Some USB phy drivers have different handling for the controller in each
dr_mode. But the phy driver does not have visibility to the dr_mode of
the controller.
This adds an api to return the dr_mode of the controller which
associates the given phy node.
Signed-off-by: Bin Liu <b-liu@ti.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
By using the unified device property interface, the function
can be made available for all platforms and not just the
ones using DT.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
By using the unified device property interface, the function
can be made available for all platforms and not just the
ones using DT.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Check property of usb hardware to update otg version and disable SRP, HNP
and ADP if its disable flag is present.
Reviewed-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Li Jun <jun.li@freescale.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Phy drivers and the ulpi interface providers depend on the
registration of the ulpi bus. Ulpi registers the bus in
module_init(). This could cause unnecessary bus users'
probe delays. i.e. unnecessary -EPROBE_DEFER happening on
ulpi_drivers in case they're registered before ulpi bus
itself.
Reported-by: Zhuo Qiuxu <qiuxu.zhuo@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
UTMI+ Low Pin Interface (ULPI) is a commonly used PHY
interface for USB 2.0. The ULPI specification describes a
standard set of registers which the vendors can extend for
their specific needs. ULPI PHYs provide often functions
such as charger detection and ADP sensing and probing.
There are two major issues that the bus type is meant to
tackle:
Firstly, ULPI registers are accessed from the controller.
The bus provides convenient method for the controller
drivers to share that access with the actual PHY drivers.
Secondly, there are already platforms that assume ULPI PHYs
are runtime detected, such as many Intel Baytrail based
platforms. They do not provide any kind of hardware
description for the ULPI PHYs like separate ACPI device
object that could be used to enumerate a device from.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Acked-by: David Cohen <david.a.cohen@linux.intel.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
We should signal connect (pull up dp) after we have already
at peripheral mode, otherwise, the dp may be toggled due to
we reset controller or do disconnect during the initialization
for peripheral, then, the host may be confused during the
enumeration, eg, it finds the reset can't succeed, but the
device is still there, see below error message.
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 1 port detected
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: Cannot enable port 1. Maybe the USB cable is bad?
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: Cannot enable port 1. Maybe the USB cable is bad?
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: Cannot enable port 1. Maybe the USB cable is bad?
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: cannot reset port 1 (err = -32)
hub 1-0:1.0: Cannot enable port 1. Maybe the USB cable is bad?
hub 1-0:1.0: unable to enumerate USB device on port 1
Fixes: the issue existed when the otg fsm code was added.
Cc: <stable@vger.kernel.org> # v3.16+
Signed-off-by: Peter Chen <peter.chen@freescale.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Before using the PHY framework instead of the USB PHY one, we need to
move the OTG state into another place, since it won't be available when
USB PHY isn't used. This patch moves the OTG state into the OTG
structure, and makes all the needed modifications in the drivers
using the OTG state.
[ balbi@ti.com : fix build regressions with phy-tahvo.c, musb_dsps.c,
phy-isp1301-omap, and chipidea's debug.c ]
Acked-by: Kishon Vijay Abraham I <kishon@ti.com>
Acked-by: Peter Chen <peter.chen@freescale.com>
Signed-off-by: Antoine Tenart <antoine.tenart@free-electrons.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
With this patch, USB activity can be signaled by blinking a LED. There
are two triggers, one for activity on USB host and one for USB gadget.
Both triggers should work with all host/device controllers. Tested only
with musb.
Performace: I measured performance overheads on ARM Cortex-A8 (TI
AM335x) running on 600 MHz.
Duration of usb_led_activity():
- with no LED attached to the trigger: 2 ± 1 µs
- with one GPIO LED attached to the trigger: 2 ± 1 µs or 8 ± 2 µs (two peaks in histogram)
Duration of functions calling usb_led_activity() (with this patch
applied and no LED attached to the trigger):
- __usb_hcd_giveback_urb(): 10 - 25 µs
- usb_gadget_giveback_request(): 2 - 6 µs
Signed-off-by: Michal Sojka <sojka@merica.cz>
Acked-by: Felipe Balbi <balbi@ti.com>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the next commit, we will want the usb-common module to be composed of
two object files. Since Kbuild cannot "append" another object to an
existing one, we need to rename usb-common.c to something
else (common.c) and create usb-common.o by linking the wanted objects
together. Currently, usb-common.o comprises only common.o.
Signed-off-by: Michal Sojka <sojka@merica.cz>
Acked-by: Felipe Balbi <balbi@ti.com>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The TPL (Targeted Peripheral List) is used for targeted hosts
(non-PC hosts), and it can be used at USB OTG & EH certification
and some specific products which need white list.
Signed-off-by: Peter Chen <peter.chen@freescale.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since usb otg fsm implementation is not related to usb phy.
We move it from usb/phy/ to usb/common/, and rename it to
reflect its real meaning.
Cc: Felipe Balbi <balbi@ti.com>
Signed-off-by: Peter Chen <peter.chen@freescale.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since we will have more usb-common things, and it will let
usb-common.c be larger and larger, we create a folder named usb/common
for all usb common things.
Cc: Felipe Balbi <balbi@ti.com>
Signed-off-by: Peter Chen <peter.chen@freescale.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>