mirror of https://gitee.com/openkylin/linux.git
294 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Huang Ying | cbc65df240 |
mm, swap: add swap readahead hit statistics
Patch series "mm, swap: VMA based swap readahead", v4. The swap readahead is an important mechanism to reduce the swap in latency. Although pure sequential memory access pattern isn't very popular for anonymous memory, the space locality is still considered valid. In the original swap readahead implementation, the consecutive blocks in swap device are readahead based on the global space locality estimation. But the consecutive blocks in swap device just reflect the order of page reclaiming, don't necessarily reflect the access pattern in virtual memory space. And the different tasks in the system may have different access patterns, which makes the global space locality estimation incorrect. In this patchset, when page fault occurs, the virtual pages near the fault address will be readahead instead of the swap slots near the fault swap slot in swap device. This avoid to readahead the unrelated swap slots. At the same time, the swap readahead is changed to work on per-VMA from globally. So that the different access patterns of the different VMAs could be distinguished, and the different readahead policy could be applied accordingly. The original core readahead detection and scaling algorithm is reused, because it is an effect algorithm to detect the space locality. In addition to the swap readahead changes, some new sysfs interface is added to show the efficiency of the readahead algorithm and some other swap statistics. This new implementation will incur more small random read, on SSD, the improved correctness of estimation and readahead target should beat the potential increased overhead, this is also illustrated in the test results below. But on HDD, the overhead may beat the benefit, so the original implementation will be used by default. The test and result is as follow, Common test condition ===================== Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM) Swap device: NVMe disk Micro-benchmark with combined access pattern ============================================ vm-scalability, sequential swap test case, 4 processes to eat 50G virtual memory space, repeat the sequential memory writing until 300 seconds. The first round writing will trigger swap out, the following rounds will trigger sequential swap in and out. At the same time, run vm-scalability random swap test case in background, 8 processes to eat 30G virtual memory space, repeat the random memory write until 300 seconds. This will trigger random swap-in in the background. This is a combined workload with sequential and random memory accessing at the same time. The result (for sequential workload) is as follow, Base Optimized ---- --------- throughput 345413 KB/s 414029 KB/s (+19.9%) latency.average 97.14 us 61.06 us (-37.1%) latency.50th 2 us 1 us latency.60th 2 us 1 us latency.70th 98 us 2 us latency.80th 160 us 2 us latency.90th 260 us 217 us latency.95th 346 us 369 us latency.99th 1.34 ms 1.09 ms ra_hit% 52.69% 99.98% The original swap readahead algorithm is confused by the background random access workload, so readahead hit rate is lower. The VMA-base readahead algorithm works much better. Linpack ======= The test memory size is bigger than RAM to trigger swapping. Base Optimized ---- --------- elapsed_time 393.49 s 329.88 s (-16.2%) ra_hit% 86.21% 98.82% The score of base and optimized kernel hasn't visible changes. But the elapsed time reduced and readahead hit rate improved, so the optimized kernel runs better for startup and tear down stages. And the absolute value of readahead hit rate is high, shows that the space locality is still valid in some practical workloads. This patch (of 5): The statistics for total readahead pages and total readahead hits are recorded and exported via the following sysfs interface. /sys/kernel/mm/swap/ra_hits /sys/kernel/mm/swap/ra_total With them, the efficiency of the swap readahead could be measured, so that the swap readahead algorithm and parameters could be tuned accordingly. [akpm@linux-foundation.org: don't display swap stats if CONFIG_SWAP=n] Link: http://lkml.kernel.org/r/20170807054038.1843-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
SeongJae Park | f113e64121 |
mm/vmstat.c: fix wrong comment
Comment for pagetypeinfo_showblockcount() is mistakenly duplicated from
pagetypeinfo_show_free()'s comment. This commit fixes it.
Link: http://lkml.kernel.org/r/20170809185816.11244-1-sj38.park@gmail.com
Fixes:
|
|
Wen Yang | 88d6ac40c1 |
mm/vmstat: fix divide error at __fragmentation_index
When order is -1 or too big, *1UL << order* will be 0, which will cause a divide error. Although it seems that all callers of __fragmentation_index() will only do so with a valid order, the patch can make it more robust. Should prevent reoccurrences of https://bugzilla.kernel.org/show_bug.cgi?id=196555 Link: http://lkml.kernel.org/r/1501751520-2598-1-git-send-email-wen.yang99@zte.com.cn Signed-off-by: Wen Yang <wen.yang99@zte.com.cn> Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | c41f012ade |
mm: rename global_page_state to global_zone_page_state
global_page_state is error prone as a recent bug report pointed out [1]. It only returns proper values for zone based counters as the enum it gets suggests. We already have global_node_page_state so let's rename global_page_state to global_zone_page_state to be more explicit here. All existing users seems to be correct: $ git grep "global_page_state(NR_" | sed 's@.*(\(NR_[A-Z_]*\)).*@\1@' | sort | uniq -c 2 NR_BOUNCE 2 NR_FREE_CMA_PAGES 11 NR_FREE_PAGES 1 NR_KERNEL_STACK_KB 1 NR_MLOCK 2 NR_PAGETABLE This patch shouldn't introduce any functional change. [1] http://lkml.kernel.org/r/201707260628.v6Q6SmaS030814@www262.sakura.ne.jp Link: http://lkml.kernel.org/r/20170801134256.5400-2-hannes@cmpxchg.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Huang Ying | fe490cc0fe |
mm, THP, swap: add THP swapping out fallback counting
When swapping out THP (Transparent Huge Page), instead of swapping out the THP as a whole, sometimes we have to fallback to split the THP into normal pages before swapping, because no free swap clusters are available, or cgroup limit is exceeded, etc. To count the number of the fallback, a new VM event THP_SWPOUT_FALLBACK is added, and counted when we fallback to split the THP. Link: http://lkml.kernel.org/r/20170724051840.2309-13-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Huang Ying | 225311a464 |
mm: test code to write THP to swap device as a whole
To support delay splitting THP (Transparent Huge Page) after swapped out, we need to enhance swap writing code to support to write a THP as a whole. This will improve swap write IO performance. As Ming Lei <ming.lei@redhat.com> pointed out, this should be based on multipage bvec support, which hasn't been merged yet. So this patch is only for testing the functionality of the other patches in the series. And will be reimplemented after multipage bvec support is merged. Link: http://lkml.kernel.org/r/20170724051840.2309-7-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Shaohua Li <shli@kernel.org> Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vinayak Menon | 727c080f03 |
mm: avoid taking zone lock in pagetypeinfo_showmixed()
pagetypeinfo_showmixedcount_print is found to take a lot of time to complete and it does this holding the zone lock and disabling interrupts. In some cases it is found to take more than a second (On a 2.4GHz,8Gb RAM,arm64 cpu). Avoid taking the zone lock similar to what is done by read_page_owner, which means possibility of inaccurate results. Link: http://lkml.kernel.org/r/1498045643-12257-1-git-send-email-vinmenon@codeaurora.org Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: zhongjiang <zhongjiang@huawei.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 385386cff4 |
mm: vmstat: move slab statistics from zone to node counters
Patch series "mm: per-lruvec slab stats" Josef is working on a new approach to balancing slab caches and the page cache. For this to work, he needs slab cache statistics on the lruvec level. These patches implement that by adding infrastructure that allows updating and reading generic VM stat items per lruvec, then switches some existing VM accounting sites, including the slab accounting ones, to this new cgroup-aware API. I'll follow up with more patches on this, because there is actually substantial simplification that can be done to the memory controller when we replace private memcg accounting with making the existing VM accounting sites cgroup-aware. But this is enough for Josef to base his slab reclaim work on, so here goes. This patch (of 5): To re-implement slab cache vs. page cache balancing, we'll need the slab counters at the lruvec level, which, ever since lru reclaim was moved from the zone to the node, is the intersection of the node, not the zone, and the memcg. We could retain the per-zone counters for when the page allocator dumps its memory information on failures, and have counters on both levels - which on all but NUMA node 0 is usually redundant. But let's keep it simple for now and just move them. If anybody complains we can restore the per-zone counters. [hannes@cmpxchg.org: fix oops] Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Konstantin Khlebnikov | 8e675f7af5 |
mm/oom_kill: count global and memory cgroup oom kills
Show count of oom killer invocations in /proc/vmstat and count of processes killed in memory cgroup in knob "memory.events" (in memory.oom_control for v1 cgroup). Also describe difference between "oom" and "oom_kill" in memory cgroup documentation. Currently oom in memory cgroup kills tasks iff shortage has happened inside page fault. These counters helps in monitoring oom kills - for now the only way is grepping for magic words in kernel log. [akpm@linux-foundation.org: fix for mem_cgroup_count_vm_event() rename] [akpm@linux-foundation.org: fix comment, per Konstantin] Link: http://lkml.kernel.org/r/149570810989.203600.9492483715840752937.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Roman Guschin <guroan@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | d336e94e44 |
mm, vmstat: skip reporting offline pages in pagetypeinfo
pagetypeinfo_showblockcount_print skips over invalid pfns but it would report pages which are offline because those have a valid pfn. Their migrate type is misleading at best. Now that we have pfn_to_online_page() we can use it instead of pfn_valid() and fix this. [mhocko@suse.com: fix build] Link: http://lkml.kernel.org/r/20170519072225.GA13041@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-11-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Joonsoo Kim <js1304@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Anshuman Khandual | 9d85e15f1d |
mm/vmstat.c: standardize file operations variable names
Standardize the file operation variable names related to all four memory management /proc interface files. Also change all the symbol permissions (S_IRUGO) into octal permissions (0444) as it got complaints from checkpatch.pl. This does not create any functional change to the interface. Link: http://lkml.kernel.org/r/20170427030632.8588-1-khandual@linux.vnet.ibm.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Reza Arbab | 8d35bb3106 |
mm, vmstat: Remove spurious WARN() during zoneinfo print
After commit |
|
David Rientjes | 7dfb8bf3b9 |
mm, vmstat: suppress pcp stats for unpopulated zones in zoneinfo
