset()
indicates whether the adjustment is in host TSC cycles or in guest TSC
cycles. If SVM TSC scaling is enabled, adjust_tsc_offset()
[i.e. svm_adjust_tsc_offset()] will first scale the adjustment;
otherwise, it will just use the unscaled one. As the MSR write here
comes from the guest, the adjustment is in guest TSC cycles. However,
the current kvm_set_msr_common() uses it as a value in host TSC
cycles (by using true as the 3rd parameter of adjust_tsc_offset()),
which can result in an incorrect adjustment of TSC offset if SVM TSC
scaling is enabled. This patch fixes this problem.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Cc: stable@vger.linux.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The recent BlackHat 2015 presentation "The Memory Sinkhole"
mentions that the IDT limit is zeroed on entry to SMM.
This is not documented, and must have changed some time after 2010
(see http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf).
KVM was not doing it, but the fix is easy.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The logic used to check ept misconfig is completely contained in common
reserved bits check for sptes, so it can be removed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The #PF with PFEC.RSV = 1 is designed to speed MMIO emulation, however,
it is possible that the RSV #PF is caused by real BUG by mis-configure
shadow page table entries
This patch enables full check for the zero bits on shadow page table
entries (which includes not only bits reserved by the hardware, but also
bits that will never be set in the SPTE), then dump the shadow page table
hierarchy.
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We have the same data struct to check reserved bits on guest page tables
and shadow page tables, split is_rsvd_bits_set() so that the logic can be
shared between these two paths
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We have abstracted the data struct and functions which are used to check
reserved bit on guest page tables, now we extend the logic to check
zero bits on shadow page tables
The zero bits on sptes include not only reserved bits on hardware but also
the bits that SPTEs willnever use. For example, shadow pages will never
use GB pages unless the guest uses them too.
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since shadow ept page tables and Intel nested guest page tables have the
same format, split reset_rsvds_bits_mask_ept so that the logic can be
reused by later patches which check zero bits on sptes
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since softmmu & AMD nested shadow page tables and guest page tables have
the same format, split reset_rsvds_bits_mask so that the logic can be
reused by later patches which check zero bits on sptes
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These two fields, rsvd_bits_mask and bad_mt_xwr, in "struct kvm_mmu" are
used to check if reserved bits set on guest ptes, move them to a data
struct so that the approach can be applied to check host shadow page
table entries as well
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
FNAME(is_rsvd_bits_set) does not depend on guest mmu mode, move it
to mmu.c to stop being compiled multiple times
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We got the bug that qemu complained with "KVM: unknown exit, hardware
reason 31" and KVM shown these info:
[84245.284948] EPT: Misconfiguration.
[84245.285056] EPT: GPA: 0xfeda848
[84245.285154] ept_misconfig_inspect_spte: spte 0x5eaef50107 level 4
[84245.285344] ept_misconfig_inspect_spte: spte 0x5f5fadc107 level 3
[84245.285532] ept_misconfig_inspect_spte: spte 0x5141d18107 level 2
[84245.285723] ept_misconfig_inspect_spte: spte 0x52e40dad77 level 1
This is because we got a mmio #PF and the handler see the mmio spte becomes
normal (points to the ram page)
However, this is valid after introducing fast mmio spte invalidation which
increases the generation-number instead of zapping mmio sptes, a example
is as follows:
1. QEMU drops mmio region by adding a new memslot
2. invalidate all mmio sptes
3.
VCPU 0 VCPU 1
access the invalid mmio spte
access the region originally was MMIO before
set the spte to the normal ram map
mmio #PF
check the spte and see it becomes normal ram mapping !!!
This patch fixes the bug just by dropping the check in mmio handler, it's
good for backport. Full check will be introduced in later patches
Reported-by: Pavel Shirshov <ru.pchel@gmail.com>
Tested-by: Pavel Shirshov <ru.pchel@gmail.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The patch was munged on commit to re-order these tests resulting in
excessive warnings when trying to do device assignment. Return to
original ordering: https://lkml.org/lkml/2015/7/15/769
Fixes: 3e5d2fdced ("KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type")
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The patch was munged on commit to re-order these tests resulting in
excessive warnings when trying to do device assignment. Return to
original ordering: https://lkml.org/lkml/2015/7/15/769
Fixes: 3e5d2fdced ("KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type")
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The memory barriers are trying to protect against concurrent RCU-based
interrupt injection, but the IRQ routing table is not valid at the time
kvm->arch.vpic is written. Fix this by writing kvm->arch.vpic last.
kvm_destroy_pic then need not set kvm->arch.vpic to NULL; modify it
to take a struct kvm_pic* and reuse it if the IOAPIC creation fails.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no smp_rmb matching the smp_wmb. shared_msr_update is called from
hardware_enable, which in turn is called via on_each_cpu. on_each_cpu
and must imply a read memory barrier (on x86 the rmb is achieved simply
through asm volatile in native_apic_mem_write).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can disable CD unconditionally when there is no assigned device.
KVM now forces guest PAT to all-writeback in that case, so it makes
sense to also force CR0.CD=0.
When there are assigned devices, emulate cache-disabled operation
through the page tables. This behavior is consistent with VMX
microcode, where CD/NW are not touched by vmentry/vmexit. However,
keep this dependent on the quirk because OVMF enables the caches
too late.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow a nested hypervisor to single step its guests.
Signed-off-by: Mihai Donțu <mihai.dontu@gmail.com>
[Fix overlong line. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sending of notification is done by exiting vcpu to user space
if KVM_REQ_HV_CRASH is enabled for vcpu. At exit to user space
the kvm_run structure contains system_event with type
KVM_SYSTEM_EVENT_CRASH to notify about guest crash occurred.
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Peter Hornyack <peterhornyack@google.com>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Gleb Natapov <gleb@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch introduce Hyper-V related source code file - hyperv.c and
per vm and per vcpu hyperv context structures.
All Hyper-V MSR's and hypercall code moved into hyperv.c.
All Hyper-V kvm/vcpu fields moved into appropriate hyperv context
structures. Copyrights and authors information copied from x86.c
to hyperv.c.
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Peter Hornyack <peterhornyack@google.com>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Gleb Natapov <gleb@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to Intel SDM several checks must be applied for memory operands
of VMX instructions.
Long mode: #GP(0) or #SS(0) depending on the segment must be thrown
if the memory address is in a non-canonical form.
Protected mode, checks in chronological order:
- The segment type must be checked with access type (read or write) taken
into account.
For write access: #GP(0) must be generated if the destination operand
is located in a read-only data segment or any code segment.
For read access: #GP(0) must be generated if if the source operand is
located in an execute-only code segment.
- Usability of the segment must be checked. #GP(0) or #SS(0) depending on the
segment must be thrown if the segment is unusable.
- Limit check. #GP(0) or #SS(0) depending on the segment must be
thrown if the memory operand effective address is outside the segment
limit.
Signed-off-by: Eugene Korenevsky <ekorenevsky@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make them clearly architecture-dependent; the capability is valid for
all architectures, but the argument is not.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
OVMF depends on WB to boot fast, because it only clears caches after
it has set up MTRRs---which is too late.
Let's do writeback if CR0.CD is set to make it happy, similar to what
SVM is already doing.
Signed-off-by: Xiao Guangrong <guangrong.xiao@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The logic of the disabled_quirks field usually results in a double
negation. Wrap it in a simple function that checks the bit and
negates it.
