modify_ldt() has questionable locking and does not synchronize
threads. Improve it: redesign the locking and synchronize all
threads' LDTs using an IPI on all modifications.
This will dramatically slow down modify_ldt in multithreaded
programs, but there shouldn't be any multithreaded programs that
care about modify_ldt's performance in the first place.
This fixes some fallout from the CVE-2015-5157 fixes.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: security@kernel.org <security@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/4c6978476782160600471bd865b318db34c7b628.1438291540.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make them clearly architecture-dependent; the capability is valid for
all architectures, but the argument is not.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fixes from Ingo Molnar:
"Two families of fixes:
- Fix an FPU context related boot crash on newer x86 hardware with
larger context sizes than what most people test. To fix this
without ugly kludges or extensive reverts we had to touch core task
allocator, to allow x86 to determine the task size dynamically, at
boot time.
I've tested it on a number of x86 platforms, and I cross-built it
to a handful of architectures:
(warns) (warns)
testing x86-64: -git: pass ( 0), -tip: pass ( 0)
testing x86-32: -git: pass ( 0), -tip: pass ( 0)
testing arm: -git: pass ( 1359), -tip: pass ( 1359)
testing cris: -git: pass ( 1031), -tip: pass ( 1031)
testing m32r: -git: pass ( 1135), -tip: pass ( 1135)
testing m68k: -git: pass ( 1471), -tip: pass ( 1471)
testing mips: -git: pass ( 1162), -tip: pass ( 1162)
testing mn10300: -git: pass ( 1058), -tip: pass ( 1058)
testing parisc: -git: pass ( 1846), -tip: pass ( 1846)
testing sparc: -git: pass ( 1185), -tip: pass ( 1185)
... so I hope the cross-arch impact 'none', as intended.
(by Dave Hansen)
- Fix various NMI handling related bugs unearthed by the big asm code
rewrite and generally make the NMI code more robust and more
maintainable while at it. These changes are a bit late in the
cycle, I hope they are still acceptable.
(by Andy Lutomirski)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu, sched: Introduce CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT and use it on x86
x86/fpu, sched: Dynamically allocate 'struct fpu'
x86/entry/64, x86/nmi/64: Add CONFIG_DEBUG_ENTRY NMI testing code
x86/nmi/64: Make the "NMI executing" variable more consistent
x86/nmi/64: Minor asm simplification
x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection
x86/nmi/64: Reorder nested NMI checks
x86/nmi/64: Improve nested NMI comments
x86/nmi/64: Switch stacks on userspace NMI entry
x86/nmi/64: Remove asm code that saves CR2
x86/nmi: Enable nested do_nmi() handling for 64-bit kernels
Pull perf fixes from Ingo Molnar:
"Mostly tooling fixes, plus a static key fix fixing /sys/devices/cpu/rdpmc"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tools: Really allow to specify custom CC, AR or LD
perf auxtrace: Fix misplaced check for HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT
perf hists browser: Take the --comm, --dsos, etc filters into account
perf symbols: Store if there is a filter in place
x86, perf: Fix static_key bug in load_mm_cr4()
tools: Copy lib/hweight.c from the kernel sources
perf tools: Fix the detached tarball wrt rbtree copy
perf thread_map: Fix the sizeof() calculation for map entries
tools lib: Improve clean target
perf stat: Fix shadow declaration of close
perf tools: Fix lockup using 32-bit compat vdso
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 2ae416b142 ("mm: new mm hook framework") introduced an empty
header file (mm-arch-hooks.h) for every architecture, even those which
doesn't need to define mm hooks.
As suggested by Geert Uytterhoeven, this could be cleaned through the use
of a generic header file included via each per architecture
asm/include/Kbuild file.
The PowerPC architecture is not impacted here since this architecture has
to defined the arch_remap MM hook.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Suggested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix SMBIOS call handling and hwswitch state coherency in the dell-laptop driver.
