The main new feature this time is support in HV nested KVM for passing
a device that is emulated by a level 0 hypervisor and presented to
level 1 as a PCI device through to a level 2 guest using VFIO.
Apart from that there are improvements for migration of radix guests
under HV KVM and some other fixes and cleanups.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcGFzEAAoJEJ2a6ncsY3GfKjoH/Azcf8QIO5ftyHrjazFZOSUh
5Lr24HZTYHheowp6obzuZWRAIyckHmflRmOkv8RVGuA8+Sp+m5pBxN3WTVPOwDUh
WanOWVGJsuhl6qATmkm7xIxmYhQEyLxVNbnWva7WXuZ92rgGCNfHtByHWAx/7vTe
q5Shr4fLIQ8HRzor8Xqqph1I0hQNTE9VsaK1hW/PxI0gsO8qjDwOR8SDpT/aaJrS
Sir+lM0TwCbJREuObDxYAXn1OWy8rMYjlb9fEBv5tmPCQKiB9vJz4tV+ahR9eJ14
PEF57MoBOGwzQXo4geFLuo/Bu8fDygKsKQX1eYGcn6tRGA4pnTxzYl0+dHLBkOM=
=3WkD
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.21 from Paul Mackerras
The main new feature this time is support in HV nested KVM for passing
a device that is emulated by a level 0 hypervisor and presented to
level 1 as a PCI device through to a level 2 guest using VFIO.
Apart from that there are improvements for migration of radix guests
under HV KVM and some other fixes and cleanups.
Allow for a device which is being emulated at L0 (the host) for an L1
guest to be passed through to a nested (L2) guest.
The existing kvmppc_hv_emulate_mmio function can be used here. The main
challenge is that for a load the result must be stored into the L2 gpr,
not an L1 gpr as would normally be the case after going out to qemu to
complete the operation. This presents a challenge as at this point the
L2 gpr state has been written back into L1 memory.
To work around this we store the address in L1 memory of the L2 gpr
where the result of the load is to be stored and use the new io_gpr
value KVM_MMIO_REG_NESTED_GPR to indicate that this is a nested load for
which completion must be done when returning back into the kernel. Then
in kvmppc_complete_mmio_load() the resultant value is written into L1
memory at the location of the indicated L2 gpr.
Note that we don't currently let an L1 guest emulate a device for an L2
guest which is then passed through to an L3 guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The functions kvmppc_st and kvmppc_ld are used to access guest memory
from the host using a guest effective address. They do so by translating
through the process table to obtain a guest real address and then using
kvm_read_guest or kvm_write_guest to make the access with the guest real
address.
This method of access however only works for L1 guests and will give the
incorrect results for a nested guest.
We can however use the store_to_eaddr and load_from_eaddr kvmppc_ops to
perform the access for a nested guesti (and a L1 guest). So attempt this
method first and fall back to the old method if this fails and we aren't
running a nested guest.
At this stage there is no fall back method to perform the access for a
nested guest and this is left as a future improvement. For now we will
return to the nested guest and rely on the fact that a translation
should be faulted in before retrying the access.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The kvm capability KVM_CAP_SPAPR_TCE_VFIO is used to indicate the
availability of in kernel tce acceleration for vfio. However it is
currently the case that this is only available on a powernv machine,
not for a pseries machine.
Thus make this capability dependent on having the cpu feature
CPU_FTR_HVMODE.
[paulus@ozlabs.org - fixed compilation for Book E.]
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, kvm_arch_commit_memory_region() gets called with a
parameter indicating what type of change is being made to the memslot,
but it doesn't pass it down to the platform-specific memslot commit
functions. This adds the `change' parameter to the lower-level
functions so that they can use it in future.
[paulus@ozlabs.org - fix book E also.]
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With this, userspace can enable a KVM-HV guest to run nested guests
under it.
The administrator can control whether any nested guests can be run;
setting the "nested" module parameter to false prevents any guests
becoming nested hypervisors (that is, any attempt to enable the nested
capability on a guest will fail). Guests which are already nested
hypervisors will continue to be so.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With this, the KVM-HV module can be loaded in a guest running under
KVM-HV, and if the hypervisor supports nested virtualization, this
guest can now act as a nested hypervisor and run nested guests.
This also adds some checks to inform userspace that HPT guests are not
supported by nested hypervisors (by returning false for the
KVM_CAP_PPC_MMU_HASH_V3 capability), and to prevent userspace from
configuring a guest to use HPT mode.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For x86 this brings in PCID emulation and CR3 caching for shadow page
tables, nested VMX live migration, nested VMCS shadowing, an optimized
IPI hypercall, and some optimizations.