Based on a patch from Xiao Guangrong.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mtrr_get_guest_memory_type never returns -1 which is implied
in the current code since if @type = -1 (means no MTRR contains the
range), iter.partial_map must be true
Simplify the code to indicate this fact
Signed-off-by: Xiao Guangrong <guangrong.xiao@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently code uses default memory type if MTRR is fully disabled,
fix it by using UC instead.
Signed-off-by: Xiao Guangrong <guangrong.xiao@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently guest MTRR is avoided if kvm_is_reserved_pfn returns true.
However, the guest could prefer a different page type than UC for
such pages. A good example is that pass-throughed VGA frame buffer is
not always UC as host expected.
This patch enables full use of virtual guest MTRRs.
Suggested-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Tested-by: Joerg Roedel <jroedel@suse.de> (on AMD)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When hardware supports the g_pat VMCB field, we can use it for emulating
the PAT configuration that the guest configures by writing to the
corresponding MSR.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, NPT page attributes are not used, and the final page
attribute depends solely on gPAT (which however is not synced
correctly), the guest MTRRs and the guest page attributes.
However, we can do better by mimicking what is done for VMX.
In the absence of PCI passthrough, the guest PAT can be ignored
and the page attributes can be just WB. If passthrough is being
used, instead, keep respecting the guest PAT, and emulate the guest
MTRRs through the PAT field of the nested page tables.
The only snag is that WP memory cannot be emulated correctly,
because Linux's default PAT setting only includes the other types.
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If there are no assigned devices, the guest PAT are not providing
any useful information and can be overridden to writeback; VMX
always does this because it has the "IPAT" bit in its extended
page table entries, but SVM does not have anything similar.
Hook into VFIO and legacy device assignment so that they
provide this information to KVM.
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
fpu_activate is called outside of vcpu_load(), which means it should not
touch VMCS, but fpu_activate needs to. Avoid the call by moving it to a
point where we know that the guest needs eager FPU and VMCS is loaded.
This will get rid of the following trace
vmwrite error: reg 6800 value 0 (err 1)
[<ffffffff8162035b>] dump_stack+0x19/0x1b
[<ffffffffa046c701>] vmwrite_error+0x2c/0x2e [kvm_intel]
[<ffffffffa045f26f>] vmcs_writel+0x1f/0x30 [kvm_intel]
[<ffffffffa04617e5>] vmx_fpu_activate.part.61+0x45/0xb0 [kvm_intel]
[<ffffffffa0461865>] vmx_fpu_activate+0x15/0x20 [kvm_intel]
[<ffffffffa0560b91>] kvm_arch_vcpu_create+0x51/0x70 [kvm]
[<ffffffffa0548011>] kvm_vm_ioctl+0x1c1/0x760 [kvm]
[<ffffffff8118b55a>] ? handle_mm_fault+0x49a/0xec0
[<ffffffff811e47d5>] do_vfs_ioctl+0x2e5/0x4c0
[<ffffffff8127abbe>] ? file_has_perm+0xae/0xc0
[<ffffffff811e4a51>] SyS_ioctl+0xa1/0xc0
[<ffffffff81630949>] system_call_fastpath+0x16/0x1b
(Note: we also unconditionally activate FPU in vmx_vcpu_reset(), so the
removed code added nothing.)
Fixes: c447e76b4c ("kvm/fpu: Enable eager restore kvm FPU for MPX")
Cc: <stable@vger.kernel.org>
Reported-by: Vlastimil Holer <vlastimil.holer@gmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The call to get_mt_mask was really using kvm_is_reserved_pfn to
detect an MMIO-backed page. In this case, we want "false" to be
returned for the zero page.
Reintroduce a separate kvm_is_mmio_pfn predicate for this use
only.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
rdtsc_barrier(); rdtsc() is an unnecessary mouthful and requires
more thought than should be necessary. Add an rdtsc_ordered()
helper and replace the trivial call sites with it.
This should not change generated code. The duplication of the
fence asm is temporary.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/dddbf98a2af53312e9aa73a5a2b1622fe5d6f52b.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there is no paravirt TSC, the "native" is
inappropriate. The function does RDTSC, so give it the obvious
name: rdtsc().
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/fd43e16281991f096c1e4d21574d9e1402c62d39.1434501121.git.luto@kernel.org
[ Ported it to v4.2-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the ->read_tsc() paravirt hook is gone, rdtscll() is
just a wrapper around native_read_tsc(). Unwrap it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/d2449ae62c1b1fb90195bcfb19ef4a35883a04dc.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only caller was KVM's read_tsc(). The only difference
between vget_cycles() and native_read_tsc() was that
vget_cycles() returned zero instead of crashing on TSC-less
systems. KVM already checks vclock_mode() before calling that
function, so the extra check is unnecessary. Also, KVM
(host-side) requires the TSC to exist.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/20615df14ae2eb713ea7a5f5123c1dc4c7ca993d.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 609e36d372 ("KVM: x86: pass host_initiated to functions that
read MSRs") modified kvm_get_msr_common function to use msr_info->data
instead of data but missed one occurrence. Replace it and remove the
unused local variable.
Fixes: 609e36d372 ("KVM: x86: pass host_initiated to functions that
read MSRs")
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Memory-mapped LVT0 register already contains the new value when APICv
traps so we can't directly detect a change.
Memorize a bit we are interested in to enable legacy NMI watchdog.
Suggested-by: Yoshida Nobuo <yoshida.nb@ncos.nec.co.jp>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Legacy NMI watchdog didn't work after migration/resume, because
vapics_in_nmi_mode was left at 0.
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Writes were a bit racy, but hard to turn into a bug at the same time.
(Particularly because modern Linux doesn't use this feature anymore.)
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[Actually the next patch makes it much, much easier to trigger the race
so I'm including this one for stable@ as well. - Paolo]
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Main excitement here is Peter Zijlstra's lockless rbtree optimization to
speed module address lookup. He found some abusers of the module lock
doing that too.
A little bit of parameter work here too; including Dan Streetman's breaking
up the big param mutex so writing a parameter can load another module (yeah,
really). Unfortunately that broke the usual suspects, !CONFIG_MODULES and
!CONFIG_SYSFS, so those fixes were appended too.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
tLdh/a9GiCitqS0bT7GE
=tWPQ
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Main excitement here is Peter Zijlstra's lockless rbtree optimization
to speed module address lookup. He found some abusers of the module
lock doing that too.
A little bit of parameter work here too; including Dan Streetman's
breaking up the big param mutex so writing a parameter can load
another module (yeah, really). Unfortunately that broke the usual
suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
modules: only use mod->param_lock if CONFIG_MODULES
param: fix module param locks when !CONFIG_SYSFS.
rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
module: add per-module param_lock
module: make perm const
params: suppress unused variable error, warn once just in case code changes.
modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
kernel/module.c: avoid ifdefs for sig_enforce declaration
kernel/workqueue.c: remove ifdefs over wq_power_efficient
kernel/params.c: export param_ops_bool_enable_only
kernel/params.c: generalize bool_enable_only
kernel/module.c: use generic module param operaters for sig_enforce
kernel/params: constify struct kernel_param_ops uses
sysfs: tightened sysfs permission checks
module: Rework module_addr_{min,max}
module: Use __module_address() for module_address_lookup()
module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
module: Optimize __module_address() using a latched RB-tree
rbtree: Implement generic latch_tree
seqlock: Introduce raw_read_seqcount_latch()
...