After "mm, vmstat: print non-populated zones in zoneinfo", /proc/zoneinfo will show unpopulated zones. The per-cpu pageset statistics are not relevant for unpopulated zones and can be potentially lengthy, so supress them when they are not interesting. Also moves lowmem reserve protection information above pcp stats since it is relevant for all zones per vm.lowmem_reserve_ratio. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1703061400500.46428@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | b2bd859819 |
mm, vmstat: print non-populated zones in zoneinfo
Initscripts can use the information (protection levels) from /proc/zoneinfo to configure vm.lowmem_reserve_ratio at boot. vm.lowmem_reserve_ratio is an array of ratios for each configured zone on the system. If a zone is not populated on an arch, /proc/zoneinfo suppresses its output. This results in there not being a 1:1 mapping between the set of zones emitted by /proc/zoneinfo and the zones configured by vm.lowmem_reserve_ratio. This patch shows statistics for non-populated zones in /proc/zoneinfo. The zones exist and hold a spot in the vm.lowmem_reserve_ratio array. Without this patch, it is not possible to determine which index in the array controls which zone if one or more zones on the system are not populated. Remaining users of walk_zones_in_node() are unchanged. Files such as /proc/pagetypeinfo require certain zone data to be initialized properly for display, which is not done for unpopulated zones. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1703031451310.98023@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Shaohua Li | f7ad2a6cb9 |
mm: move MADV_FREE pages into LRU_INACTIVE_FILE list
madv()'s MADV_FREE indicate pages are 'lazyfree'. They are still anonymous pages, but they can be freed without pageout. To distinguish these from normal anonymous pages, we clear their SwapBacked flag. MADV_FREE pages could be freed without pageout, so they pretty much like used once file pages. For such pages, we'd like to reclaim them once there is memory pressure. Also it might be unfair reclaiming MADV_FREE pages always before used once file pages and we definitively want to reclaim the pages before other anonymous and file pages. To speed up MADV_FREE pages reclaim, we put the pages into LRU_INACTIVE_FILE list. The rationale is LRU_INACTIVE_FILE list is tiny nowadays and should be full of used once file pages. Reclaiming MADV_FREE pages will not have much interfere of anonymous and active file pages. And the inactive file pages and MADV_FREE pages will be reclaimed according to their age, so we don't reclaim too many MADV_FREE pages too. Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also means we can reclaim the pages without swap support. This idea is suggested by Johannes. This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to avoid bisect failure, next patch will do it. The patch is based on Minchan's original patch. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | c822f6223d |
mm: delete NR_PAGES_SCANNED and pgdat_reclaimable()
NR_PAGES_SCANNED counts number of pages scanned since the last page free event in the allocator. This was used primarily to measure the reclaimability of zones and nodes, and determine when reclaim should give up on them. In that role, it has been replaced in the preceding patches by a different mechanism. Being implemented as an efficient vmstat counter, it was automatically exported to userspace as well. It's however unlikely that anyone outside the kernel is using this counter in any meaningful way. Remove the counter and the unused pgdat_reclaimable(). Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | c73322d098 |
mm: fix 100% CPU kswapd busyloop on unreclaimable nodes
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit
|
|
Michal Hocko | 80d136e138 |
mm: make mm_percpu_wq non freezable
Geert has reported a freeze during PM resume and some additional
debugging has shown that the device_resume worker cannot make a forward
progress because it waits for an event which is stuck waiting in
drain_all_pages:
INFO: task kworker/u4:0:5 blocked for more than 120 seconds.
Not tainted 4.11.0-rc7-koelsch-00029-g005882e53d62f25d-dirty #3476
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kworker/u4:0 D 0 5 2 0x00000000
Workqueue: events_unbound async_run_entry_fn
__schedule
schedule
schedule_timeout
wait_for_common
dpm_wait_for_superior
device_resume
async_resume
async_run_entry_fn
process_one_work
worker_thread
kthread
[...]
bash D 0 1703 1694 0x00000000
__schedule
schedule
schedule_timeout
wait_for_common
flush_work
drain_all_pages
start_isolate_page_range
alloc_contig_range
cma_alloc
__alloc_from_contiguous
cma_allocator_alloc
__dma_alloc
arm_dma_alloc
sh_eth_ring_init
sh_eth_open
sh_eth_resume
dpm_run_callback
device_resume
dpm_resume
dpm_resume_end
suspend_devices_and_enter
pm_suspend
state_store
kernfs_fop_write
__vfs_write
vfs_write
SyS_write
[...]
Showing busy workqueues and worker pools:
[...]
workqueue mm_percpu_wq: flags=0xc
pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=0/0
delayed: drain_local_pages_wq, vmstat_update
pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=0/0
delayed: drain_local_pages_wq BAR(1703), vmstat_update
Tetsuo has properly noted that mm_percpu_wq is created as WQ_FREEZABLE
so it is frozen this early during resume so we are effectively
deadlocked. Fix this by dropping WQ_FREEZABLE when creating
mm_percpu_wq. We really want to have it operational all the time.
Fixes:
|
|
Michal Hocko | ce612879dd |
mm: move pcp and lru-pcp draining into single wq
We currently have 2 specific WQ_RECLAIM workqueues in the mm code. vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain per cpu lru caches. This seems more than necessary because both can run on a single WQ. Both do not block on locks requiring a memory allocation nor perform any allocations themselves. We will save one rescuer thread this way. On the other hand drain_all_pages() queues work on the system wq which doesn't have rescuer and so this depend on memory allocation (when all workers are stuck allocating and new ones cannot be created). Initially we thought this would be more of a theoretical problem but Hugh Dickins has reported: : 4.11-rc has been giving me hangs after hours of swapping load. At : first they looked like memory leaks ("fork: Cannot allocate memory"); : but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh" : before looking at /proc/meminfo one time, and the stat_refresh stuck : in D state, waiting for completion of flush_work like many kworkers. : kthreadd waiting for completion of flush_work in drain_all_pages(). This worker should be using WQ_RECLAIM as well in order to guarantee a forward progress. We can reuse the same one as for lru draining and vmstat. Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Tested-by: Yang Li <pku.leo@gmail.com> Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 597b7305dd |
mm: move mm_percpu_wq initialization earlier
Yang Li has reported that drain_all_pages triggers a WARN_ON which means that this function is called earlier than the mm_percpu_wq is initialized on arm64 with CMA configured: WARNING: CPU: 2 PID: 1 at mm/page_alloc.c:2423 drain_all_pages+0x244/0x25c Modules linked in: CPU: 2 PID: 1 Comm: swapper/0 Not tainted 4.11.0-rc1-next-20170310-00027-g64dfbc5 #127 Hardware name: Freescale Layerscape 2088A RDB Board (DT) task: ffffffc07c4a6d00 task.stack: ffffffc07c4a8000 PC is at drain_all_pages+0x244/0x25c LR is at start_isolate_page_range+0x14c/0x1f0 [...] drain_all_pages+0x244/0x25c start_isolate_page_range+0x14c/0x1f0 alloc_contig_range+0xec/0x354 cma_alloc+0x100/0x1fc dma_alloc_from_contiguous+0x3c/0x44 atomic_pool_init+0x7c/0x208 arm64_dma_init+0x44/0x4c do_one_initcall+0x38/0x128 kernel_init_freeable+0x1a0/0x240 kernel_init+0x10/0xfc ret_from_fork+0x10/0x20 Fix this by moving the whole setup_vmstat which is an initcall right now to init_mm_internals which will be called right after the WQ subsystem is initialized. Link: http://lkml.kernel.org/r/20170315164021.28532-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Yang Li <pku.leo@gmail.com> Tested-by: Yang Li <pku.leo@gmail.com> Tested-by: Xiaolong Ye <xiaolong.ye@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yisheng Xie | ce9311cf95 |
mm/vmstats: add thp_split_pud event for clarity
We added support for PUD-sized transparent hugepages, however we count the event "thp split pud" into thp_split_pmd event. To separate the event count of thp split pud from pmd, add a new event named thp_split_pud. Link: http://lkml.kernel.org/r/1488282380-5076-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | 7f354a548d |
mm, compaction: add vmstats for kcompactd work
A "compact_daemon_wake" vmstat exists that represents the number of times kcompactd has woken up. This doesn't represent how much work it actually did, though. It's useful to understand how much compaction work is being done by kcompactd versus other methods such as direct compaction and explicitly triggered per-node (or system) compaction. This adds two new vmstats: "compact_daemon_migrate_scanned" and "compact_daemon_free_scanned" to represent the number of pages kcompactd has scanned as part of its migration scanner and freeing scanner, respectively. These values are still accounted for in the general "compact_migrate_scanned" and "compact_free_scanned" for compatibility. It could be argued that explicitly triggered compaction could also be tracked separately, and that could be added if others find it useful. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612071749390.69852@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Sebastian Andrzej Siewior | 5438da977f |
mm/vmstat: Convert to hotplug state machine
Install the callbacks via the state machine, but do not invoke them as we can initialize the node state without calling the callbacks on all online CPUs. start_shepherd_timer() is now called outside the get_online_cpus() block which is safe as it only operates on cpu possible mask. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20161129145221.ffc3kg3hd7lxiwj6@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
Sebastian Andrzej Siewior | 4c501327b4 |
mm/vmstat: Avoid on each online CPU loops
Both iterations over online cpus can be replaced by the proper node specific functions. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20161129145113.fn3lw5aazjjvdrr3@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
Sebastian Andrzej Siewior | 76f290935b |
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
Both functions are called with protection against cpu hotplug already so *_online_cpus() could be dropped. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20161126231350.10321-8-bigeasy@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
Joe Perches | 75ba1d07fd |
seq/proc: modify seq_put_decimal_[u]ll to take a const char *, not char
Allow some seq_puts removals by taking a string instead of a single char. [akpm@linux-foundation.org: update vmstat_show(), per Joe] Link: http://lkml.kernel.org/r/667e1cf3d436de91a5698170a1e98d882905e956.1470704995.git.joe@perches.com Signed-off-by: Joe Perches <joe@perches.com> Cc: Joe Perches <joe@perches.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexey Dobriyan | 68ba0326b4 |
proc: much faster /proc/vmstat