ARM will come next week.
There is a semantic conflict because tip also added an .init_platform
callback to kvm.c. Please keep the initializer from this branch,
and add a call to kvmclock_init (added by tip) inside kvm_init_platform
(added here).
Also, there is a backmerge from 4.18-rc6. This is because of a
refactoring that conflicted with a relatively late bugfix and
resulted in a particularly hellish conflict. Because the conflict
was only due to unfortunate timing of the bugfix, I backmerged and
rebased the refactoring rather than force the resolution on you.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
=9Mgw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
asm/tlbflush.h is only needed for:
- using functions xxx_flush_tlb_xxx()
- using MMU_NO_CONTEXT
- including asm-generic/pgtable.h
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Originally PPC KVM MMIO emulation uses only 0~31#(5 bits) for VSR
reg number, and use mmio_vsx_tx_sx_enabled field together for
0~63# VSR regs.
Currently PPC KVM MMIO emulation is reimplemented with analyse_instr()
assistance. analyse_instr() returns 0~63 for VSR register number, so
it is not necessary to use additional mmio_vsx_tx_sx_enabled field
any more.
This patch extends related reg bits (expand io_gpr to u16 from u8
and use 6 bits for VSR reg#), so that mmio_vsx_tx_sx_enabled can
be removed.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use new return type vm_fault_t for fault handler. For
now, this is just documenting that the function returns
a VM_FAULT value rather than an errno. Once all instances
are converted, vm_fault_t will become a distinct type.
commit 1c8f422059 ("mm: change return type to vm_fault_t")
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the vcpu mutex locking/unlock has been moved out of vcpu_load()
/vcpu_put(), KVM_GET_ONE_REG and KVM_SET_ONE_REG doesn't need to do
ioctl with loading vcpu anymore. This patch removes vcpu_load()/vcpu_put()
from KVM_GET_ONE_REG and KVM_SET_ONE_REG ioctl.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Although we already have kvm_arch_vcpu_async_ioctl() which doesn't require
ioctl to load vcpu, the sync ioctl code need to be cleaned up when
CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL is not configured.
This patch moves vcpu_load/vcpu_put down to each ioctl switch case so that
each ioctl can decide to do vcpu_load/vcpu_put or not independently.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch reimplements LOAD_VMX/STORE_VMX MMIO emulation with
analyse_instr() input. When emulating the store, the VMX reg will need to
be flushed so that the right reg val can be retrieved before writing to
IO MEM.
This patch also adds support for lvebx/lvehx/lvewx/stvebx/stvehx/stvewx
MMIO emulation. To meet the requirement of handling different element
sizes, kvmppc_handle_load128_by2x64()/kvmppc_handle_store128_by2x64()
were replaced with kvmppc_handle_vmx_load()/kvmppc_handle_vmx_store().
The framework used is similar to VSX instruction MMIO emulation.
Suggested-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
VSX MMIO emulation uses mmio_vsx_copy_type to represent VSX emulated
element size/type, such as KVMPPC_VSX_COPY_DWORD_LOAD, etc. This
patch expands mmio_vsx_copy_type to cover VMX copy type, such as
KVMPPC_VMX_COPY_BYTE(stvebx/lvebx), etc. As a result,
mmio_vsx_copy_type is also renamed to mmio_copy_type.
It is a preparation for reimplementing VMX MMIO emulation.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently HV will save math regs(FP/VEC/VSX) when trap into host. But
PR KVM will only save math regs when qemu task switch out of CPU, or
when returning from qemu code.
To emulate FP/VEC/VSX mmio load, PR KVM need to make sure that math
regs were flushed firstly and then be able to update saved VCPU
FPR/VEC/VSX area reasonably.
This patch adds giveup_ext() field to KVM ops. Only PR KVM has non-NULL
giveup_ext() ops. kvmppc_complete_mmio_load() can invoke that hook
(when not NULL) to flush math regs accordingly, before updating saved
register vals.