"monitonic raw". Also some enhancements to make the ring buffer even
faster. But the biggest and most noticeable change is the renaming of
the ftrace* files, structures and variables that have to deal with
trace events.
Over the years I've had several developers tell me about their confusion
with what ftrace is compared to events. Technically, "ftrace" is the
infrastructure to do the function hooks, which include tracing and also
helps with live kernel patching. But the trace events are a separate
entity altogether, and the files that affect the trace events should
not be named "ftrace". These include:
include/trace/ftrace.h -> include/trace/trace_events.h
include/linux/ftrace_event.h -> include/linux/trace_events.h
Also, functions that are specific for trace events have also been renamed:
ftrace_print_*() -> trace_print_*()
(un)register_ftrace_event() -> (un)register_trace_event()
ftrace_event_name() -> trace_event_name()
ftrace_trigger_soft_disabled()-> trace_trigger_soft_disabled()
ftrace_define_fields_##call() -> trace_define_fields_##call()
ftrace_get_offsets_##call() -> trace_get_offsets_##call()
Structures have been renamed:
ftrace_event_file -> trace_event_file
ftrace_event_{call,class} -> trace_event_{call,class}
ftrace_event_buffer -> trace_event_buffer
ftrace_subsystem_dir -> trace_subsystem_dir
ftrace_event_raw_##call -> trace_event_raw_##call
ftrace_event_data_offset_##call-> trace_event_data_offset_##call
ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call
And a few various variables and flags have also been updated.
This has been sitting in linux-next for some time, and I have not heard
a single complaint about this rename breaking anything. Mostly because
these functions, variables and structures are mostly internal to the
tracing system and are seldom (if ever) used by anything external to that.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJViYhVAAoJEEjnJuOKh9ldcJ0IAI+mytwoMAN/CWDE8pXrTrgs
aHlcr1zorSzZ0Lq6lKsWP+V0VGVhP8KWO16vl35HaM5ZB9U+cDzWiGobI8JTHi/3
eeTAPTjQdgrr/L+ZO1ApzS1jYPhN3Xi5L7xublcYMJjKfzU+bcYXg/x8gRt0QbG3
S9QN/kBt0JIIjT7McN64m5JVk2OiU36LxXxwHgCqJvVCPHUrriAdIX7Z5KRpEv13
zxgCN4d7Jiec/FsMW8dkO0vRlVAvudZWLL7oDmdsvNhnLy8nE79UOeHos2c1qifQ
LV4DeQ+2Hlu7w9wxixHuoOgNXDUEiQPJXzPc/CuCahiTL9N/urQSGQDoOVMltR4=
=hkdz
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This patch series contains several clean ups and even a new trace
clock "monitonic raw". Also some enhancements to make the ring buffer
even faster. But the biggest and most noticeable change is the
renaming of the ftrace* files, structures and variables that have to
deal with trace events.
Over the years I've had several developers tell me about their
confusion with what ftrace is compared to events. Technically,
"ftrace" is the infrastructure to do the function hooks, which include
tracing and also helps with live kernel patching. But the trace
events are a separate entity altogether, and the files that affect the
trace events should not be named "ftrace". These include:
include/trace/ftrace.h -> include/trace/trace_events.h
include/linux/ftrace_event.h -> include/linux/trace_events.h
Also, functions that are specific for trace events have also been renamed:
ftrace_print_*() -> trace_print_*()
(un)register_ftrace_event() -> (un)register_trace_event()
ftrace_event_name() -> trace_event_name()
ftrace_trigger_soft_disabled() -> trace_trigger_soft_disabled()
ftrace_define_fields_##call() -> trace_define_fields_##call()
ftrace_get_offsets_##call() -> trace_get_offsets_##call()
Structures have been renamed:
ftrace_event_file -> trace_event_file
ftrace_event_{call,class} -> trace_event_{call,class}
ftrace_event_buffer -> trace_event_buffer
ftrace_subsystem_dir -> trace_subsystem_dir
ftrace_event_raw_##call -> trace_event_raw_##call
ftrace_event_data_offset_##call-> trace_event_data_offset_##call
ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call
And a few various variables and flags have also been updated.
This has been sitting in linux-next for some time, and I have not
heard a single complaint about this rename breaking anything. Mostly
because these functions, variables and structures are mostly internal
to the tracing system and are seldom (if ever) used by anything
external to that"
* tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
ring_buffer: Allow to exit the ring buffer benchmark immediately
ring-buffer-benchmark: Fix the wrong type
ring-buffer-benchmark: Fix the wrong param in module_param
ring-buffer: Add enum names for the context levels
ring-buffer: Remove useless unused tracing_off_permanent()
ring-buffer: Give NMIs a chance to lock the reader_lock
ring-buffer: Add trace_recursive checks to ring_buffer_write()
ring-buffer: Allways do the trace_recursive checks
ring-buffer: Move recursive check to per_cpu descriptor
ring-buffer: Add unlikelys to make fast path the default
tracing: Rename ftrace_get_offsets_##call() to trace_event_get_offsets_##call()
tracing: Rename ftrace_define_fields_##call() to trace_event_define_fields_##call()
tracing: Rename ftrace_event_type_funcs_##call to trace_event_type_funcs_##call
tracing: Rename ftrace_data_offset_##call to trace_event_data_offset_##call
tracing: Rename ftrace_raw_##call event structures to trace_event_raw_##call
tracing: Rename ftrace_trigger_soft_disabled() to trace_trigger_soft_disabled()
tracing: Rename FTRACE_EVENT_FL_* flags to EVENT_FILE_FL_*
tracing: Rename struct ftrace_subsystem_dir to trace_subsystem_dir
tracing: Rename ftrace_event_name() to trace_event_name()
tracing: Rename FTRACE_MAX_EVENT to TRACE_EVENT_TYPE_MAX
...
for silicon that no one owns: these are really new features for
everyone.
* ARM: several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the VFIO
integration.
* s390: Some fixes/refactorings/optimizations, plus support for
2GB pages.
* x86: 1) host and guest support for marking kvmclock as a stable
scheduler clock. 2) support for write combining. 3) support for
system management mode, needed for secure boot in guests. 4) a bunch
of cleanups required for 2+3. 5) support for virtualized performance
counters on AMD; 6) legacy PCI device assignment is deprecated and
defaults to "n" in Kconfig; VFIO replaces it. On top of this there are
also bug fixes and eager FPU context loading for FPU-heavy guests.
* Common code: Support for multiple address spaces; for now it is
used only for x86 SMM but the s390 folks also have plans.
There are some x86 conflicts, one with the rc8 pull request and
the rest with Ingo's FPU rework.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJViYzhAAoJEL/70l94x66Dda0H/1IepMbfEy+o849d5G71fNTs
F8Y8qUP2GZuL7T53FyFUGSBw+AX7kimu9ia4gR/PmDK+QYsdosYeEjwlsolZfTBf
sHuzNtPoJhi5o1o/ur4NGameo0WjGK8f1xyzr+U8z74QDQyQv/QYCdK/4isp4BJL
ugHNHkuROX6Zng4i7jc9rfaSRg29I3GBxQUYpMkEnD3eMYMUBWGm6Rs8pHgGAMvL
vqzntgW00WNxehTqcAkmD/Wv+txxhkvIadZnjgaxH49e9JeXeBKTIR5vtb7Hns3s
SuapZUyw+c95DIipXq4EznxxaOrjbebOeFgLCJo8+XMXZum8RZf/ob24KroYad0=
=YsAR
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first batch of KVM updates from Paolo Bonzini:
"The bulk of the changes here is for x86. And for once it's not for
silicon that no one owns: these are really new features for everyone.