Every current KDE system has process named ksysguardd polling files below once in several seconds: $ strace -e trace=open -p $(pidof ksysguardd) Process 1812 attached open("/etc/mtab", O_RDONLY|O_CLOEXEC) = 8 open("/etc/mtab", O_RDONLY|O_CLOEXEC) = 8 open("/proc/net/dev", O_RDONLY) = 8 open("/proc/net/wireless", O_RDONLY) = -1 ENOENT (No such file or directory) open("/proc/stat", O_RDONLY) = 8 open("/proc/vmstat", O_RDONLY) = 8 Hell knows what it is doing but speed up reading /proc/vmstat by 33%! Benchmark is open+read+close 1.000.000 times. BEFORE $ perf stat -r 10 taskset -c 3 ./proc-vmstat Performance counter stats for 'taskset -c 3 ./proc-vmstat' (10 runs): 13146.768464 task-clock (msec) # 0.960 CPUs utilized ( +- 0.60% ) 15 context-switches # 0.001 K/sec ( +- 1.41% ) 1 cpu-migrations # 0.000 K/sec ( +- 11.11% ) 104 page-faults # 0.008 K/sec ( +- 0.57% ) 45,489,799,349 cycles # 3.460 GHz ( +- 0.03% ) 9,970,175,743 stalled-cycles-frontend # 21.92% frontend cycles idle ( +- 0.10% ) 2,800,298,015 stalled-cycles-backend # 6.16% backend cycles idle ( +- 0.32% ) 79,241,190,850 instructions # 1.74 insn per cycle # 0.13 stalled cycles per insn ( +- 0.00% ) 17,616,096,146 branches # 1339.956 M/sec ( +- 0.00% ) 176,106,232 branch-misses # 1.00% of all branches ( +- 0.18% ) 13.691078109 seconds time elapsed ( +- 0.03% ) ^^^^^^^^^^^^ AFTER $ perf stat -r 10 taskset -c 3 ./proc-vmstat Performance counter stats for 'taskset -c 3 ./proc-vmstat' (10 runs): 8688.353749 task-clock (msec) # 0.950 CPUs utilized ( +- 1.25% ) 10 context-switches # 0.001 K/sec ( +- 2.13% ) 1 cpu-migrations # 0.000 K/sec 104 page-faults # 0.012 K/sec ( +- 0.56% ) 30,384,010,730 cycles # 3.497 GHz ( +- 0.07% ) 12,296,259,407 stalled-cycles-frontend # 40.47% frontend cycles idle ( +- 0.13% ) 3,370,668,651 stalled-cycles-backend # 11.09% backend cycles idle ( +- 0.69% ) 28,969,052,879 instructions # 0.95 insn per cycle # 0.42 stalled cycles per insn ( +- 0.01% ) 6,308,245,891 branches # 726.058 M/sec ( +- 0.00% ) 214,685,502 branch-misses # 3.40% of all branches ( +- 0.26% ) 9.146081052 seconds time elapsed ( +- 0.07% ) ^^^^^^^^^^^ vsnprintf() is slow because: 1. format_decode() is busy looking for format specifier: 2 branches per character (not in this case, but in others) 2. approximately million branches while parsing format mini language and everywhere 3. just look at what string() does /proc/vmstat is good case because most of its content are strings Link: http://lkml.kernel.org/r/20160806125455.GA1187@p183.telecom.by Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Joe Perches <joe@perches.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tim Chen | 03e86dba5b |
cpu: fix node state for whether it contains CPU
In current kernel code, we only call node_set_state(cpu_to_node(cpu), N_CPU) when a cpu is hot plugged. But we do not set the node state for N_CPU when the cpus are brought online during boot. So this could lead to failure when we check to see if a node contains cpu with node_state(node_id, N_CPU). One use case is in the node_reclaime function: /* * Only run node reclaim on the local node or on nodes that do * not * have associated processors. This will favor the local * processor * over remote processors and spread off node memory allocations * as wide as possible. */ if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) return NODE_RECLAIM_NOSCAN; I instrumented the kernel to call this function after boot and it always returns 0 on a x86 desktop machine until I apply the attached patch. int num_cpu_node(void) { int i, nr_cpu_nodes = 0; for_each_node(i) { if (node_state(i, N_CPU)) ++ nr_cpu_nodes; } return nr_cpu_nodes; } Fix this by checking each node for online CPU when we initialize vmstat that's responsible for maintaining node state. Link: http://lkml.kernel.org/r/20160829175922.GA21775@linux.intel.com Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: <Huang@linux.intel.com> Cc: Ying <ying.huang@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | e2f612e673 |
mm/page_owner: move page_owner specific function to page_owner.c
There is no reason that page_owner specific function resides on vmstat.c. Link: http://lkml.kernel.org/r/1471315879-32294-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 71c799f498 |
mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently which didn't ever happen in zone-lru. gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 .. .. __alloc_pages_nodemask+0xe52/0xe60 ? new_slab+0x39c/0x3b0 new_slab+0x39c/0x3b0 ___slab_alloc.constprop.87+0x6da/0x840 ? __alloc_skb+0x3c/0x260 ? _raw_spin_unlock_irq+0x27/0x60 ? trace_hardirqs_on_caller+0xec/0x1b0 ? finish_task_switch+0xa6/0x220 ? poll_select_copy_remaining+0x140/0x140 __slab_alloc.isra.81.constprop.86+0x40/0x6d ? __alloc_skb+0x3c/0x260 kmem_cache_alloc+0x22c/0x260 ? __alloc_skb+0x3c/0x260 __alloc_skb+0x3c/0x260 alloc_skb_with_frags+0x4e/0x1a0 sock_alloc_send_pskb+0x16a/0x1b0 ? wait_for_unix_gc+0x31/0x90 ? alloc_set_pte+0x2ad/0x310 unix_stream_sendmsg+0x28d/0x340 sock_sendmsg+0x2d/0x40 sock_write_iter+0x6c/0xc0 __vfs_write+0xc0/0x120 vfs_write+0x9b/0x1a0 ? __might_fault+0x49/0xa0 SyS_write+0x44/0x90 do_fast_syscall_32+0xa6/0x1e0 sysenter_past_esp+0x45/0x74 Mem-Info: active_anon:104698 inactive_anon:105791 isolated_anon:192 active_file:433 inactive_file:283 isolated_file:22 unevictable:0 dirty:0 writeback:296 unstable:0 slab_reclaimable:6389 slab_unreclaimable:78927 mapped:474 shmem:0 pagetables:101426 bounce:0 free:10518 free_pcp:334 free_cma:0 Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 25121 total pagecache pages 24160 pages in swap cache Swap cache stats: add 86371, delete 62211, find 42865/60187 Free swap = 4015560kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9658 pages reserved 0 pages cma reserved The order-0 allocation for normal zone failed while there are a lot of reclaimable memory(i.e., anonymous memory with free swap). I wanted to analyze the problem but it was hard because we removed per-zone lru stat so I couldn't know how many of anonymous memory there are in normal/dma zone. When we investigate OOM problem, reclaimable memory count is crucial stat to find a problem. Without it, it's hard to parse the OOM message so I believe we should keep it. With per-zone lru stat, gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 Mem-Info: active_anon:101103 inactive_anon:102219 isolated_anon:0 active_file:503 inactive_file:544 isolated_file:0 unevictable:0 dirty:0 writeback:34 unstable:0 slab_reclaimable:6298 slab_unreclaimable:74669 mapped:863 shmem:0 pagetables:100998 bounce:0 free:23573 free_pcp:1861 free_cma:0 Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 54409 total pagecache pages 53215 pages in swap cache Swap cache stats: add 300982, delete 247765, find 157978/226539 Free swap = 3803244kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9642 pages reserved 0 pages cma reserved With that, we can see normal zone has a 86M reclaimable memory so we can know something goes wrong(I will fix the problem in next patch) in reclaim. [mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat] Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
|
|
Mel Gorman | e2ecc8a79e |
mm, vmstat: print node-based stats in zoneinfo file
There are a number of stats that were previously accessible via zoneinfo that are now invisible. While it is possible to create a new file for the node stats, this may be missed by users. Instead this patch prints the stats under the first populated zone in /proc/zoneinfo. Link: http://lkml.kernel.org/r/1467970510-21195-34-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 7cc30fcfd2 |
mm: vmstat: account per-zone stalls and pages skipped during reclaim
The vmstat allocstall was fairly useful in the general sense but node-based LRUs change that. It's important to know if a stall was for an address-limited allocation request as this will require skipping pages from other zones. This patch adds pgstall_* counters to replace allocstall. The sum of the counters will equal the old allocstall so it can be trivially recalculated. A high number of address-limited allocation requests may result in a lot of useless LRU scanning for suitable pages. As address-limited allocations require pages to be skipped, it's important to know how much useless LRU scanning took place so this patch adds pgskip* counters. This yields the following model 1. The number of address-space limited stalls can be accounted for (pgstall) 2. The amount of useless work required to reclaim the data is accounted (pgskip) 3. The total number of scans is available from pgscan_kswapd and pgscan_direct so from that the ratio of useful to useless scans can be calculated. [mgorman@techsingularity.net: s/pgstall/allocstall/] Link: http://lkml.kernel.org/r/1468404004-5085-3-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-33-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e6cbd7f2ef |
mm, page_alloc: remove fair zone allocation policy
The fair zone allocation policy interleaves allocation requests between zones to avoid an age inversion problem whereby new pages are reclaimed to balance a zone. Reclaim is now node-based so this should no longer be an issue and the fair zone allocation policy is not free. This patch removes it. Link: http://lkml.kernel.org/r/1467970510-21195-30-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | c4a25635b6 |
mm: move vmscan writes and file write accounting to the node
As reclaim is now node-based, it follows that page write activity due to page reclaim should also be accounted for on the node. For consistency, also account page writes and page dirtying on a per-node basis. After this patch, there are a few remaining zone counters that may appear strange but are fine. NUMA stats are still per-zone as this is a user-space interface that tools consume. NR_MLOCK, NR_SLAB_*, NR_PAGETABLE, NR_KERNEL_STACK and NR_BOUNCE are all allocations that potentially pin low memory and cannot trivially be reclaimed on demand. This information is still useful for debugging a page allocation failure warning. Link: http://lkml.kernel.org/r/1467970510-21195-21-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 50658e2e04 |
mm: move page mapped accounting to the node
Reclaim makes decisions based on the number of pages that are mapped but it's mixing node and zone information. Account NR_FILE_MAPPED and NR_ANON_PAGES pages on the node. Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 1e6b10857f |
mm, workingset: make working set detection node-aware
Working set and refault detection is still zone-based, fix it. Link: http://lkml.kernel.org/r/1467970510-21195-16-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 75ef718405 |
mm, vmstat: add infrastructure for per-node vmstats