Math regs flush is also necessary for STORE, which will be covered
in later patch within this patch series.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Some VSX instructions like lxvwsx will splat word into VSR. This patch
adds a new VSX copy type KVMPPC_VSX_COPY_WORD_LOAD_DUMP to support this.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When KVM emulates VMX store, it will invoke kvmppc_get_vmx_data() to
retrieve VMX reg val. kvmppc_get_vmx_data() will check mmio_host_swabbed
to decide which double word of vr[] to be used. But the
mmio_host_swabbed can be uninitialized during VMX store procedure:
kvmppc_emulate_loadstore
\- kvmppc_handle_store128_by2x64
\- kvmppc_get_vmx_data
So vcpu->arch.mmio_host_swabbed is not meant to be used at all for
emulation of store instructions, and this patch makes that true for
VMX stores. This patch also initializes mmio_host_swabbed to avoid
possible future problems.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some versions of gcc generate a warning that the variable "emulated"
may be used uninitialized in function kvmppc_handle_load128_by2x64().
It would be used uninitialized if kvmppc_handle_load128_by2x64 was
ever called with vcpu->arch.mmio_vmx_copy_nums == 0, but neither of
the callers ever do that, so there is no actual bug. When gcc
generates a warning, it causes the build to fail because arch/powerpc
is compiled with -Werror.
This silences the warning by initializing "emulated" to EMULATE_DONE.
Fixes: 09f984961c ("KVM: PPC: Book3S: Add MMIO emulation for VMX instructions")
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit accb757d79 ("KVM: Move vcpu_load to arch-specific
kvm_arch_vcpu_ioctl_run", 2017-12-04) added a "goto out"
statement and an "out:" label to kvm_arch_vcpu_ioctl_run().
Since the only "goto out" is inside a CONFIG_VSX block,
compiling with CONFIG_VSX=n gives a warning that label "out"
is defined but not used, and because arch/powerpc is compiled
with -Werror, that becomes a compile error that makes the kernel
build fail.
Merge commit 1ab03c072f ("Merge tag 'kvm-ppc-next-4.16-2' of
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc",
2018-02-09) added a similar block of code inside a #ifdef
CONFIG_ALTIVEC, with a "goto out" statement.
In order to make the build succeed, this adds a #ifdef around the
"out:" label. This is a minimal, ugly fix, to be replaced later
by a refactoring of the code. Since CONFIG_VSX depends on
CONFIG_ALTIVEC, it is sufficient to use #ifdef CONFIG_ALTIVEC here.
Fixes: accb757d79 ("KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_run")
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJafWn0AAoJEJ2a6ncsY3GfaMsIANF0hQD8SS78WNKnoy0vnZ/X
PUXdjwHEsfkg5KdQ7o0oaa2BJHHqO3vozddmMiG14r2L1mNCHJpnVZCVV0GaEJcZ
eU8++OPK6yrsPNNpAjnrtQ0Vk4LwzoT0bftEjS3TtLt1s2uSo+R1+HLmxbxGhQUX
bZngo9wQ3cjUfAXLrPtAVhE5wTmgVOiufVRyfRsBRdFzRsAWqjY4hBtJAfwdff4r
AA5H0RCrXO6e1feKr5ElU8KzX6b7IjH9Xu868oJ1r16zZfE05PBl1X5n4XG7XDm7
xWvs8uLAB7iRv2o/ecFznYJ+Dz1NCBVzD0RmAUTqPCcVKDrxixaTkqMPFW97IAA=
=HOJR
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
Second PPC KVM update for 4.16
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
This patch provides the MMIO load/store vector indexed
X-Form emulation.
Instructions implemented:
lvx: the quadword in storage addressed by the result of EA &
0xffff_ffff_ffff_fff0 is loaded into VRT.
stvx: the contents of VRS are stored into the quadword in storage
addressed by the result of EA & 0xffff_ffff_ffff_fff0.
Reported-by: Gopesh Kumar Chaudhary <gopchaud@in.ibm.com>
Reported-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to enable the HPT resizing code to work on POWER9,
which uses a slightly modified HPT entry format compared to POWER8.
On POWER9, we convert HPTEs read from the HPT from the new format to
the old format so that the rest of the HPT resizing code can work as
before. HPTEs written to the new HPT are converted to the new format
as the last step before writing them into the new HPT.
This takes out the checks added by commit bcd3bb63db ("KVM: PPC:
Book3S HV: Disable HPT resizing on POWER9 for now", 2017-02-18),
now that HPT resizing works on POWER9.
On POWER9, when we pivot to the new HPT, we now call
kvmppc_setup_partition_table() to update the partition table in order
to make the hardware use the new HPT.
[paulus@ozlabs.org - added kvmppc_setup_partition_table() call,
wrote commit message.]