Cleanups for intel_*_ipc drivers.
dell-laptop:
- Do not cache hwswitch state
- Check return value of each SMBIOS call
- Clear buffer before each SMBIOS call
intel_scu_ipc:
- Move local memory initialization out of a mutex
intel_pmc_ipc:
- Update kerneldoc formatting
- Fix compiler casting warnings
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJVqCrgAAoJEKbMaAwKp364aBcIALo/ZB6JFFd3oFDBbZR9bzvp
senrgC2QSWboFlyJ2aHB09n98m6tR5x8HTE6BijT64bUyPSLTPgDZoeC9ezIu1H0
rXKJZM7GduxYVOvVgOPVKqt/yUopI55jDhpgvFmxpXgp9zaz4our2y+93VCCBkIm
9nJMHXIvK+Rg4Rg0MuEkaghLRFivJAYFuyFu6vgWQOGap1QXruPIylK6agZs2E9x
KhJAlLNjoAAfqFFkWdk7PxMO8QIgV9pLU8RlOQmUdRSe8F+CI3AAJjdn+FdPoXFN
EBirxMm8NAd9+/JlfU95fUBwPnofY+D3Q8jUyKBBxnZbDQMIA6gWtzGaA/BY/zI=
=hpkC
-----END PGP SIGNATURE-----
Merge tag 'platform-drivers-x86-v4.2-3' of git://git.infradead.org/users/dvhart/linux-platform-drivers-x86
Pull x86 platform driver fixes from Darren Hart:
"Fix SMBIOS call handling and hwswitch state coherency in the
dell-laptop driver. Cleanups for intel_*_ipc drivers. Details:
dell-laptop:
- Do not cache hwswitch state
- Check return value of each SMBIOS call
- Clear buffer before each SMBIOS call
intel_scu_ipc:
- Move local memory initialization out of a mutex
intel_pmc_ipc:
- Update kerneldoc formatting
- Fix compiler casting warnings"
* tag 'platform-drivers-x86-v4.2-3' of git://git.infradead.org/users/dvhart/linux-platform-drivers-x86:
intel_scu_ipc: move local memory initialization out of a mutex
intel_pmc_ipc: Update kerneldoc formatting
dell-laptop: Do not cache hwswitch state
dell-laptop: Check return value of each SMBIOS call
dell-laptop: Clear buffer before each SMBIOS call
intel_pmc_ipc: Fix compiler casting warnings
If there are no assigned devices, the guest PAT are not providing
any useful information and can be overridden to writeback; VMX
always does this because it has the "IPAT" bit in its extended
page table entries, but SVM does not have anything similar.
Hook into VFIO and legacy device assignment so that they
provide this information to KVM.
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mikulas reported his K6-3 not booting. This is because the
static_key API confusion struck and bit Andy, this wants to be
static_key_false().
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Vince Weaver <vince@deater.net>
Cc: hillf.zj <hillf.zj@alibaba-inc.com>
Fixes: a66734297f ("perf/x86: Add /sys/devices/cpu/rdpmc=2 to allow rdpmc for all tasks")
Link: http://lkml.kernel.org/r/20150709172338.GC19282@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a CPU index parameter to init_espfix_ap(), so that the
parameter could be propagated to the function for espfix
page allocation.
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: <bp@alien8.de>
Cc: <luto@amacapital.net>
Cc: <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cde3fcf1b3211f3f03feb1a995bce3fee850f0fc.1435824469.git.zhugh.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently KASAN shadow region page tables created without
respect of physical offset (phys_base). This causes kernel halt
when phys_base is not zero.
So let's initialize KASAN shadow region page tables in
kasan_early_init() using __pa_nodebug() which considers
phys_base.
This patch also separates x86_64_start_kernel() from KASAN low
level details by moving kasan_map_early_shadow(init_level4_pgt)
into kasan_early_init().
Remove the comment before clear_bss() which stopped bringing
much profit to the code readability. Otherwise describing all
the new order dependencies would be too verbose.