Details:
- ARM:
several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the
VFIO integration.
- s390:
Some fixes/refactorings/optimizations, plus support for 2GB
pages.
- x86:
* host and guest support for marking kvmclock as a stable
scheduler clock.
* support for write combining.
* support for system management mode, needed for secure boot in
guests.
* a bunch of cleanups required for the above
* support for virtualized performance counters on AMD
* legacy PCI device assignment is deprecated and defaults to "n"
in Kconfig; VFIO replaces it
On top of this there are also bug fixes and eager FPU context
loading for FPU-heavy guests.
- Common code:
Support for multiple address spaces; for now it is used only for
x86 SMM but the s390 folks also have plans"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
KVM: s390: clear floating interrupt bitmap and parameters
KVM: x86/vPMU: Enable PMU handling for AMD PERFCTRn and EVNTSELn MSRs
KVM: x86/vPMU: Implement AMD vPMU code for KVM
KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch
KVM: x86/vPMU: introduce kvm_pmu_msr_idx_to_pmc
KVM: x86/vPMU: reorder PMU functions
KVM: x86/vPMU: whitespace and stylistic adjustments in PMU code
KVM: x86/vPMU: use the new macros to go between PMC, PMU and VCPU
KVM: x86/vPMU: introduce pmu.h header
KVM: x86/vPMU: rename a few PMU functions
KVM: MTRR: do not map huge page for non-consistent range
KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type
KVM: MTRR: introduce mtrr_for_each_mem_type
KVM: MTRR: introduce fixed_mtrr_addr_* functions
KVM: MTRR: sort variable MTRRs
KVM: MTRR: introduce var_mtrr_range
KVM: MTRR: introduce fixed_mtrr_segment table
KVM: MTRR: improve kvm_mtrr_get_guest_memory_type
KVM: MTRR: do not split 64 bits MSR content
KVM: MTRR: clean up mtrr default type
...
This patch enables AMD guest VM to access (R/W) PMU related MSRs, which
include PERFCTR[0..3] and EVNTSEL[0..3].
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch replaces the empty AMD vPMU functions (in pmu_amd.c) with real
implementation.
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch defines a new function pointer struct (kvm_pmu_ops) to
support vPMU for both Intel and AMD. The functions pointers defined in
this new struct will be linked with Intel and AMD functions later. In the
meanwhile the struct that maps from event_sel bits to PERF_TYPE_HARDWARE
events is renamed and moved from Intel specific code to kvm_host.h as a
common struct.
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 FPU updates from Ingo Molnar:
"This tree contains two main changes:
- The big FPU code rewrite: wide reaching cleanups and reorganization
that pulls all the FPU code together into a clean base in
arch/x86/fpu/.
The resulting code is leaner and faster, and much easier to
understand. This enables future work to further simplify the FPU
code (such as removing lazy FPU restores).
By its nature these changes have a substantial regression risk: FPU
code related bugs are long lived, because races are often subtle
and bugs mask as user-space failures that are difficult to track
back to kernel side backs. I'm aware of no unfixed (or even
suspected) FPU related regression so far.
- MPX support rework/fixes. As this is still not a released CPU
feature, there were some buglets in the code - should be much more
robust now (Dave Hansen)"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (250 commits)
x86/fpu: Fix double-increment in setup_xstate_features()
x86/mpx: Allow 32-bit binaries on 64-bit kernels again
x86/mpx: Do not count MPX VMAs as neighbors when unmapping
x86/mpx: Rewrite the unmap code
x86/mpx: Support 32-bit binaries on 64-bit kernels
x86/mpx: Use 32-bit-only cmpxchg() for 32-bit apps
x86/mpx: Introduce new 'directory entry' to 'addr' helper function
x86/mpx: Add temporary variable to reduce masking
x86: Make is_64bit_mm() widely available
x86/mpx: Trace allocation of new bounds tables
x86/mpx: Trace the attempts to find bounds tables
x86/mpx: Trace entry to bounds exception paths
x86/mpx: Trace #BR exceptions
x86/mpx: Introduce a boot-time disable flag
x86/mpx: Restrict the mmap() size check to bounds tables
x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK
x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
x86/mpx: Use the new get_xsave_field_ptr()API
x86/fpu/xstate: Wrap get_xsave_addr() to make it safer
x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions
...
This will be used for private function used by AMD- and Intel-specific
PMU implementations.
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on Intel's SDM, mapping huge page which do not have consistent
memory cache for each 4k page will cause undefined behavior
In order to avoiding this kind of undefined behavior, we force to use
4k pages under this case
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mtrr_for_each_mem_type() is ready now, use it to simplify
kvm_mtrr_get_guest_memory_type()
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It walks all MTRRs and gets all the memory cache type setting for the
specified range also it checks if the range is fully covered by MTRRs
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Adjust for range_size->range_shift change. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Two functions are introduced:
- fixed_mtrr_addr_to_seg() translates the address to the fixed
MTRR segment
- fixed_mtrr_addr_seg_to_range_index() translates the address to
the index of kvm_mtrr.fixed_ranges[]
They will be used in the later patch
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Adjust for range_size->range_shift change. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sort all valid variable MTRRs based on its base address, it will help us to
check a range to see if it's fully contained in variable MTRRs
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Fix list insertion sort, simplify var_mtrr_range_is_valid to just
test the V bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It gets the range for the specified variable MTRR
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Simplify boolean operations. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This table summarizes the information of fixed MTRRs and introduce some APIs
to abstract its operation which helps us to clean up the code and will be
used in later patches
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Change range_size to range_shift, in order to avoid udivdi3 errors.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- kvm_mtrr_get_guest_memory_type() only checks one page in MTRRs so
that it's unnecessary to check to see if the range is partially
covered in MTRR
- optimize the check of overlap memory type and add some comments
to explain the precedence
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Variable MTRR MSRs are 64 bits which are directly accessed with full length,
no reason to split them to two 32 bits
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mtrr->enable, omit the decode/code workload and get rid of
all the hard code
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vMTRR does not depend on any host MTRR feature and fixed MTRRs have always
been implemented, so drop this field
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_MTRRcap is a MTRR msr so move the handler to the common place, also
add some comments to make the hard code more readable
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MTRR code locates in x86.c and mmu.c so that move them to a separate file to
make the organization more clearer and it will be the place where we fully
implement vMTRR
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, CR0.CD is not checked when we virtualize memory cache type for
noncoherent_dma guests, this patch fixes it by :
- setting UC for all memory if CR0.CD = 1
- zapping all the last sptes in MMU if CR0.CD is changed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If hardware doesn't support DecodeAssist - a feature that provides
more information about the intercept in the VMCB, KVM decodes the
instruction and then updates the next_rip vmcb control field.
However, NRIP support itself depends on cpuid Fn8000_000A_EDX[NRIPS].
Since skip_emulated_instruction() doesn't verify nrip support
before accepting control.next_rip as valid, avoid writing this
field if support isn't present.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
lapic.timer_mode was not properly initialized after migration, which
broke few useful things, like login, by making every sleep eternal.