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaYXViAAoJEJ2a6ncsY3GfDhgIAIDVBZH/Ftq7eJiUSxDpqyCQ
DF/x7fNKzK/J33pu+3ntOI2gZsldExAy7vH2M27I4qLIkbI5y3vu4v8l3CDlS1LK
9dKi72zg7baozoVF5mGUNm0B1sSvZiIQlC/kaami2aPTF1GcrJ561GthzfZwxENX
TSLqOA4LkeUZh2tUsvbcUrPi6v+E4Em2lgacQcx2ioMblWz56sZu79VsUbSSw/a3
P8+pIv7EbHw+TrOZMehjCbZkOdBeZ3IRLJsdlIAfe7y4vWME/5b9uVnQS/+XQj/B
6f3rQrduGvF2P6GMjsm8gDkgE5oZ1zbKlgO4i5WApnu80MMLFlfEUN+GWuGJ95Q=
=OjGs
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.16
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
This adds a new ioctl, KVM_PPC_GET_CPU_CHAR, that gives userspace
information about the underlying machine's level of vulnerability
to the recently announced vulnerabilities CVE-2017-5715,
CVE-2017-5753 and CVE-2017-5754, and whether the machine provides
instructions to assist software to work around the vulnerabilities.
The ioctl returns two u64 words describing characteristics of the
CPU and required software behaviour respectively, plus two mask
words which indicate which bits have been filled in by the kernel,
for extensibility. The bit definitions are the same as for the
new H_GET_CPU_CHARACTERISTICS hypercall.
There is also a new capability, KVM_CAP_PPC_GET_CPU_CHAR, which
indicates whether the new ioctl is available.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get
two patches which are prerequisites for the following patch series,
plus another patch which touches both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a register identifier for use with the one_reg interface
to allow the decrementer expiry time to be read and written by
userspace. The decrementer expiry time is in guest timebase units
and is equal to the sum of the decrementer and the guest timebase.
(The expiry time is used rather than the decrementer value itself
because the expiry time is not constantly changing, though the
decrementer value is, while the guest vcpu is not running.)
Without this, a guest vcpu migrated to a new host will see its
decrementer set to some random value. On POWER8 and earlier, the
decrementer is 32 bits wide and counts down at 512MHz, so the
guest vcpu will potentially see no decrementer interrupts for up
to about 4 seconds, which will lead to a stall. With POWER9, the
decrementer is now 56 bits side, so the stall can be much longer
(up to 2.23 years) and more noticeable.
To help work around the problem in cases where userspace has not been
updated to migrate the decrementer expiry time, we now set the
default decrementer expiry at vcpu creation time to the current time
rather than the maximum possible value. This should mean an
immediate decrementer interrupt when a migrated vcpu starts
running. In cases where the decrementer is 32 bits wide and more
than 4 seconds elapse between the creation of the vcpu and when it
first runs, the decrementer would have wrapped around to positive
values and there may still be a stall - but this is no worse than
the current situation. In the large-decrementer case, we are sure
to get an immediate decrementer interrupt (assuming the time from
vcpu creation to first run is less than 2.23 years) and we thus
avoid a very long stall.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
After the vcpu_load/vcpu_put pushdown, the handling of asynchronous VCPU
ioctl is already much clearer in that it is obvious that they bypass
vcpu_load and vcpu_put.
However, it is still not perfect in that the different state of the VCPU
mutex is still hidden in the caller. Separate those ioctls into a new
function kvm_arch_vcpu_async_ioctl that returns -ENOIOCTLCMD for more
"traditional" synchronous ioctls.
Cc: James Hogan <jhogan@kernel.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Suggested-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the calls to vcpu_load() and vcpu_put() in to the architecture
specific implementations of kvm_arch_vcpu_ioctl() which dispatches
further architecture-specific ioctls on to other functions.
Some architectures support asynchronous vcpu ioctls which cannot call
vcpu_load() or take the vcpu->mutex, because that would prevent
concurrent execution with a running VCPU, which is the intended purpose
of these ioctls, for example because they inject interrupts.
We repeat the separate checks for these specifics in the architecture
code for MIPS, S390 and PPC, and avoid taking the vcpu->mutex and
calling vcpu_load for these ioctls.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_run().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 parts
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
[Rebased. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".
This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.
Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In an excess of caution, commit 6f63e81bda ("KVM: PPC: Book3S: Add
MMIO emulation for FP and VSX instructions", 2017-02-21) included
checks for the case that vcpu->arch.mmio_vsx_copy_nums is less than
zero, even though its type is u8. This causes a Coverity warning,
so we remove the check for < 0. We also adjust the associated
comment to be more accurate ("4 or less" rather than "less than 4").