Signed-off-by: Alexander Popov <alpopov@ptsecurity.com>
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: <stable@vger.kernel.org> # 4.0+
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435828178-10975-3-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new intel_pmc_ipc driver, a symmetrical allocation and free fix in
dell-laptop, a couple minor fixes, and some updated documentation in the
dell-laptop comments.
intel_pmc_ipc:
- Add Intel Apollo Lake PMC IPC driver
tc1100-wmi:
- Delete an unnecessary check before the function call "kfree"
dell-laptop:
- Fix allocating & freeing SMI buffer page
- Show info about WiGig and UWB in debugfs
- Update information about wireless control
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJVmM8aAAoJEKbMaAwKp364iUkH/jihOduWkDTzzzxRP2Dv2nEh
qyvE94Nc9A9dl87C2+II/Pi1s8h4CJOQpl70syYYPc4FdF70hpvP8TbHkgCWrY/d
F8CoS9L9keviMtGOWlbEL9hBjfSDNwTMESTrDxrwhA04TSAwjDmXhhiUOF5FjFJm
CX5+ZQ3iXEH6KsENR+Er54J9+6WKE6IuRcnnKCapnPQ8cEYeVn+WEPyzHCOy8Pg3
xzzUar3/knS2VMIb5eIVpaKFvD9P9qBsC/gQ0pk1Y+686gwQZMVURDv8lw8hfXpx
TJDOXk21P8WbSH1r+jwax5wLjLge7vJtYG2Deye6MUgvSgg+O2tSVCv9SMQR088=
=WUgr
-----END PGP SIGNATURE-----
Merge tag 'platform-drivers-x86-v4.2-2' of git://git.infradead.org/users/dvhart/linux-platform-drivers-x86
Pull late x86 platform driver updates from Darren Hart:
"The following came in a bit later and I wanted them to bake in next a
few more days before submitting, thus the second pull.
A new intel_pmc_ipc driver, a symmetrical allocation and free fix in
dell-laptop, a couple minor fixes, and some updated documentation in
the dell-laptop comments.
intel_pmc_ipc:
- Add Intel Apollo Lake PMC IPC driver
tc1100-wmi:
- Delete an unnecessary check before the function call "kfree"
dell-laptop:
- Fix allocating & freeing SMI buffer page
- Show info about WiGig and UWB in debugfs
- Update information about wireless control"
* tag 'platform-drivers-x86-v4.2-2' of git://git.infradead.org/users/dvhart/linux-platform-drivers-x86:
intel_pmc_ipc: Add Intel Apollo Lake PMC IPC driver
tc1100-wmi: Delete an unnecessary check before the function call "kfree"
dell-laptop: Fix allocating & freeing SMI buffer page
dell-laptop: Show info about WiGig and UWB in debugfs
dell-laptop: Update information about wireless control
Writes were a bit racy, but hard to turn into a bug at the same time.
(Particularly because modern Linux doesn't use this feature anymore.)
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[Actually the next patch makes it much, much easier to trigger the race
so I'm including this one for stable@ as well. - Paolo]
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This driver provides support for PMC control on Apollo Lake platforms.
The PMC is an ARC processor which defines some IPC commands for
communication with other entities in the CPU.
Signed-off-by: qipeng.zha <qipeng.zha@intel.com>
[fengguang.wu@intel.com: Fix Sparse and Cocinelle warnings]
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
Here's the tty and serial driver patches for 4.2-rc1.
A number of individual driver updates, some code cleanups, and other
minor things, full details in the shortlog.
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlWNoSAACgkQMUfUDdst+ymxNQCguSEmkAYNDdLyYhdcOqSxJt9u
U1gAoMThUDoomkx6CTDMU1wn53hxgMk9
=eCUS
-----END PGP SIGNATURE-----
Merge tag 'tty-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here's the tty and serial driver patches for 4.2-rc1.
A number of individual driver updates, some code cleanups, and other
minor things, full details in the shortlog.