Patchset: "Move LRU page reclaim from zones to nodes v9" This series moves LRUs from the zones to the node. While this is a current rebase, the test results were based on mmotm as of June 23rd. Conceptually, this series is simple but there are a lot of details. Some of the broad motivations for this are; 1. The residency of a page partially depends on what zone the page was allocated from. This is partially combatted by the fair zone allocation policy but that is a partial solution that introduces overhead in the page allocator paths. 2. Currently, reclaim on node 0 behaves slightly different to node 1. For example, direct reclaim scans in zonelist order and reclaims even if the zone is over the high watermark regardless of the age of pages in that LRU. Kswapd on the other hand starts reclaim on the highest unbalanced zone. A difference in distribution of file/anon pages due to when they were allocated results can result in a difference in again. While the fair zone allocation policy mitigates some of the problems here, the page reclaim results on a multi-zone node will always be different to a single-zone node. it was scheduled on as a result. 3. kswapd and the page allocator scan zones in the opposite order to avoid interfering with each other but it's sensitive to timing. This mitigates the page allocator using pages that were allocated very recently in the ideal case but it's sensitive to timing. When kswapd is allocating from lower zones then it's great but during the rebalancing of the highest zone, the page allocator and kswapd interfere with each other. It's worse if the highest zone is small and difficult to balance. 4. slab shrinkers are node-based which makes it harder to identify the exact relationship between slab reclaim and LRU reclaim. The reason we have zone-based reclaim is that we used to have large highmem zones in common configurations and it was necessary to quickly find ZONE_NORMAL pages for reclaim. Today, this is much less of a concern as machines with lots of memory will (or should) use 64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are rare. Machines that do use highmem should have relatively low highmem:lowmem ratios than we worried about in the past. Conceptually, moving to node LRUs should be easier to understand. The page allocator plays fewer tricks to game reclaim and reclaim behaves similarly on all nodes. The series has been tested on a 16 core UMA machine and a 2-socket 48 core NUMA machine. The UMA results are presented in most cases as the NUMA machine behaved similarly. pagealloc --------- This is a microbenchmark that shows the benefit of removing the fair zone allocation policy. It was tested uip to order-4 but only orders 0 and 1 are shown as the other orders were comparable. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%) Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%) Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%) Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%) Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%) Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%) Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%) Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%) Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%) Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%) Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%) Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%) Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%) Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%) Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%) Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%) Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%) Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%) Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%) Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%) Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%) Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%) Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%) Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%) Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%) Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%) Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%) This shows a steady improvement throughout. The primary benefit is from reduced system CPU usage which is obvious from the overall times; 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 User 189.19 191.80 System 2604.45 2533.56 Elapsed 2855.30 2786.39 The vmstats also showed that the fair zone allocation policy was definitely removed as can be seen here; 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v8 DMA32 allocs 28794729769 0 Normal allocs 48432501431 77227309877 Movable allocs 0 0 tiobench on ext4 ---------------- tiobench is a benchmark that artifically benefits if old pages remain resident while new pages get reclaimed. The fair zone allocation policy mitigates this problem so pages age fairly. While the benchmark has problems, it is important that tiobench performance remains constant as it implies that page aging problems that the fair zone allocation policy fixes are not re-introduced. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%) Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%) Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%) Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%) Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%) Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%) Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%) Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%) Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%) Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%) Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%) Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%) Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%) Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%) Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%) Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%) Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%) Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%) Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%) Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%) Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 approx-v9 User 645.72 525.90 System 403.85 331.75 Elapsed 6795.36 6783.67 This shows that the series has little or not impact on tiobench which is desirable and a reduction in system CPU usage. It indicates that the fair zone allocation policy was removed in a manner that didn't reintroduce one class of page aging bug. There were only minor differences in overall reclaim activity 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Minor Faults 645838 647465 Major Faults 573 640 Swap Ins 0 0 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 46041453 44190646 Normal allocs 78053072 79887245 Movable allocs 0 0 Allocation stalls 24 67 Stall zone DMA 0 0 Stall zone DMA32 0 0 Stall zone Normal 0 2 Stall zone HighMem 0 0 Stall zone Movable 0 65 Direct pages scanned 10969 30609 Kswapd pages scanned 93375144 93492094 Kswapd pages reclaimed 93372243 93489370 Direct pages reclaimed 10969 30609 Kswapd efficiency 99% 99% Kswapd velocity 13741.015 13781.934 Direct efficiency 100% 100% Direct velocity 1.614 4.512 Percentage direct scans 0% 0% kswapd activity was roughly comparable. There were differences in direct reclaim activity but negligible in the context of the overall workload (velocity of 4 pages per second with the patches applied, 1.6 pages per second in the baseline kernel). pgbench read-only large configuration on ext4 --------------------------------------------- pgbench is a database benchmark that can be sensitive to page reclaim decisions. This also checks if removing the fair zone allocation policy is safe pgbench Transactions 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%) Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%) Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%) Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%) Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%) Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%) Negligible differences again. As with tiobench, overall reclaim activity was comparable. bonnie++ on ext4 ---------------- No interesting performance difference, negligible differences on reclaim stats. paralleldd on ext4 ------------------ This workload uses varying numbers of dd instances to read large amounts of data from disk. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%) Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%) Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%) Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%) Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%) Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 User 1548.01 1552.44 System 8609.71 8515.08 Elapsed 3587.10 3594.54 There is little or no change in performance but some drop in system CPU usage. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Minor Faults 362662 367360 Major Faults 1204 1143 Swap Ins 22 0 Swap Outs 2855 1029 DMA allocs 0 0 DMA32 allocs 31409797 28837521 Normal allocs 46611853 49231282 Movable allocs 0 0 Direct pages scanned 0 0 Kswapd pages scanned 40845270 40869088 Kswapd pages reclaimed 40830976 40855294 Direct pages reclaimed 0 0 Kswapd efficiency 99% 99% Kswapd velocity 11386.711 11369.769 Direct efficiency 100% 100% Direct velocity 0.000 0.000 Percentage direct scans 0% 0% Page writes by reclaim 2855 1029 Page writes file 0 0 Page writes anon 2855 1029 Page reclaim immediate 771 1628 Sector Reads 293312636 293536360 Sector Writes 18213568 18186480 Page rescued immediate 0 0 Slabs scanned 128257 132747 Direct inode steals 181 56 Kswapd inode steals 59 1131 It basically shows that kswapd was active at roughly the same rate in both kernels. There was also comparable slab scanning activity and direct reclaim was avoided in both cases. There appears to be a large difference in numbers of inodes reclaimed but the workload has few active inodes and is likely a timing artifact. stutter ------- stutter simulates a simple workload. One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. The primary metric is checking for mmap latency. stutter 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%) 1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%) 2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%) 3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%) Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%) Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%) Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%) Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%) Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%) Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%) Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%) Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%) Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%) Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%) Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%) Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%) Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%) This shows a number of improvements with the worst-case outlier greatly improved. Some of the vmstats are interesting 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Swap Ins 163 502 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 618719206 1381662383 Normal allocs 891235743 564138421 Movable allocs 0 0 Allocation stalls 2603 1 Direct pages scanned 216787 2 Kswapd pages scanned 50719775 41778378 Kswapd pages reclaimed 41541765 41777639 Direct pages reclaimed 209159 0 Kswapd efficiency 81% 99% Kswapd velocity 16859.554 14329.059 Direct efficiency 96% 0% Direct velocity 72.061 0.001 Percentage direct scans 0% 0% Page writes by reclaim 6215049 0 Page writes file 6215049 0 Page writes anon 0 0 Page reclaim immediate 70673 90 Sector Reads 81940800 81680456 Sector Writes 100158984 98816036 Page rescued immediate 0 0 Slabs scanned 1366954 22683 While this is not guaranteed in all cases, this particular test showed a large reduction in direct reclaim activity. It's also worth noting that no page writes were issued from reclaim context. This series is not without its hazards. There are at least three areas that I'm concerned with even though I could not reproduce any problems in that area. 1. Reclaim/compaction is going to be affected because the amount of reclaim is no longer targetted at a specific zone. Compaction works on a per-zone basis so there is no guarantee that reclaiming a few THP's worth page pages will have a positive impact on compaction success rates. 2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers are called is now different. This may or may not be a problem but if it is, it'll be because shrinkers are not called enough and some balancing is required. 3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are distributed between zones and the fair zone allocation policy used to do something very similar for anon. The distribution is now different but not necessarily in any way that matters but it's still worth bearing in mind. VM statistic counters for reclaim decisions are zone-based. If the kernel is to reclaim on a per-node basis then we need to track per-node statistics but there is no infrastructure for that. The most notable change is that the old node_page_state is renamed to sum_zone_node_page_state. The new node_page_state takes a pglist_data and uses per-node stats but none exist yet. There is some renaming such as vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical patch with no functional change. There is a lot of similarity between the node and zone helpers which is unfortunate but there was no obvious way of reusing the code and maintaining type safety. Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 65c453778a |