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in a couple of fixes from the kvm-ppc-fixes branch that
modify the same areas of code as some commits from the kvm-ppc-next
branch, in order to resolve the conflicts.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This sets up the machinery for switching a guest between HPT (hashed
page table) and radix MMU modes, so that in future we can run a HPT
guest on a radix host on POWER9 machines.
* The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or
radix mode, on a radix host.
* The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9
with HV KVM on a radix host.
* The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a
radix host.
* The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the
guest to HPT mode and allocate a HPT.
* For simplicity, we now allocate the rmap array for each memslot,
even on a radix host, since it will be needed if the guest switches
to HPT mode.
* Since we cannot yet run a HPT guest on a radix host, the KVM_RUN
ioctl will return an EINVAL error in that case.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently we use CPU_FTR_TM to decide if the CPU/kernel can support
TM (Transactional Memory), and if it's true we advertise that to
Qemu (or similar) via KVM_CAP_PPC_HTM.
PPC_FEATURE2_HTM is the user-visible feature bit, which indicates that
the CPU and kernel can support TM. Currently CPU_FTR_TM and
PPC_FEATURE2_HTM always have the same value, either true or false, so
using the former for KVM_CAP_PPC_HTM is correct.
However some Power9 CPUs can operate in a mode where TM is enabled but
TM suspended state is disabled. In this mode CPU_FTR_TM is true, but
PPC_FEATURE2_HTM is false. Instead a different PPC_FEATURE2 bit is
set, to indicate that this different mode of TM is available.
It is not safe to let guests use TM as-is, when the CPU is in this
mode. So to prevent that from happening, use PPC_FEATURE2_HTM to
determine the value of KVM_CAP_PPC_HTM.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The following program causes a kernel oops:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/kvm.h>
main()
{
int fd = open("/dev/kvm", O_RDWR);
ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_PPC_HTM);
}
This happens because when using the global KVM fd with
KVM_CHECK_EXTENSION, kvm_vm_ioctl_check_extension() gets
called with a NULL kvm argument, which gets dereferenced
in is_kvmppc_hv_enabled(). Spotted while reading the code.
Let's use the hv_enabled fallback variable, like everywhere
else in this function.
Fixes: 23528bb21e ("KVM: PPC: Introduce KVM_CAP_PPC_HTM")
Cc: stable@vger.kernel.org # v4.7+
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts
pending.
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAllWCM0VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDjJ0QAI16x6+trKhH31lTSYekYfqm4hZ2
Fp7IbALW9KNCaY35tZov2Zuh99qGRduxTh7ewqhKpON8kkU+UKj0F7zH22+vfN4m
yas/+uNr8R9VLyvea4ysPsgx8Q8v1Ix9setohHYNZIL9/klVqtaHpYvArHVF/mzq
p2j/NxRS2dlp9r2TtoMRMhA05u6r0wolhUuh+z9v2ipib0gfOBIG24jsqCTEcD9n
5A/cVd+ztYshkrV95h3y9peahwt3zOA4QBGzrQ2K25jp0s54nqhmC7JTNSa8dtar
YGW2MuAMoIFTwCFAlpwCzrwpOJFzF3Q6A8bOxei2fjclzjPMgT1xQxuhOoe4ntFa
lTPxSHalm5W6dFTW90YSo2DBcPe+N7sQkhjR0cCeY3GYsOFhXMLTlOl5Pt1YK1or
+3FAI74tFRKvVmb9mhZeGTvuzhDgRvtf3Qq5rjwlGzKc2BBOEgtMyj/Wgwo4N6Dz
IjOnoRaUGELoBCWoTorMxLpsPBdPVSUxNyJTdAhqZ/ZtT1xqjhFNLZcrVWmOTzDM
1cav+jZkla4sLmJSNDD54aCSvvtPHis0nZn9PRlh12xgOyYiAVx4K++MNuWP0P37
hbh1gbPT+FcoVxPurUsX/pjNlTucPZcBwFytZDQlpwtPBpEFzJiImLYe/PldRb0f
9WQOH1Y1+q14MF+N
=6hNK
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.13
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
Conflicts:
arch/s390/include/asm/kvm_host.h
Now that userspace can set the virtual SMT mode by enabling the
KVM_CAP_PPC_SMT capability, it is useful for userspace to be able
to query the set of possible virtual SMT modes. This provides a
new capability, KVM_CAP_PPC_SMT_POSSIBLE, to provide this
information. The return value is a bitmap of possible modes, with
bit N set if virtual SMT mode 2^N is available. That is, 1 indicates
SMT1 is available, 2 indicates that SMT2 is available, 3 indicates
that both SMT1 and SMT2 are available, and so on.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This introduces a new KVM capability to control how KVM behaves
on machine check exception (MCE) in HV KVM guests.