All have been in linux-next for a while with no reported issues"
* tag 'tty-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (152 commits)
Doc: serial-rs485.txt: update RS485 driver interface
Doc: tty.txt: remove mention of the BKL
MAINTAINERS: tty: add serial docs directory
serial: sprd: check for NULL after calling devm_clk_get
serial: 8250_pci: Correct uartclk for xr17v35x expansion chips
serial: 8250_pci: Add support for 12 port Exar boards
serial: 8250_uniphier: add bindings document for UniPhier UART
serial: core: cleanup in uart_get_baud_rate()
serial: stm32-usart: Add STM32 USART Driver
tty/serial: kill off set_irq_flags usage
tty: move linux/gsmmux.h to uapi
doc: dt: add documentation for nxp,lpc1850-uart
serial: 8250: add LPC18xx/43xx UART driver
serial: 8250_uniphier: add UniPhier serial driver
serial: 8250_dw: support ACPI platforms with integrated DMA engine
serial: of_serial: check the return value of clk_prepare_enable()
serial: of_serial: use devm_clk_get() instead of clk_get()
serial: earlycon: Add support for big-endian MMIO accesses
serial: sirf: use hrtimer for data rx
serial: sirf: correct the fifo empty_bit
...
Merge second patchbomb from Andrew Morton:
- most of the rest of MM
- lots of misc things
- procfs updates
- printk feature work
- updates to get_maintainer, MAINTAINERS, checkpatch
- lib/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (96 commits)
exit,stats: /* obey this comment */
coredump: add __printf attribute to cn_*printf functions
coredump: use from_kuid/kgid when formatting corename
fs/reiserfs: remove unneeded cast
NILFS2: support NFSv2 export
fs/befs/btree.c: remove unneeded initializations
fs/minix: remove unneeded cast
init/do_mounts.c: add create_dev() failure log
kasan: remove duplicate definition of the macro KASAN_FREE_PAGE
fs/efs: femove unneeded cast
checkpatch: emit "NOTE: <types>" message only once after multiple files
checkpatch: emit an error when there's a diff in a changelog
checkpatch: validate MODULE_LICENSE content
checkpatch: add multi-line handling for PREFER_ETHER_ADDR_COPY
checkpatch: suggest using eth_zero_addr() and eth_broadcast_addr()
checkpatch: fix processing of MEMSET issues
checkpatch: suggest using ether_addr_equal*()
checkpatch: avoid NOT_UNIFIED_DIFF errors on cover-letter.patch files
checkpatch: remove local from codespell path
checkpatch: add --showfile to allow input via pipe to show filenames
...
Based on an original patch by Ross Zwisler [1].
Writes to persistent memory have the potential to be posted to cpu
cache, cpu write buffers, and platform write buffers (memory controller)
before being committed to persistent media. Provide apis,
memcpy_to_pmem(), wmb_pmem(), and memremap_pmem(), to write data to
pmem and assert that it is durable in PMEM (a persistent linear address
range). A '__pmem' attribute is added so sparse can track proper usage
of pointers to pmem.
This continues the status quo of pmem being x86 only for 4.2, but
reworks to ioremap, and wider implementation of memremap() will enable
other archs in 4.3.