Fix this by calling apic_update_lvtt in kvm_apic_post_state_restore.
There are other slowpaths that update lvtt, so this patch makes sure
something similar doesn't happen again by calling apic_update_lvtt
after every modification.
Cc: stable@vger.kernel.org
Fixes: f30ebc312c ("KVM: x86: optimize some accesses to LVTT and SPIV")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Fix this compile issue with gcc-4.4.4:
arch/x86/kvm/mmu.c: In function 'kvm_mmu_pte_write':
arch/x86/kvm/mmu.c:4256: error: unknown field 'cr0_wp' specified in initializer
arch/x86/kvm/mmu.c:4257: error: unknown field 'cr4_pae' specified in initializer
arch/x86/kvm/mmu.c:4257: warning: excess elements in union initializer
...
gcc-4.4.4 (at least) has issues when using anonymous unions in
initializers.
Fixes: edc90b7dc4 ("KVM: MMU: fix SMAP virtualization")
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Follow up to commit e194bbdf36.
Suggested-by: Bandan Das <bsd@redhat.com>
Suggested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... and we're done. :)
Because SMBASE is usually relocated above 1M on modern chipsets, and
SMM handlers might indeed rely on 4G segment limits, we only expose it
if KVM is able to run the guest in big real mode. This includes any
of VMX+emulate_invalid_guest_state, VMX+unrestricted_guest, or SVM.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is now very simple to do. The only interesting part is a simple
trick to find the right memslot in gfn_to_rmap, retrieving the address
space from the spte role word. The same trick is used in the auditing
code.
The comment on top of union kvm_mmu_page_role has been stale forever,
so remove it. Speaking of stale code, remove pad_for_nice_hex_output
too: it was splitting the "access" bitfield across two bytes and thus
had effectively turned into pad_for_ugly_hex_output.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch has no semantic change, but it prepares for the introduction
of a second address space for system management mode.
A new function x86_set_memory_region (and the "slots_lock taken"
counterpart __x86_set_memory_region) is introduced in order to
operate on all address spaces when adding or deleting private
memory slots.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We need to hide SMRAM from guests not running in SMM. Therefore,
all uses of kvm_read_guest* and kvm_write_guest* must be changed to
check whether the VCPU is in system management mode and use a
different set of memslots. Switch from kvm_* to the newly-introduced
kvm_vcpu_*, which call into kvm_arch_vcpu_memslots_id.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is always available (with one exception in the auditing code),
and with the same auditing exception the level was coming from
sp->role.level.
Later, the spte's role will also be used to look up the right memslots
array.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The big ugly one. This patch adds support for switching in and out of
system management mode, respectively upon receiving KVM_REQ_SMI and upon
executing a RSM instruction. Both 32- and 64-bit formats are supported
for the SMM state save area.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not process INITs immediately while in system management mode, keep
it instead in apic->pending_events. Tell userspace if an INIT is
pending when they issue GET_VCPU_EVENTS, and similarly handle the
new field in SET_VCPU_EVENTS.
Note that the same treatment should be done while in VMX non-root mode.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds the interface between x86.c and the emulator: the
SMBASE register, a new emulator flag, the RSM instruction. It also
adds a new request bit that will be used by the KVM_SMI ioctl.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch includes changes to the external API for SMM support.
Userspace can predicate the availability of the new fields and
ioctls on a new capability, KVM_CAP_X86_SMM, which is added at the end
of the patch series.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hflags field will contain information about system management mode
and will be useful for the emulator. Pass the entire field rather than
just the guest-mode information.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SMBASE is only readable from SMM for the VCPU, but it must be always
accessible if userspace is accessing it. Thus, all functions that
read MSRs are changed to accept a struct msr_data; the host_initiated
and index fields are pre-initialized, while the data field is filled
on return.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We will want to filter away MSR_IA32_SMBASE from the emulated_msrs if
the host CPU does not support SMM virtualization. Introduce the
logic to do that, and also move paravirt MSRs to emulated_msrs for
simplicity and to get rid of KVM_SAVE_MSRS_BEGIN.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Malicious (or egregiously buggy) userspace can trigger it, but it
should never happen in normal operation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VFIO has proved itself a much better option than KVM's built-in
device assignment. It is mature, provides better isolation because
it enforces ACS, and even the userspace code is being tested on
a wider variety of hardware these days than the legacy support.
Disable legacy device assignment by default.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize kvmclock base, on kvmclock system MSR write time,
so that the guest sees kvmclock counting from zero.
This matches baremetal behaviour when kvmclock in guest
sets sched clock stable.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
[Remove unnecessary comment. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
arch/x86/kvm/mmu.c: In function 'kvm_mmu_pte_write':
arch/x86/kvm/mmu.c:4256: error: unknown field 'cr0_wp' specified in initializer
arch/x86/kvm/mmu.c:4257: error: unknown field 'cr4_pae' specified in initializer
arch/x86/kvm/mmu.c:4257: warning: excess elements in union initializer
...
gcc-4.4.4 (at least) has issues when using anonymous unions in
initializers.
Fixes: edc90b7dc4 ("KVM: MMU: fix SMAP virtualization")
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no reason to deny this feature to guests. We are emulating the
APIC timer, thus are exposing it without stops in power-saving states.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Logical x2APIC stops working if we rewrite it with zeros.
The best references are SDM April 2015: 10.12.10.1 Logical Destination
Mode in x2APIC Mode
[...], the LDR are initialized by hardware based on the value of
x2APIC ID upon x2APIC state transitions.
and SDM April 2015: 10.12.10.2 Deriving Logical x2APIC ID from the Local
x2APIC ID
The LDR initialization occurs whenever the x2APIC mode is enabled
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SDM April 2015, 10.12.5 State Changes From xAPIC Mode to x2APIC Mode
• Any APIC ID value written to the memory-mapped local APIC ID register
is not preserved.
Fix it by sourcing vcpu_id (= initial APIC ID) instead of memory-mapped
APIC ID. Proper use of apic functions would result in two calls to
recalculate_apic_map(), so this patch makes a new helper.
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The periodic kvmclock sync can be an undesired source of latencies.
When running cyclictest on a guest, a latency spike is visible.
With kvmclock periodic sync disabled, the spike is gone.
Guests should use ntp which means the propagations of ntp corrections
from the host clock are unnecessary.
v2:
-> Make parameter read-only (Radim)
-> Return early on kvmclock_sync_fn (Andrew)
Reported-and-tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for multiple address spaces this way, since a VCPU is not available
where unaccount_shadowed is called. We will get to the right kvm_memslots
struct through the role field in struct kvm_mmu_page.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The memory slot is already available from gfn_to_memslot_dirty_bitmap.
Isn't it a shame to look it up again? Plus, it makes gfn_to_page_many_atomic
agnostic of multiple VCPU address spaces.
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This lets the function access the new memory slot without going through
kvm_memslots and id_to_memslot. It will simplify the code when more
than one address space will be supported.
Unfortunately, the "const"ness of the new argument must be casted
away in two places. Fixing KVM to accept const struct kvm_memory_slot
pointers would require modifications in pretty much all architectures,
and is left for later.