If this capability has not been enabled, KVM redirects machine check
exceptions to guest's 0x200 vector, if the address in error belongs to
the guest. With this capability enabled, KVM will cause a guest exit
with the exit reason indicating an NMI.
The new capability is required to avoid problems if a new kernel/KVM
is used with an old QEMU, running a guest that doesn't issue
"ibm,nmi-register". As old QEMU does not understand the NMI exit
type, it treats it as a fatal error. However, the guest could have
handled the machine check error if the exception was delivered to
guest's 0x200 interrupt vector instead of NMI exit in case of old
QEMU.
[paulus@ozlabs.org - Reworded the commit message to be clearer,
enable only on HV KVM.]
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9, we no longer have the restriction that we had on POWER8
where all threads in a core have to be in the same partition, so
the CPU threads are now independent. However, we still want to be
able to run guests with a virtual SMT topology, if only to allow
migration of guests from POWER8 systems to POWER9.
A guest that has a virtual SMT mode greater than 1 will expect to
be able to use the doorbell facility; it will expect the msgsndp
and msgclrp instructions to work appropriately and to be able to read
sensible values from the TIR (thread identification register) and
DPDES (directed privileged doorbell exception status) special-purpose
registers. However, since each CPU thread is a separate sub-processor
in POWER9, these instructions and registers can only be used within
a single CPU thread.
In order for these instructions to appear to act correctly according
to the guest's virtual SMT mode, we have to trap and emulate them.
We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR
register. The emulation is triggered by the hypervisor facility
unavailable interrupt that occurs when the guest uses them.
To cause a doorbell interrupt to occur within the guest, we set the
DPDES register to 1. If the guest has interrupts enabled, the CPU
will generate a doorbell interrupt and clear the DPDES register in
hardware. The DPDES hardware register for the guest is saved in the
vcpu->arch.vcore->dpdes field. Since this gets written by the guest
exit code, other VCPUs wishing to cause a doorbell interrupt don't
write that field directly, but instead set a vcpu->arch.doorbell_request
flag. This is consumed and set to 0 by the guest entry code, which
then sets DPDES to 1.
Emulating reads of the DPDES register is somewhat involved, because
it requires reading the doorbell pending interrupt status of all of the
VCPU threads in the virtual core, and if any of those VCPUs are
running, their doorbell status is only up-to-date in the hardware
DPDES registers of the CPUs where they are running. In order to get
a reasonable approximation of the current doorbell status, we send
those CPUs an IPI, causing an exit from the guest which will update
the vcpu->arch.vcore->dpdes field. We then use that value in
constructing the emulated DPDES register value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace to set the desired virtual SMT (simultaneous
multithreading) mode for a VM, that is, the number of VCPUs that
get assigned to each virtual core. Previously, the virtual SMT mode
was fixed to the number of threads per subcore, and if userspace
wanted to have fewer vcpus per vcore, then it would achieve that by
using a sparse CPU numbering. This had the disadvantage that the
vcpu numbers can get quite large, particularly for SMT1 guests on
a POWER8 with 8 threads per core. With this patch, userspace can
set its desired virtual SMT mode and then use contiguous vcpu
numbering.
On POWER8, where the threading mode is "strict", the virtual SMT mode
must be less than or equal to the number of threads per subcore. On
POWER9, which implements a "loose" threading mode, the virtual SMT
mode can be any power of 2 between 1 and 8, even though there is
effectively one thread per subcore, since the threads are independent
and can all be in different partitions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A first step in vcpu->requests encapsulation. Additionally, we now
use READ_ONCE() when accessing vcpu->requests, which ensures we
always load vcpu->requests when it's accessed. This is important as
other threads can change it any time. Also, READ_ONCE() documents
that vcpu->requests is used with other threads, likely requiring
memory barriers, which it does.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[ Documented the new use of READ_ONCE() and converted another check
in arch/mips/kvm/vz.c ]
Signed-off-by: Andrew Jones <drjones@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>