mm, rmap: account shmem thp pages
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 95ecedcd6a |
thp, vmstats: add counters for huge file pages
THP_FILE_ALLOC: how many times huge page was allocated and put page cache. THP_FILE_MAPPED: how many times file huge page was mapped. Link: http://lkml.kernel.org/r/1466021202-61880-13-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 91537fee00 |
mm: add NR_ZSMALLOC to vmstat
zram is very popular for some of the embedded world (e.g., TV, mobile phones). On those system, zsmalloc's consumed memory size is never trivial (one of example from real product system, total memory: 800M, zsmalloc consumed: 150M), so we have used this out of tree patch to monitor system memory behavior via /proc/vmstat. With zsmalloc in vmstat, it helps in tracking down system behavior due to memory usage. [minchan@kernel.org: zsmalloc: follow up zsmalloc vmstat] Link: http://lkml.kernel.org/r/20160607091737.GC23435@bbox [akpm@linux-foundation.org: fix build with CONFIG_ZSMALLOC=m] Link: http://lkml.kernel.org/r/1464919731-13255-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Chanho Min <chanho.min@lge.com> Cc: Chan Gyun Jeong <chan.jeong@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Shi | f86e427197 |
mm: check the return value of lookup_page_ext for all call sites
Per the discussion with Joonsoo Kim [1], we need check the return value of lookup_page_ext() for all call sites since it might return NULL in some cases, although it is unlikely, i.e. memory hotplug. Tested with ltp with "page_owner=0". [1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE [akpm@linux-foundation.org: fix build-breaking typos] [arnd@arndb.de: fix build problems from lookup_page_ext] Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org Signed-off-by: Yang Shi <yang.shi@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Lameter | 7b8da4c7f0 |
vmstat: get rid of the ugly cpu_stat_off variable
The cpu_stat_off variable is unecessary since we can check if a workqueue request is pending otherwise. Removal of cpu_stat_off makes it pretty easy for the vmstat shepherd to ensure that the proper things happen. Removing the state also removes all races related to it. Should a workqueue not be scheduled as needed for vmstat_update then the shepherd will notice and schedule it as needed. Should a workqueue be unecessarily scheduled then the vmstat updater will disable it. [akpm@linux-foundation.org: fix indentation, per Michal] Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1605061306460.17934@east.gentwo.org Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Tejun Heo <htejun@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 0b423ca22f |
mm, page_alloc: inline pageblock lookup in page free fast paths
The function call overhead of get_pfnblock_flags_mask() is measurable in the page free paths. This patch uses an inlined version that is faster. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 060e74173f |
mm, page_alloc: inline zone_statistics
zone_statistics has one call-site but it's a public function. Make it static and inline. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 statbranch-v1r20 statinline-v1r20 Min alloc-odr0-1 419.00 ( 0.00%) 412.00 ( 1.67%) Min alloc-odr0-2 305.00 ( 0.00%) 301.00 ( 1.31%) Min alloc-odr0-4 250.00 ( 0.00%) 247.00 ( 1.20%) Min alloc-odr0-8 219.00 ( 0.00%) 215.00 ( 1.83%) Min alloc-odr0-16 203.00 ( 0.00%) 199.00 ( 1.97%) Min alloc-odr0-32 195.00 ( 0.00%) 191.00 ( 2.05%) Min alloc-odr0-64 191.00 ( 0.00%) 187.00 ( 2.09%) Min alloc-odr0-128 189.00 ( 0.00%) 185.00 ( 2.12%) Min alloc-odr0-256 198.00 ( 0.00%) 193.00 ( 2.53%) Min alloc-odr0-512 210.00 ( 0.00%) 207.00 ( 1.43%) Min alloc-odr0-1024 216.00 ( 0.00%) 213.00 ( 1.39%) Min alloc-odr0-2048 221.00 ( 0.00%) 220.00 ( 0.45%) Min alloc-odr0-4096 227.00 ( 0.00%) 226.00 ( 0.44%) Min alloc-odr0-8192 232.00 ( 0.00%) 229.00 ( 1.29%) Min alloc-odr0-16384 232.00 ( 0.00%) 229.00 ( 1.29%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | b9f00e147f |
mm, page_alloc: reduce branches in zone_statistics
zone_statistics has more branches than it really needs to take an unlikely GFP flag into account. Reduce the number and annotate the unlikely flag. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 nocompound-v1r10 statbranch-v1r10 Min alloc-odr0-1 417.00 ( 0.00%) 419.00 ( -0.48%) Min alloc-odr0-2 308.00 ( 0.00%) 305.00 ( 0.97%) Min alloc-odr0-4 253.00 ( 0.00%) 250.00 ( 1.19%) Min alloc-odr0-8 221.00 ( 0.00%) 219.00 ( 0.90%) Min alloc-odr0-16 205.00 ( 0.00%) 203.00 ( 0.98%) Min alloc-odr0-32 199.00 ( 0.00%) 195.00 ( 2.01%) Min alloc-odr0-64 193.00 ( 0.00%) 191.00 ( 1.04%) Min alloc-odr0-128 191.00 ( 0.00%) 189.00 ( 1.05%) Min alloc-odr0-256 200.00 ( 0.00%) 198.00 ( 1.00%) Min alloc-odr0-512 212.00 ( 0.00%) 210.00 ( 0.94%) Min alloc-odr0-1024 219.00 ( 0.00%) 216.00 ( 1.37%) Min alloc-odr0-2048 225.00 ( 0.00%) 221.00 ( 1.78%) Min alloc-odr0-4096 231.00 ( 0.00%) 227.00 ( 1.73%) Min alloc-odr0-8192 234.00 ( 0.00%) 232.00 ( 0.85%) Min alloc-odr0-16384 234.00 ( 0.00%) 232.00 ( 0.85%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Hugh Dickins | 52b6f46bc1 |
mm: /proc/sys/vm/stat_refresh to force vmstat update
Provide /proc/sys/vm/stat_refresh to force an immediate update of per-cpu into global vmstats: useful to avoid a sleep(2) or whatever before checking counts when testing. Originally added to work around a bug which left counts stranded indefinitely on a cpu going idle (an inaccuracy magnified when small below-batch numbers represent "huge" amounts of memory), but I believe that bug is now fixed: nonetheless, this is still a useful knob. Its schedule_on_each_cpu() is probably too expensive just to fold into reading /proc/meminfo itself: give this mode 0600 to prevent abuse. Allow a write or a read to do the same: nothing to read, but "grep -h Shmem /proc/sys/vm/stat_refresh /proc/meminfo" is convenient. Oh, and since global_page_state() itself is careful to disguise any underflow as 0, hack in an "Invalid argument" and pr_warn() if a counter is negative after the refresh - this helped to fix a misaccounting of NR_ISOLATED_FILE in my migration code. But on recent kernels, I find that NR_ALLOC_BATCH and NR_PAGES_SCANNED often go negative some of the time. I have not yet worked out why, but have no evidence that it's actually harmful. Punt for the moment by just ignoring the anomaly on those. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | e87d59f7a2 |
mm/vmstat: make node_page_state() handles all zones by itself
node_page_state() manually adds statistics per each zone and returns total value for all zones. Whenever we add a new zone, we need to consider this function and it's really troublesome. Make it handle all zones by itself. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | a91c43c731 |
mm/vmstat: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows: -----pfn--------> N0 N1 N2 N0 N1 N2 Therefore, we need to care this overlapping when iterating pfn range. There are two places in vmstat.c that iterates pfn range and they don't consider this overlapping. Add it. Without this patch, above system could over count pageblock number on a zone. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | f9719a03de |
thp, vmstats: count deferred split events
Count how many times we put a THP in split queue. Currently, it happens on partial unmap of a THP. Rapidly growing value can indicate that an application behaves unfriendly wrt THP: often fault in huge page and then unmap part of it. This leads to unnecessary memory fragmentation and the application may require tuning. The event also can help with debugging kernel [mis-]behaviour. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 698b1b3064 |
mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 7dd80b8af0 |
mm, page_owner: convert page_owner_inited to static key
CONFIG_PAGE_OWNER attempts to impose negligible runtime overhead when enabled during compilation, but not actually enabled during runtime by boot param page_owner=on. This overhead can be further reduced using the static key mechanism, which this patch does. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 60f30350fd |
mm, page_owner: print migratetype of page and pageblock, symbolic flags
The information in /sys/kernel/debug/page_owner includes the migratetype of the pageblock the page belongs to. This is also checked against the page's migratetype (as declared by gfp_flags during its allocation), and the page is reported as Fallback if its migratetype differs from the pageblock's one. t This is somewhat misleading because in fact fallback allocation is not the only reason why these two can differ. It also doesn't direcly provide the page's migratetype, although it's possible to derive that from the gfp_flags. It's arguably better to print both page and pageblock's migratetype and leave the interpretation to the consumer than to suggest fallback allocation as the only possible reason. While at it, we can print the migratetypes as string the same way as /proc/pagetypeinfo does, as some of the numeric values depend on kernel configuration. For that, this patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part of mm/vmstat.c to mm/page_alloc.c and exports it. With the new format strings for flags, we can now also provide symbolic page and gfp flags in the /sys/kernel/debug/page_owner file. This replaces the positional printing of page flags as single letters, which might have looked nicer, but was limited to a subset of flags, and required the user to remember the letters. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b4058>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50 [<ffffffff81160523>] generic_file_read_iter+0x453/0x760 [<ffffffff811e0d57>] __vfs_read+0xa7/0xd0 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | ccde8bd401 |
vmstat: make vmstat_update deferrable
Commit
|
|
Michal Hocko | f01f17d370 |
mm, vmstat: make quiet_vmstat lighter
Mike has reported a considerable overhead of refresh_cpu_vm_stats from
the idle entry during pipe test:
12.89% [kernel] [k] refresh_cpu_vm_stats.isra.12
4.75% [kernel] [k] __schedule
4.70% [kernel] [k] mutex_unlock
3.14% [kernel] [k] __switch_to
This is caused by commit
|
|
Christoph Lameter | 587198ba52 |
vmstat: Remove BUG_ON from vmstat_update
If we detect that there is nothing to do just set the flag and do not
check if it was already set before. Races really do not matter. If the
flag is set by any code then the shepherd will start dealing with the
situation and reenable the vmstat workers when necessary again.