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most code already uses consts for the struct kernel_param_ops,
sweep the kernel for the last offending stragglers. Other than
include/linux/moduleparam.h and kernel/params.c all other changes
were generated with the following Coccinelle SmPL patch. Merge
conflicts between trees can be handled with Coccinelle.
In the future git could get Coccinelle merge support to deal with
patch --> fail --> grammar --> Coccinelle --> new patch conflicts
automatically for us on patches where the grammar is available and
the patch is of high confidence. Consider this a feature request.
Test compiled on x86_64 against:
* allnoconfig
* allmodconfig
* allyesconfig
@ const_found @
identifier ops;
@@
const struct kernel_param_ops ops = {
};
@ const_not_found depends on !const_found @
identifier ops;
@@
-struct kernel_param_ops ops = {
+const struct kernel_param_ops ops = {
};
Generated-by: Coccinelle SmPL
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Junio C Hamano <gitster@pobox.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: cocci@systeme.lip6.fr
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Bring the __copy_fpstate_to_fpregs() and copy_fpstate_to_fpregs() functions
in line with the parameter passing convention of other kernel-to-FPU-registers
copying functions: pass around an in-memory FPU register state pointer,
instead of struct fpu *.
NOTE: This patch also changes the assembly constraint of the FXSAVE-leak
workaround from 'fpu->fpregs_active' to 'fpstate' - but that is fine,
as we only need a valid memory address there for the FILDL instruction.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bring the __copy_fpstate_to_fpregs() and copy_fpstate_to_fpregs() functions
in line with the naming of other kernel-to-FPU-registers copying functions.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Architecture-specific helpers are not supposed to muck with
struct kvm_userspace_memory_region contents. Add const to
enforce this.
In order to eliminate the only write in __kvm_set_memory_region,
the cleaning of deleted slots is pulled up from update_memslots
to __kvm_set_memory_region.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_memslots provides lockdep checking. Use it consistently instead of
explicit dereferencing of kvm->memslots.
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The MPX feature requires eager KVM FPU restore support. We have verified
that MPX cannot work correctly with the current lazy KVM FPU restore
mechanism. Eager KVM FPU restore should be enabled if the MPX feature is
exposed to VM.
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Signed-off-by: Liang Li <liang.z.li@intel.com>
[Also activate the FPU on AMD processors. - Paolo]
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gfn_to_pfn_async is used in just one place, and because of x86-specific
treatment that place will need to look at the memory slot. Hence inline
it into try_async_pf and export __gfn_to_pfn_memslot.
The patch also switches the subsequent call to gfn_to_pfn_prot to use
__gfn_to_pfn_memslot. This is a small optimization. Finally, remove
the now-unused async argument of __gfn_to_pfn.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CR0.CD and CR0.NW are not used by shadow page table so that need
not adjust mmu if these two bit are changed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, whenever guest MTRR registers are changed
kvm_mmu_reset_context is called to switch to the new root shadow page
table, however, it's useless since:
1) the cache type is not cached into shadow page's attribute so that
the original root shadow page will be reused
2) the cache type is set on the last spte, that means we should sync
the last sptes when MTRR is changed
This patch fixs this issue by drop all the spte in the gfn range which
is being updated by MTRR
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are some bugs in current get_mtrr_type();
1: bit 1 of mtrr_state->enabled is corresponding bit 11 of
IA32_MTRR_DEF_TYPE MSR which completely control MTRR's enablement
that means other bits are ignored if it is cleared
2: the fixed MTRR ranges are controlled by bit 0 of
mtrr_state->enabled (bit 10 of IA32_MTRR_DEF_TYPE)
3: if MTRR is disabled, UC is applied to all of physical memory rather
than mtrr_state->def_type
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split kvm_unmap_rmapp and introduce kvm_zap_rmapp which will be used in the
later patch
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
slot_handle_level and its helper functions are ready now, use them to
clean up the code
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are several places walking all rmaps for the memslot so that
introduce common functions to cleanup the code
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's used to abstract the code from kvm_handle_hva_range and it will be
used by later patch
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's used to walk all the sptes on the rmap to clean up the
code
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM may turn a user page to a kernel page when kernel writes a readonly
user page if CR0.WP = 1. This shadow page entry will be reused after
SMAP is enabled so that kernel is allowed to access this user page
Fix it by setting SMAP && !CR0.WP into shadow page's role and reset mmu
once CR4.SMAP is updated
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a REP-string is executed in 64-bit mode with an address-size prefix,
ECX/EDI/ESI are used as counter and pointers. When ECX is initially zero, Intel
CPUs clear the high 32-bits of RCX, and recent Intel CPUs update the high bits
of the pointers in MOVS/STOS. This behavior is specific to Intel according to
few experiments.
As one may guess, this is an undocumented behavior. Yet, it is observable in
the guest, since at least VMX traps REP-INS/OUTS even when ECX=0. Note that
VMware appears to get it right. The behavior can be observed using the
following code:
#include <stdio.h>
#define LOW_MASK (0xffffffff00000000ull)
#define ALL_MASK (0xffffffffffffffffull)
#define TEST(opcode) \
do { \
asm volatile(".byte 0xf2 \n\t .byte 0x67 \n\t .byte " opcode "\n\t" \
: "=S"(s), "=c"(c), "=D"(d) \
: "S"(ALL_MASK), "c"(LOW_MASK), "D"(ALL_MASK)); \
printf("opcode %s rcx=%llx rsi=%llx rdi=%llx\n", \
opcode, c, s, d); \
} while(0)
void main()
{
unsigned long long s, d, c;
iopl(3);
TEST("0x6c");
TEST("0x6d");
TEST("0x6e");
TEST("0x6f");
TEST("0xa4");
TEST("0xa5");
TEST("0xa6");
TEST("0xa7");
TEST("0xaa");
TEST("0xab");
TEST("0xae");
TEST("0xaf");
}
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When REP-string instruction is preceded with an address-size prefix,
ECX/EDI/ESI are used as the operation counter and pointers. When they are
updated, the high 32-bits of RCX/RDI/RSI are cleared, similarly to the way they
are updated on every 32-bit register operation. Fix it.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the host sets hardware breakpoints to debug the guest, and a task-switch
occurs in the guest, the architectural DR7 will not be updated. The effective
DR7 would be updated instead.
This fix puts the DR7 update during task-switch emulation, so it now uses the
standard DR setting mechanism instead of the one that was previously used. As a
bonus, the update of DR7 will now be effective for AMD as well.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
fpstate_init() only uses fpu->state, so pass that in to it.
This enables the cleanup we will do in the next patch.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fpu_restore_checking() is a helper function of restore_fpu_checking(),
but this is not apparent from the naming.
Both copy fpstate contents to fpregs, while the fuller variant does
a full copy without leaking information.
So rename them to:
copy_fpstate_to_fpregs()
__copy_fpstate_to_fpregs()
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename this function in line with the new FPU nomenclature.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that all FPU internals using drivers are converted to public APIs,
move xcr.h's definitions into fpu/internal.h and remove xcr.h.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'xsave' is an x86 instruction name to most people - but xsave.h is
about a lot more than just the XSAVE instruction: it includes
definitions and support, both internal and external, related to
xstate and xfeatures support.
As a first step in cleaning up the various xstate uses rename this
header to 'fpu/xstate.h' to better reflect what this header file
is about.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that fpstate_init_curr() is not doing implicit allocations
anymore, almost all uses of it involve a very simple pattern:
if (!fpu->fpstate_active)
fpstate_init_curr(fpu);
which is basically activating the FPU fpstate if it was not active
before.
So propagate the check into the function itself, and rename the
function according to its new purpose:
fpu__activate_curr(fpu);
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that fpstate_init() cannot fail the error return of fx_init()
has lost its purpose. Eliminate the error return and propagate this
change to all callers.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there are no FPU context allocations, rename fpstate_alloc_init()
to fpstate_init_curr(), to signal that it initializes the fpstate and
marks it active, for the current task.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the failure code and propagate this down to callers.
Note that this function still has an 'init' aspect, which must be
called.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we always allocate the FPU context as part of task_struct there's
no need for separate allocations - remove them and their primary failure
handling code.
( Note that there's still secondary error codes that have become superfluous,
those will be removed in separate patches. )
Move the somewhat misplaced setup_xstate_comp() call to the core.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So 6 years ago we made the FPU fpstate dynamically allocated:
aa283f4927 ("x86, fpu: lazy allocation of FPU area - v5")
61c4628b53 ("x86, fpu: split FPU state from task struct - v5")
In hindsight this was a mistake:
- it complicated context allocation failure handling, such as:
/* kthread execs. TODO: cleanup this horror. */
if (WARN_ON(fpstate_alloc_init(fpu)))
force_sig(SIGKILL, tsk);
- it caused us to enable irqs in fpu__restore():
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (fpstate_alloc_init(fpu)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
- it (slightly) slowed down task creation/destruction by adding
slab allocation/free pattens.
- it made access to context contents (slightly) slower by adding
one more pointer dereference.
The motivation for the dynamic allocation was two-fold:
- reduce memory consumption by non-FPU tasks
- allocate and handle only the necessary amount of context for
various XSAVE processors that have varying hardware frame
sizes.
These days, with glibc using SSE memcpy by default and GCC optimizing
for SSE/AVX by default, the scope of FPU using apps on an x86 system is
much larger than it was 6 years ago.
For example on a freshly installed Fedora 21 desktop system, with a
recent kernel, all non-kthread tasks have used the FPU shortly after
bootup.
Also, even modern embedded x86 CPUs try to support the latest vector
instruction set - so they'll too often use the larger xstate frame
sizes.
So remove the dynamic allocation complication by embedding the FPU
fpstate in task_struct again. This should make the FPU a lot more
accessible to all sorts of atomic contexts.
We could still optimize for the xstate frame size in the future,
by moving the state structure to the last element of task_struct,
and allocating only a part of that.
This change is kept minimal by still keeping the ctx_alloc()/free()
routines (that now do nothing substantial) - we'll remove them in
the following patches.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So fpu_save_init() is a historic name that got its name when the only
way the FPU state was FNSAVE, which cleared (well, destroyed) the FPU
state after saving it.
Nowadays the name is misleading, because ever since the introduction of
FXSAVE (and more modern FPU saving instructions) the 'we need to reload
the FPU state' part is only true if there's a pending FPU exception [*],
which is almost never the case.
So rename it to copy_fpregs_to_fpstate() to make it clear what's
happening. Also add a few comments about why we cannot keep registers
in certain cases.
Also clean up the control flow a bit, to make it more apparent when
we are dropping/keeping FP registers, and to optimize the common
case (of keeping fpregs) some more.
[*] Probably not true anymore, modern instructions always leave the FPU
state intact, even if exceptions are pending: because pending FP
exceptions are posted on the next FP instruction, not asynchronously.
They were truly asynchronous back in the IRQ13 case, and we had to
synchronize with them, but that code is not working anymore: we don't
have IRQ13 mapped in the IDT anymore.
But a cleanup patch is obviously not the place to change subtle behavior.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a number of FPU internal function prototypes and an inline function
in fpu/api.h, mostly placed so historically as the code grew over the years.
Move them over into fpu/internal.h where they belong. (Add sched.h include
to stackprotector.h which incorrectly relied on getting it from fpu/api.h.)
fpu/api.h is now a pure file that only contains FPU APIs intended for driver
use.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'xsave.header::xstate_bv' is a misnomer - what does 'bv' stand for?
It probably comes from the 'XGETBV' instruction name, but I could
not find in the Intel documentation where that abbreviation comes
from. It could mean 'bit vector' - or something else?
But how about - instead of guessing about a weird name - we named
the field in an obvious and descriptive way that tells us exactly
what it does?
So rename it to 'xfeatures', which is a bitmask of the
xfeatures that are fpstate_active in that context structure.
Eyesore like:
fpu->state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
is now much more readable:
fpu->state->xsave.header.xfeatures |= XSTATE_FP;
Which form is not just infinitely more readable, but is also
shorter as well.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Code like:
fpu->state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
is an eyesore, because not only is the words 'xsave' and 'state'
are repeated twice times (!), but also because of the 'hdr' and 'bv'
abbreviations that are pretty meaningless at a first glance.
Start cleaning this up by renaming 'xsave_hdr' to 'header'.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This unifies all the FPU related header files under a unified, hiearchical
naming scheme:
- asm/fpu/types.h: FPU related data types, needed for 'struct task_struct',
widely included in almost all kernel code, and hence kept
as small as possible.
- asm/fpu/api.h: FPU related 'public' methods exported to other subsystems.
- asm/fpu/internal.h: FPU subsystem internal methods
- asm/fpu/xsave.h: XSAVE support internal methods
(Also standardize the header guard in asm/fpu/internal.h.)
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We already have fpu/types.h, move i387.h to fpu/api.h.
The file name has become a misnomer anyway: it offers generic FPU APIs,
but is not limited to i387 functionality.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Migrate this function to pure 'struct fpu' usage.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a simple fpu->fpstate_active flag in the fpu context data structure
and use that instead of PF_USED_MATH in task->flags.
Testing for this flag byte should be slightly more efficient than
testing a bit in a bitmask, but the main advantage is that most
FPU functions can now be performed on a 'struct fpu' alone, they
don't need access to 'struct task_struct' anymore.
There's a slight linecount increase, mostly due to the 'fpu' local
variables and due to extra comments. The local variables will go away
once we move most of the FPU methods to pure 'struct fpu' parameters.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PF_USED_MATH is used directly, but also in a handful of helper inlines.
To ease the elimination of PF_USED_MATH, convert all inline helpers
to open-coded PF_USED_MATH usage.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix a minor header file dependency bug in asm/fpu-internal.h: it
relies on i387.h but does not include it. All users of fpu-internal.h
included it explicitly.
Also remove unnecessary includes, to reduce compilation time.
This also makes it easier to use it as a standalone header file
for FPU internals, such as an upcoming C module in arch/x86/kernel/fpu/.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make it clear that we are initializing the in-memory FPU context area,
no the FPU registers.
Also move it to the fpu__*() namespace.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the fpu__*() namespace for fpstate_alloc() as well.
Also add a comment about FPU state alignment.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most init_fpu() users don't want the register-saving aspect of the
function, they are calling it for 'current' and when FPU registers
are not allocated and initialized yet.
Split out a simplified API that does just that (and add debug-checks
for these conditions): fpstate_alloc_init().