Since commit
|
|
Minchan Kim | 854e9ed09d |
mm: support madvise(MADV_FREE)
Linux doesn't have an ability to free pages lazy while other OS already have been supported that named by madvise(MADV_FREE). The gain is clear that kernel can discard freed pages rather than swapping out or OOM if memory pressure happens. Without memory pressure, freed pages would be reused by userspace without another additional overhead(ex, page fault + allocation + zeroing). Jason Evans said: : Facebook has been using MAP_UNINITIALIZED : (https://lkml.org/lkml/2012/1/18/308) in some of its applications for : several years, but there are operational costs to maintaining this : out-of-tree in our kernel and in jemalloc, and we are anxious to retire it : in favor of MADV_FREE. When we first enabled MAP_UNINITIALIZED it : increased throughput for much of our workload by ~5%, and although the : benefit has decreased using newer hardware and kernels, there is still : enough benefit that we cannot reasonably retire it without a replacement. : : Aside from Facebook operations, there are numerous broadly used : applications that would benefit from MADV_FREE. The ones that immediately : come to mind are redis, varnish, and MariaDB. I don't have much insight : into Android internals and development process, but I would hope to see : MADV_FREE support eventually end up there as well to benefit applications : linked with the integrated jemalloc. : : jemalloc will use MADV_FREE once it becomes available in the Linux kernel. : In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's : available: *BSD, OS X, Windows, and Solaris -- every platform except Linux : (and AIX, but I'm not sure it even compiles on AIX). The lack of : MADV_FREE on Linux forced me down a long series of increasingly : sophisticated heuristics for madvise() volume reduction, and even so this : remains a common performance issue for people using jemalloc on Linux. : Please integrate MADV_FREE; many people will benefit substantially. How it works: When madvise syscall is called, VM clears dirty bit of ptes of the range. If memory pressure happens, VM checks dirty bit of page table and if it found still "clean", it means it's a "lazyfree pages" so VM could discard the page instead of swapping out. Once there was store operation for the page before VM peek a page to reclaim, dirty bit is set so VM can swap out the page instead of discarding. One thing we should notice is that basically, MADV_FREE relies on dirty bit in page table entry to decide whether VM allows to discard the page or not. IOW, if page table entry includes marked dirty bit, VM shouldn't discard the page. However, as a example, if swap-in by read fault happens, page table entry doesn't have dirty bit so MADV_FREE could discard the page wrongly. For avoiding the problem, MADV_FREE did more checks with PageDirty and PageSwapCache. It worked out because swapped-in page lives on swap cache and since it is evicted from the swap cache, the page has PG_dirty flag. So both page flags check effectively prevent wrong discarding by MADV_FREE. However, a problem in above logic is that swapped-in page has PG_dirty still after they are removed from swap cache so VM cannot consider the page as freeable any more even if madvise_free is called in future. Look at below example for detail. ptr = malloc(); memset(ptr); .. .. .. heavy memory pressure so all of pages are swapped out .. .. var = *ptr; -> a page swapped-in and could be removed from swapcache. Then, page table doesn't mark dirty bit and page descriptor includes PG_dirty .. .. madvise_free(ptr); -> It doesn't clear PG_dirty of the page. .. .. .. .. heavy memory pressure again. .. In this time, VM cannot discard the page because the page .. has *PG_dirty* To solve the problem, this patch clears PG_dirty if only the page is owned exclusively by current process when madvise is called because PG_dirty represents ptes's dirtiness in several processes so we could clear it only if we own it exclusively. Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc and hope glibc supports it) and jemalloc/tcmalloc already have supported the feature for other OS(ex, FreeBSD) barrios@blaptop:~/benchmark/ebizzy$ lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 12 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 2 Stepping: 3 CPU MHz: 3200.185 BogoMIPS: 6400.53 Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 32K L1i cache: 32K L2 cache: 4096K NUMA node0 CPU(s): 0-11 ebizzy benchmark(./ebizzy -S 10 -n 512) Higher avg is better. vanilla-jemalloc MADV_free-jemalloc 1 thread records: 10 records: 10 avg: 2961.90 avg: 12069.70 std: 71.96(2.43%) std: 186.68(1.55%) max: 3070.00 max: 12385.00 min: 2796.00 min: 11746.00 2 thread records: 10 records: 10 avg: 5020.00 avg: 17827.00 std: 264.87(5.28%) std: 358.52(2.01%) max: 5244.00 max: 18760.00 min: 4251.00 min: 17382.00 4 thread records: 10 records: 10 avg: 8988.80 avg: 27930.80 std: 1175.33(13.08%) std: 3317.33(11.88%) max: 9508.00 max: 30879.00 min: 5477.00 min: 21024.00 8 thread records: 10 records: 10 avg: 13036.50 avg: 33739.40 std: 170.67(1.31%) std: 5146.22(15.25%) max: 13371.00 max: 40572.00 min: 12785.00 min: 24088.00 16 thread records: 10 records: 10 avg: 11092.40 avg: 31424.20 std: 710.60(6.41%) std: 3763.89(11.98%) max: 12446.00 max: 36635.00 min: 9949.00 min: 25669.00 32 thread records: 10 records: 10 avg: 11067.00 avg: 34495.80 std: 971.06(8.77%) std: 2721.36(7.89%) max: 12010.00 max: 38598.00 min: 9002.00 min: 30636.00 In summary, MADV_FREE is about much faster than MADV_DONTNEED. This patch (of 12): Add core MADV_FREE implementation. [akpm@linux-foundation.org: small cleanups] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jason Evans <je@fb.com> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: "Shaohua Li" <shli@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 122afea962 |
mm, vmstats: new THP splitting event
The patch replaces THP_SPLIT with tree events: THP_SPLIT_PAGE, THP_SPLIT_PAGE_FAILED and THP_SPLIT_PMD. It reflects the fact that we are going to be able split PMD without the compound page and that split_huge_page() can fail. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Christoph Lameter <cl@linux.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Lameter | 0eb77e9880 |
vmstat: make vmstat_updater deferrable again and shut down on idle
Currently the vmstat updater is not deferrable as a result of commit |
|
Michal Hocko | 751e5f5c75 |
vmstat: allocate vmstat_wq before it is used
kernel test robot has reported the following crash:
BUG: unable to handle kernel NULL pointer dereference at 00000100
IP: [<c1074df6>] __queue_work+0x26/0x390
*pdpt = 0000000000000000 *pde = f000ff53f000ff53 *pde = f000ff53f000ff53
Oops: 0000 [#1] PREEMPT PREEMPT SMP SMP
CPU: 0 PID: 24 Comm: kworker/0:1 Not tainted 4.4.0-rc4-00139-g373ccbe #1
Workqueue: events vmstat_shepherd
task: cb684600 ti: cb7ba000 task.ti: cb7ba000
EIP: 0060:[<c1074df6>] EFLAGS: 00010046 CPU: 0
EIP is at __queue_work+0x26/0x390
EAX: 00000046 EBX: cbb37800 ECX: cbb37800 EDX: 00000000
ESI: 00000000 EDI: 00000000 EBP: cb7bbe68 ESP: cb7bbe38
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
CR0: 8005003b CR2: 00000100 CR3: 01fd5000 CR4: 000006b0
Stack:
Call Trace:
__queue_delayed_work+0xa1/0x160
queue_delayed_work_on+0x36/0x60
vmstat_shepherd+0xad/0xf0
process_one_work+0x1aa/0x4c0
worker_thread+0x41/0x440
kthread+0xb0/0xd0
ret_from_kernel_thread+0x21/0x40
The reason is that start_shepherd_timer schedules the shepherd work item
which uses vmstat_wq (vmstat_shepherd) before setup_vmstat allocates
that workqueue so if the further initialization takes more than HZ we
might end up scheduling on a NULL vmstat_wq. This is really unlikely
but not impossible.
Fixes:
|
|
Heiko Carstens | 6cdb18ad98 |
mm/vmstat: fix overflow in mod_zone_page_state()
mod_zone_page_state() takes a "delta" integer argument. delta contains the number of pages that should be added or subtracted from a struct zone's vm_stat field. If a zone is larger than 8TB this will cause overflows. E.g. for a zone with a size slightly larger than 8TB the line mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); in mm/page_alloc.c:free_area_init_core() will result in a negative result for the NR_ALLOC_BATCH entry within the zone's vm_stat, since 8TB contain 0x8xxxxxxx pages which will be sign extended to a negative value. Fix this by changing the delta argument to long type. This could fix an early boot problem seen on s390, where we have a 9TB system with only one node. ZONE_DMA contains 2GB and ZONE_NORMAL the rest. The system is trying to allocate a GFP_DMA page but ZONE_DMA is completely empty, so it tries to reclaim pages in an endless loop. This was seen on a heavily patched 3.10 kernel. One possible explaination seem to be the overflows caused by mod_zone_page_state(). Unfortunately I did not have the chance to verify that this patch actually fixes the problem, since I don't have access to the system right now. However the overflow problem does exist anyway. Given the description that a system with slightly less than 8TB does work, this seems to be a candidate for the observed problem. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 373ccbe592 |
mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make any progress
Tetsuo Handa has reported that the system might basically livelock in
OOM condition without triggering the OOM killer.
The issue is caused by internal dependency of the direct reclaim on
vmstat counter updates (via zone_reclaimable) which are performed from
the workqueue context. If all the current workers get assigned to an
allocation request, though, they will be looping inside the allocator
trying to reclaim memory but zone_reclaimable can see stalled numbers so
it will consider a zone reclaimable even though it has been scanned way
too much. WQ concurrency logic will not consider this situation as a
congested workqueue because it relies that worker would have to sleep in
such a situation. This also means that it doesn't try to spawn new
workers or invoke the rescuer thread if the one is assigned to the
queue.