Use it where appropriate.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The term "ftrace" is really the infrastructure of the function hooks,
and not the trace events. Rename ftrace_event.h to trace_events.h to
represent the trace_event infrastructure and decouple the term ftrace
from it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
KVM may turn a user page to a kernel page when kernel writes a readonly
user page if CR0.WP = 1. This shadow page entry will be reused after
SMAP is enabled so that kernel is allowed to access this user page
Fix it by setting SMAP && !CR0.WP into shadow page's role and reset mmu
once CR4.SMAP is updated
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
smep_andnot_wp is initialized in kvm_init_shadow_mmu and shadow pages
should not be reused for different values of it. Thus, it has to be
added to the mask in kvm_mmu_pte_write.
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current permission check assumes that RSVD bit in PFEC is always zero,
however, it is not true since MMIO #PF will use it to quickly identify
MMIO access
Fix it by clearing the bit if walking guest page table is needed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
smep_andnot_wp is initialized in kvm_init_shadow_mmu and shadow pages
should not be reused for different values of it. Thus, it has to be
added to the mask in kvm_mmu_pte_write.
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current permission check assumes that RSVD bit in PFEC is always zero,
however, it is not true since MMIO #PF will use it to quickly identify
MMIO access
Fix it by clearing the bit if walking guest page table is needed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vcpu->arch.apic is NULL when a userspace irqchip is active. But instead
of letting the test incorrectly depend on in-kernel irqchip mode,
open-code it to catch also userspace x2APICs.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Far call in 64-bit has a 32-bit operand size. Remove the marking of this
operation as Stack so it can be emulated correctly in 64-bit.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the null test is needed, the call to cancel_delayed_work_sync would have
already crashed. Normally, the destroy function should only be called
if the init function has succeeded, in which case ioapic is not null.
Problem found using Coccinelle.
Suggested-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
PAT should be 0007_0406_0007_0406h on RESET and not modified on INIT.
VMX used a wrong value (host's PAT) and while SVM used the right one,
it never got to arch.pat.
This is not an issue with QEMU as it will force the correct value.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently KVM will clear the FPU bits in CR0.TS in the VMCS, and trap to
re-load them every time the guest accesses the FPU after a switch back into
the guest from the host.
This patch copies the x86 task switch semantics for FPU loading, with the
FPU loaded eagerly after first use if the system uses eager fpu mode,
or if the guest uses the FPU frequently.
In the latter case, after loading the FPU for 255 times, the fpu_counter
will roll over, and we will revert to loading the FPU on demand, until
it has been established that the guest is still actively using the FPU.
This mirrors the x86 task switch policy, which seems to work.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An MSI interrupt should only be delivered to the lowest priority CPU
when it has RH=1, regardless of the delivery mode. Modified
kvm_is_dm_lowest_prio() to check for either irq->delivery_mode == APIC_DM_LOWPRI
or irq->msi_redir_hint.
Moved kvm_is_dm_lowest_prio() into lapic.h and renamed to
kvm_lowest_prio_delivery().
Changed a check in kvm_irq_delivery_to_apic_fast() from
irq->delivery_mode == APIC_DM_LOWPRI to kvm_is_dm_lowest_prio().
Signed-off-by: James Sullivan <sullivan.james.f@gmail.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extended struct kvm_lapic_irq with bool msi_redir_hint, which will
be used to determine if the delivery of the MSI should target only
the lowest priority CPU in the logical group specified for delivery.
(In physical dest mode, the RH bit is not relevant). Initialized the value
of msi_redir_hint to true when RH=1 in kvm_set_msi_irq(), and initialized
to false in all other cases.
Added value of msi_redir_hint to a debug message dump of an IRQ in
apic_send_ipi().
Signed-off-by: James Sullivan <sullivan.james.f@gmail.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change to u16 if they only contain data in the low 16 bits.
Change the level field to bool, since we assign 1 sometimes, but
just mask icr_low with APIC_INT_ASSERT in apic_send_ipi.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86 architecture defines differences between the reset and INIT sequences.
INIT does not initialize the FPU (including MMX, XMM, YMM, etc.), TSC, PMU,
MSRs (in general), MTRRs machine-check, APIC ID, APIC arbitration ID and BSP.
References (from Intel SDM):
"If the MP protocol has completed and a BSP is chosen, subsequent INITs (either
to a specific processor or system wide) do not cause the MP protocol to be
repeated." [8.4.2: MP Initialization Protocol Requirements and Restrictions]
[Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT]
"If the processor is reset by asserting the INIT# pin, the x87 FPU state is not
changed." [9.2: X87 FPU INITIALIZATION]
"The state of the local APIC following an INIT reset is the same as it is after
a power-up or hardware reset, except that the APIC ID and arbitration ID
registers are not affected." [10.4.7.3: Local APIC State After an INIT Reset
("Wait-for-SIPI" State)]
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1428924848-28212-1-git-send-email-namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introducing KVM_CAP_DISABLE_QUIRKS for disabling x86 quirks that were previous
created in order to overcome QEMU issues. Those issue were mostly result of
invalid VM BIOS. Currently there are two quirks that can be disabled:
1. KVM_QUIRK_LINT0_REENABLED - LINT0 was enabled after boot
2. KVM_QUIRK_CD_NW_CLEARED - CD and NW are cleared after boot
These two issues are already resolved in recent releases of QEMU, and would
therefore be disabled by QEMU.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1428879221-29996-1-git-send-email-namit@cs.technion.ac.il>
[Report capability from KVM_CHECK_EXTENSION too. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use __kvm_guest_{enter|exit} instead of kvm_guest_{enter|exit}
where interrupts are disabled.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvmclock spec says that the host will increment a version field to
an odd number, then update stuff, then increment it to an even number.
The host is buggy and doesn't do this, and the result is observable
when one vcpu reads another vcpu's kvmclock data.
There's no good way for a guest kernel to keep its vdso from reading
a different vcpu's kvmclock data, but we don't need to care about
changing VCPUs as long as we read a consistent data from kvmclock.
(VCPU can change outside of this loop too, so it doesn't matter if we
return a value not fit for this VCPU.)
Based on a patch by Radim Krčmář.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
The host's decision to enable machine check exceptions should remain
in force during non-root mode. KVM was writing 0 to cr4 on VCPU reset
and passed a slightly-modified 0 to the vmcs.guest_cr4 value.
Tested: Built.
On earlier version, tested by injecting machine check
while a guest is spinning.
Before the change, if guest CR4.MCE==0, then the machine check is
escalated to Catastrophic Error (CATERR) and the machine dies.
If guest CR4.MCE==1, then the machine check causes VMEXIT and is
handled normally by host Linux. After the change, injecting a machine
check causes normal Linux machine check handling.
Signed-off-by: Ben Serebrin <serebrin@google.com>
Reviewed-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Soft mmu uses direct shadow page to fill guest large mapping with small
pages if huge mapping is disallowed on host. So zapping direct shadow
page works well both for soft mmu and hard mmu, it's just less widely
applicable.
Fix the comment to reflect this.
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Message-Id: <552C91BA.1010703@linux.intel.com>
[Fix comment wording further. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As Andres pointed out:
| I don't understand the value of this check here. Are we looking for a
| broken memslot? Shouldn't this be a BUG_ON? Is this the place to care
| about these things? npages is capped to KVM_MEM_MAX_NR_PAGES, i.e.
| 2^31. A 64 bit overflow would be caused by a gigantic gfn_start which
| would be trouble in many other ways.
This patch drops the memslot overflow check to make the codes more simple.
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Message-Id: <1429064694-3072-1-git-send-email-wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>