In order to fix this issue we need to do two things. First we have to
let wq concurrency code know that we are in trouble so we have to do a
short sleep. In order to prevent from issues handled by
|
|
Vlastimil Babka | 475a2f905d |
mm: fix swapped Movable and Reclaimable in /proc/pagetypeinfo
Commit |
|
Mel Gorman | 0aaa29a56e |
mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand
High-order watermark checking exists for two reasons -- kswapd high-order awareness and protection for high-order atomic requests. Historically the kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as high-order free pages for as long as possible. This patch introduces MIGRATE_HIGHATOMIC that reserves pageblocks for high-order atomic allocations on demand and avoids using those blocks for order-0 allocations. This is more flexible and reliable than MIGRATE_RESERVE was. A MIGRATE_HIGHORDER pageblock is created when an atomic high-order allocation request steals a pageblock but limits the total number to 1% of the zone. Callers that speculatively abuse atomic allocations for long-lived high-order allocations to access the reserve will quickly fail. Note that SLUB is currently not such an abuser as it reclaims at least once. It is possible that the pageblock stolen has few suitable high-order pages and will need to steal again in the near future but there would need to be strong justification to search all pageblocks for an ideal candidate. The pageblocks are unreserved if an allocation fails after a direct reclaim attempt. The watermark checks account for the reserved pageblocks when the allocation request is not a high-order atomic allocation. The reserved pageblocks can not be used for order-0 allocations. This may allow temporary wastage until a failed reclaim reassigns the pageblock. This is deliberate as the intent of the reservation is to satisfy a limited number of atomic high-order short-lived requests if the system requires them. The stutter benchmark was used to evaluate this but while it was running there was a systemtap script that randomly allocated between 1 high-order page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This is much larger than the potential reserve and it does not attempt to be realistic. It is intended to stress random high-order allocations from an unknown source, show that there is a reduction in failures without introducing an anomaly where atomic allocations are more reliable than regular allocations. The amount of memory reserved varied throughout the workload as reserves were created and reclaimed under memory pressure. The allocation failures once the workload warmed up were as follows; 4.2-rc5-vanilla 70% 4.2-rc5-atomic-reserve 56% The failure rate was also measured while building multiple kernels. The failure rate was 14% but is 6% with this patch applied. Overall, this is a small reduction but the reserves are small relative to the number of allocation requests. In early versions of the patch, the failure rate reduced by a much larger amount but that required much larger reserves and perversely made atomic allocations seem more reliable than regular allocations. [yalin.wang2010@gmail.com: fix redundant check and a memory leak] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 974a786e63 |
mm, page_alloc: remove MIGRATE_RESERVE
MIGRATE_RESERVE preserves an old property of the buddy allocator that existed prior to fragmentation avoidance -- min_free_kbytes worth of pages tended to remain contiguous until the only alternative was to fail the allocation. At the time it was discovered that high-order atomic allocations relied on this property so MIGRATE_RESERVE was introduced. A later patch will introduce an alternative MIGRATE_HIGHATOMIC so this patch deletes MIGRATE_RESERVE and supporting code so it'll be easier to review. Note that this patch in isolation may look like a false regression if someone was bisecting high-order atomic allocation failures. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrew Morton | c2d42c16ad |
mm/vmstat.c: uninline node_page_state()
With x86_64 (config http://ozlabs.org/~akpm/config-akpm2.txt) and old gcc (4.4.4), drivers/base/node.c:node_read_meminfo() is using 2344 bytes of stack. Uninlining node_page_state() reduces this to 440 bytes. The stack consumption issue is fixed by newer gcc (4.8.4) however with that compiler this patch reduces the node.o text size from 7314 bytes to 4578. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | 176bed1de5 |
vmstat: explicitly schedule per-cpu work on the CPU we need it to run on
The vmstat code uses "schedule_delayed_work_on()" to do the initial
startup of the delayed work on the right CPU, but then once it was
started it would use the non-cpu-specific "schedule_delayed_work()" to
re-schedule it on that CPU.
That just happened to schedule it on the same CPU historically (well, in
almost all situations), but the code _requires_ this work to be per-cpu,
and should say so explicitly rather than depend on the non-cpu-specific
scheduling to schedule on the current CPU.
The timer code is being changed to not be as single-minded in always
running things on the calling CPU.
See also commit
|
|
Christoph Lameter | 57c2e36b6f |
vmstat: Reduce time interval to stat update on idle cpu
It was noted that the vm stat shepherd runs every 2 seconds and that the vmstat update is then scheduled 2 seconds in the future. This yields an interval of double the time interval which is not desired. Change the shepherd so that it does not delay the vmstat update on the other cpu. We stil have to use schedule_delayed_work since we are using a delayed_work_struct but we can set the delay to 0. Signed-off-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | ba4877b9ca |
vmstat: do not use deferrable delayed work for vmstat_update
Vinayak Menon has reported that an excessive number of tasks was throttled in the direct reclaim inside too_many_isolated() because NR_ISOLATED_FILE was relatively high compared to NR_INACTIVE_FILE. However it turned out that the real number of NR_ISOLATED_FILE was 0 and the per-cpu vm_stat_diff wasn't transferred into the global counter. vmstat_work which is responsible for the sync is defined as deferrable delayed work which means that the defined timeout doesn't wake up an idle CPU. A CPU might stay in an idle state for a long time and general effort is to keep such a CPU in this state as long as possible which might lead to all sorts of troubles for vmstat consumers as can be seen with the excessive direct reclaim throttling. This patch basically reverts |
|
Andrew Morton | 3c48687109 |
mm/vmstat.c: fix/cleanup ifdefs
CONFIG_COMPACTION=y, CONFIG_DEBUG_FS=n: mm/vmstat.c:690: warning: 'frag_start' defined but not used mm/vmstat.c:702: warning: 'frag_next' defined but not used mm/vmstat.c:710: warning: 'frag_stop' defined but not used mm/vmstat.c:715: warning: 'walk_zones_in_node' defined but not used It's all a bit of a tangly mess and it's unclear why CONFIG_COMPACTION figures in there at all. Move frag_start/frag_next/frag_stop and migratetype_names[] into the existing CONFIG_PROC_FS block. walk_zones_in_node() gets a special ifdef. Also move the #include lines up to where #include lines live. [axel.lin@ingics.com: fix build error when !CONFIG_PROC_FS] Signed-off-by: Axel Lin <axel.lin@ingics.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Davidlohr Bueso | f5f302e212 |
mm,vmacache: count number of system-wide flushes
These flushes deal with sequence number overflows, such as for long lived threads. These are rare, but interesting from a debugging PoV. As such, display the number of flushes when vmacache debugging is enabled. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 48c96a3685 |
mm/page_owner: keep track of page owners
This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Lameter | 7cc36bbddd |
vmstat: on-demand vmstat workers V8
vmstat workers are used for folding counter differentials into the zone, per node and global counters at certain time intervals. They currently run at defined intervals on all processors which will cause some holdoff for processors that need minimal intrusion by the OS. The current vmstat_update mechanism depends on a deferrable timer firing every other second by default which registers a work queue item that runs on the local CPU, with the result that we have 1 interrupt and one additional schedulable task on each CPU every 2 seconds If a workload indeed causes VM activity or multiple tasks are running on a CPU, then there are probably bigger issues to deal with. However, some workloads dedicate a CPU for a single CPU bound task. This is done in high performance computing, in high frequency financial applications, in networking (Intel DPDK, EZchip NPS) and with the advent of systems with more and more CPUs over time, this may become more and more common to do since when one has enough CPUs one cares less about efficiently sharing a CPU with other tasks and more about efficiently monopolizing a CPU per task. The difference of having this timer firing and workqueue kernel thread scheduled per second can be enormous. An artificial test measuring the worst case time to do a simple "i++" in an endless loop on a bare metal system and under Linux on an isolated CPU with dynticks and with and without this patch, have Linux match the bare metal performance (~700 cycles) with this patch and loose by couple of orders of magnitude (~200k cycles) without it[*]. The loss occurs for something that just calculates statistics. For networking applications, for example, this could be the difference between dropping packets or sustaining line rate. Statistics are important and useful, but it would be great if there would be a way to not cause statistics gathering produce a huge performance difference. This patche does just that. This patch creates a vmstat shepherd worker that monitors the per cpu differentials on all processors. If there are differentials on a processor then a vmstat worker local to the processors with the differentials is created. That worker will then start folding the diffs in regular intervals. Should the worker find that there is no work to be done then it will make the shepherd worker monitor the differentials again. With this patch it is possible then to have periods longer than 2 seconds without any OS event on a "cpu" (hardware thread). The patch shows a very minor increased in system performance. hackbench -s 512 -l 2000 -g 15 -f 25 -P Results before the patch: Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.992 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.971 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 5.063 Hackbench after the patch: Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.973 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.990 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.993 [fengguang.wu@intel.com: cpu_stat_off can be static] Signed-off-by: Christoph Lameter <cl@linux.com> Reviewed-by: Gilad Ben-Yossef <gilad@benyossef.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Max Krasnyansky <maxk@qti.qualcomm.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Konstantin Khlebnikov | 09316c09dd |
mm/balloon_compaction: add vmstat counters and kpageflags bit
Always mark pages with PageBalloon even if balloon compaction is disabled and expose this mark in /proc/kpageflags as KPF_BALLOON. Also this patch adds three counters into /proc/vmstat: "balloon_inflate", "balloon_deflate" and "balloon_migrate". They accumulate balloon activity. Current size of balloon is (balloon_inflate - balloon_deflate) pages. All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON. It should be selected by ballooning driver which wants use this feature. Currently virtio-balloon is the only user. Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | bb0b6dffa2 |
mm: vmscan: only update per-cpu thresholds for online CPU
When kswapd is awake reclaiming, the per-cpu stat thresholds are lowered to get more accurate counts to avoid breaching watermarks. This threshold update iterates over all possible CPUs which is unnecessary. Only online CPUs need to be updated. If a new CPU is onlined, refresh_zone_stat_thresholds() will set the thresholds correctly. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 0d5d823ab4 |
mm: move zone->pages_scanned into a vmstat counter
zone->pages_scanned is a write-intensive cache line during page reclaim and it's also updated during page free. Move the counter into vmstat to take advantage of the per-cpu updates and do not update it in the free paths unless necessary. On a small UMA machine running tiobench the difference is marginal. On a 4-node machine the overhead is more noticable. Note that automatic NUMA balancing was disabled for this test as otherwise the system CPU overhead is unpredictable. 3.16.0-rc3 3.16.0-rc3 3.16.0-rc3 vanillarearrange-v5 vmstat-v5 User 746.94 759.78 774.56 System 65336.22 58350.98 32847.27 Elapsed 27553.52 27282.02 27415.04 Note that the overhead reduction will vary depending on where exactly pages are allocated and freed. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 3484b2de94 |
mm: rearrange zone fields into read-only, page alloc, statistics and page reclaim lines
The arrangement of struct zone has changed over time and now it has reached the point where there is some inappropriate sharing going on. On x86-64 for example o The zone->node field is shared with the zone lock and zone->node is accessed frequently from the page allocator due to the fair zone allocation policy. o span_seqlock is almost never used by shares a line with free_area o Some zone statistics share a cache line with the LRU lock so reclaim-intensive and allocator-intensive workloads can bounce the cache line on a stat update This patch rearranges struct zone to put read-only and read-mostly fields together and then splits the page allocator intensive fields, the zone statistics and the page reclaim intensive fields into their own cache lines. Note that the type of lowmem_reserve changes due to the watermark calculations being signed and avoiding a signed/unsigned conversion there. On the test configuration I used the overall size of struct zone shrunk by one cache line. On smaller machines, this is not likely to be noticable. However, on a 4-node NUMA machine running tiobench the system CPU overhead is reduced by this patch. 3.16.0-rc3 3.16.0-rc3 vanillarearrange-v5r9 User 746.94 759.78 System 65336.22 58350.98 Elapsed 27553.52 27282.02 Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jianyu Zhan | bea04b0732 |
mm: use the light version __mod_zone_page_state in mlocked_vma_newpage()
mlocked_vma_newpage() is called with pte lock held(a spinlock), which implies preemtion disabled, and the vm stat counter is not modified from interrupt context, so we need not use an irq-safe mod_zone_page_state() here, using a light-weight version __mod_zone_page_state() would be OK. This patch also documents __mod_zone_page_state() and some of its callsites. The comment above __mod_zone_page_state() is from Hugh Dickins, and acked by Christoph. Most credits to Hugh and Christoph for the clarification on the usage of the __mod_zone_page_state(). [akpm@linux-foundation.org: coding-style fixes] Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Lameter | 7c8e0181e6 |
mm: replace __get_cpu_var uses with this_cpu_ptr
Replace places where __get_cpu_var() is used for an address calculation with this_cpu_ptr(). Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Davidlohr Bueso | 4f115147ff |
mm,vmacache: add debug data
Introduce a CONFIG_DEBUG_VM_VMACACHE option to enable counting the cache hit rate -- exported in /proc/vmstat. Any updates to the caching scheme needs this kind of data, thus it can save some work re-implementing the counting all the time. Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | 467a9e1633 |
CPU hotplug notifiers registration fixes for 3.15-rc1
The purpose of this single series of commits from Srivatsa S Bhat (with a small piece from Gautham R Shenoy) touching multiple subsystems that use CPU hotplug notifiers is to provide a way to register them that will not lead to deadlocks with CPU online/offline operations as described in the changelog of commit |
|
Dave Hansen | 5509a5d27b |
drop_caches: add some documentation and info message
There is plenty of anecdotal evidence and a load of blog posts suggesting that using "drop_caches" periodically keeps your system running in "tip top shape". Perhaps adding some kernel documentation will increase the amount of accurate data on its use. If we are not shrinking caches effectively, then we have real bugs. Using drop_caches will simply mask the bugs and make them harder to find, but certainly does not fix them, nor is it an appropriate "workaround" to limit the size of the caches. On the contrary, there have been bug reports on issues that turned out to be misguided use of cache dropping. Dropping caches is a very drastic and disruptive operation that is good for debugging and running tests, but if it creates bug reports from production use, kernel developers should be aware of its use. Add a bit more documentation about it, a syslog message to track down abusers, and vmstat drop counters to help analyze problem reports. [akpm@linux-foundation.org: checkpatch fixes] [hannes@cmpxchg.org: add runtime suppression control] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 449dd6984d |
mm: keep page cache radix tree nodes in check
Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | a528910e12 |
mm: thrash detection-based file cache sizing
The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Srivatsa S. Bhat | 0be94bad0b |
mm, vmstat: Fix CPU hotplug callback registration
Subsystems that want to register CPU hotplug callbacks, as well as perform initialization for the CPUs that are already online, often do it as shown below: get_online_cpus(); for_each_online_cpu(cpu) init_cpu(cpu); register_cpu_notifier(&foobar_cpu_notifier); put_online_cpus(); This is wrong, since it is prone to ABBA deadlocks involving the cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently with CPU hotplug operations). Instead, the correct and race-free way of performing the callback registration is: cpu_notifier_register_begin(); for_each_online_cpu(cpu) init_cpu(cpu); /* Note the use of the double underscored version of the API */ __register_cpu_notifier(&foobar_cpu_notifier); cpu_notifier_register_done(); Fix the vmstat code in the MM subsystem by using this latter form of callback registration. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Dave Hansen <dave@sr71.net> Cc: Ingo Molnar <mingo@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
|
Mel Gorman | ec65993443 |
mm, x86: Account for TLB flushes only when debugging
Bisection between 3.11 and 3.12 fingered commit
|
|
Mel Gorman | 72403b4a0f |
mm: numa: return the number of base pages altered by protection changes
Commit
|
|
Toshi Kani | 807a1bd2b2 |
mm: clear N_CPU from node_states at CPU offline
vmstat_cpuup_callback() is a CPU notifier callback, which marks N_CPU to a node at CPU online event. However, it does not update this N_CPU info at CPU offline event. Changed vmstat_cpuup_callback() to clear N_CPU when the last CPU in the node is put into offline, i.e. the node no longer has any online CPU. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Toshi Kani | d7e0b37a87 |
mm: set N_CPU to node_states during boot
After a system booted, N_CPU is not set to any node as has_cpu shows an empty line. # cat /sys/devices/system/node/has_cpu (show-empty-line) setup_vmstat() registers its CPU notifier callback, vmstat_cpuup_callback(), which marks N_CPU to a node when a CPU is put into online. However, setup_vmstat() is called after all CPUs are launched in the boot sequence. Changed setup_vmstat() to mark N_CPU to the nodes with online CPUs at boot, which is consistent with other operations in vmstat_cpuup_callback(), i.e. start_cpu_timer() and refresh_zone_stat_thresholds(). Also added get_online_cpus() to protect the for_each_online_cpu() loop. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Lisa Du | 6e543d5780 |
mm: vmscan: fix do_try_to_free_pages() livelock
This patch is based on KOSAKI's work and I add a little more description, please refer https://lkml.org/lkml/2012/6/14/74. Currently, I found system can enter a state that there are lots of free pages in a zone but only order-0 and order-1 pages which means the zone is heavily fragmented, then high order allocation could make direct reclaim path's long stall(ex, 60 seconds) especially in no swap and no compaciton enviroment. This problem happened on v3.4, but it seems issue still lives in current tree, the reason is do_try_to_free_pages enter live lock: kswapd will go to sleep if the zones have been fully scanned and are still not balanced. As kswapd thinks there's little point trying all over again to avoid infinite loop. Instead it changes order from high-order to 0-order because kswapd think order-0 is the most important. Look at |
|
Christoph Lameter | fbc2edb053 |
vmstat: use this_cpu() to avoid irqon/off sequence in refresh_cpu_vm_stats
Disabling interrupts repeatedly can be avoided in the inner loop if we use a this_cpu operation. Signed-off-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Lameter | 4edb0748b2 |
vmstat: create fold_diff
Both functions that update global counters use the same mechanism. Create a function that contains the common code. Signed-off-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Lameter | 2bb921e526 |
vmstat: create separate function to fold per cpu diffs into local counters
The main idea behind this patchset is to reduce the vmstat update overhead by avoiding interrupt enable/disable and the use of per cpu atomics. This patch (of 3): It is better to have a separate folding function because refresh_cpu_vm_stats() also does other things like expire pages in the page allocator caches. If we have a separate function then refresh_cpu_vm_stats() is only called from the local cpu which allows additional optimizations. The folding function is only called when a cpu is being downed and therefore no other processor will be accessing the counters. Also simplifies synchronization. [akpm@linux-foundation.org: fix UP build] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 81c0a2bb51 |
mm: page_alloc: fair zone allocator policy
Each zone that holds userspace pages of one workload must be aged at a speed proportional to the zone size. Otherwise, the time an individual page gets to stay in memory depends on the zone it happened to be allocated in. Asymmetry in the zone aging creates rather unpredictable aging behavior and results in the wrong pages being reclaimed, activated etc. But exactly this happens right now because of the way the page allocator and kswapd interact. The page allocator uses per-node lists of all zones in the system, ordered by preference, when allocating a new page. When the first iteration does not yield any results, kswapd is woken up and the allocator retries. Due to the way kswapd reclaims zones below the high watermark while a zone can be allocated from when it is above the low watermark, the allocator may keep kswapd running while kswapd reclaim ensures that the page allocator can keep allocating from the first zone in the zonelist for extended periods of time. Meanwhile the other zones rarely see new allocations and thus get aged much slower in comparison. The result is that the occasional page placed in lower zones gets relatively more time in memory, even gets promoted to the active list after its peers have long been evicted. Meanwhile, the bulk of the working set may be thrashing on the preferred zone even though there may be significant amounts of memory available in the lower zones. Even the most basic test -- repeatedly reading a file slightly bigger than memory -- shows how broken the zone aging is. In this scenario, no single page should be able stay in memory long enough to get referenced twice and activated, but activation happens in spades: $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 0 nr_inactive_file 0 nr_active_file 8 nr_inactive_file 1582 nr_active_file 11994 $ cat data data data data >/dev/null $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 70 nr_inactive_file 258753 nr_active_file 443214 nr_inactive_file 149793 nr_active_file 12021 Fix this with a very simple round robin allocator. Each zone is allowed a batch of allocations that is proportional to the zone's size, after which it is treated as full. The batch counters are reset when all zones have been tried and the allocator enters the slowpath and kicks off kswapd reclaim. Allocation and reclaim is now fairly spread out to all available/allowable zones: $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 0 nr_inactive_file 174 nr_active_file 4865 nr_inactive_file 53 nr_active_file 860 $ cat data data data data >/dev/null $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 0 nr_inactive_file 666622 nr_active_file 4988 nr_inactive_file 190969 nr_active_file 937 When zone_reclaim_mode is enabled, allocations will now spread out to all zones on the local node, not just the first preferred zone (which on a 4G node might be a tiny Normal zone). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Paul Bolle <paul.bollee@gmail.com> Cc: Zlatko Calusic <zcalusic@bitsync.net> Tested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dave Hansen | 6df46865ff |
mm: vmstats: track TLB flush stats on UP too
The previous patch doing vmstats for TLB flushes ("mm: vmstats: tlb flush counters") effectively missed UP since arch/x86/mm/tlb.c is only compiled for SMP. UP systems do not do remote TLB flushes, so compile those counters out on UP. arch/x86/kernel/cpu/mtrr/generic.c calls __flush_tlb() directly. This is probably an optimization since both the mtrr code and __flush_tlb() write cr4. It would probably be safe to make that a flush_tlb_all() (and then get these statistics), but the mtrr code is ancient and I'm hesitant to touch it other than to just stick in the counters. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dave Hansen | 9824cf9753 |
mm: vmstats: tlb flush counters
I was investigating some TLB flush scaling issues and realized that we do not have any good methods for figuring out how many TLB flushes we are doing. It would be nice to be able to do these in generic code, but the arch-independent calls don't explicitly specify whether we actually need to do remote flushes or not. In the end, we really need to know if we actually _did_ global vs. local invalidations, so that leaves us with few options other than to muck with the counters from arch-specific code. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Paul Gortmaker | 0db0628d90 |
kernel: delete __cpuinit usage from all core kernel files
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit
|