[1]: https://lists.01.org/pipermail/linux-nvdimm/2015-May/000932.html
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
[djbw: various reworks]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Nobody used these hooks so they were removed from common code, and can now
be removed from the architectures.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull asm/scatterlist.h removal from Jens Axboe:
"We don't have any specific arch scatterlist anymore, since parisc
finally switched over. Kill the include"
* 'for-4.2/sg' of git://git.kernel.dk/linux-block:
remove scatterlist.h generation from arch Kbuild files
remove <asm/scatterlist.h>
Merge first patchbomb from Andrew Morton:
- a few misc things
- ocfs2 udpates
- kernel/watchdog.c feature work (took ages to get right)
- most of MM. A few tricky bits are held up and probably won't make 4.2.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (91 commits)
mm: kmemleak_alloc_percpu() should follow the gfp from per_alloc()
mm, thp: respect MPOL_PREFERRED policy with non-local node
tmpfs: truncate prealloc blocks past i_size
mm/memory hotplug: print the last vmemmap region at the end of hot add memory
mm/mmap.c: optimization of do_mmap_pgoff function
mm: kmemleak: optimise kmemleak_lock acquiring during kmemleak_scan
mm: kmemleak: avoid deadlock on the kmemleak object insertion error path
mm: kmemleak: do not acquire scan_mutex in kmemleak_do_cleanup()
mm: kmemleak: fix delete_object_*() race when called on the same memory block
mm: kmemleak: allow safe memory scanning during kmemleak disabling
memcg: convert mem_cgroup->under_oom from atomic_t to int
memcg: remove unused mem_cgroup->oom_wakeups
frontswap: allow multiple backends
x86, mirror: x86 enabling - find mirrored memory ranges
mm/memblock: allocate boot time data structures from mirrored memory
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute
mm: do not ignore mapping_gfp_mask in page cache allocation paths
mm/cma.c: fix typos in comments
mm/oom_kill.c: print points as unsigned int
mm/hugetlb: handle races in alloc_huge_page and hugetlb_reserve_pages
...
* New APM X-Gene SoC EDAC driver (Loc Ho)
* AMD error injection module improvements (Aravind Gopalakrishnan)
* Altera Arria 10 support (Thor Thayer)
* misc fixes and cleanups all over the place
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJViuInAAoJEBLB8Bhh3lVKHT8QAKkHIMreO8obo09haxNJlfdF
BaG7SNEDhvcgQ1B76RsjnjkUpsivvUt+mCYMP+BxcAqFrTA33UZCCOK5tEhGb1wr
matRdR6+aezqAl2e/0/Ti25bWOkDxcOeazh2TyezuyIXtaJjOq1oZC7OaYGmxPun
NlZY+/uY1eiHlewKsK04y8G8J5i4wGoKnuxBvOyELT90+a+fLfAOshAp0D4r0piB
Znv0ydsHlu+Wx57slg1DktlsyswmcGS9WfWwwTlELOLulKgN8wEAVYzUB5pJzNbz
ehq0J4wYz95juXADC4M4tEjErHVJNl6PbyMqwt0+XUUJ1NSgOj7Q6iqwxDoZX8km
oxiLVydQBtoIzF1LojFKAVZDFnrMKHKwK3RaDaUJjTI90+tVzEU8xsBlUf6+EgD2
Ss2RH8Gfuf52RdtwHh9++T1ur5rM9YNCAm31msq06mcOf0bEtmDbhZ+fVC5mjhqB
fIb3hxnk0r2BVg+ZCN/boxGS6RzUtYVcCXaBPDMeHcg9BEEds70KCFEcsX7TvJIg
5/SHI+033MylqkX2zrgDQLj7CQk3R0jaotHVbdhLupyOldcM7r5uF+VO84drNWGN
GfM2lpyE/swZWnzKuotgYIGR1XvFjtJAVAyNGIvwP+ajjTsqXzEnLSLClY5LWfYd
nSSSMpCCqsEmhoWftOix
=Id4f
-----END PGP SIGNATURE-----
Merge tag 'edac_for_4.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
Pull EDAC updates from Borislav Petkov:
- New APM X-Gene SoC EDAC driver (Loc Ho)
- AMD error injection module improvements (Aravind Gopalakrishnan)
- Altera Arria 10 support (Thor Thayer)
- misc fixes and cleanups all over the place
* tag 'edac_for_4.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (28 commits)
EDAC: Update Documentation/edac.txt
EDAC: Fix typos in Documentation/edac.txt
EDAC, mce_amd_inj: Set MISCV on injection
EDAC, mce_amd_inj: Move bit preparations before the injection
EDAC, mce_amd_inj: Cleanup and simplify README
EDAC, altera: Do not allow suspend when EDAC is enabled
EDAC, mce_amd_inj: Make inj_type static
arm: socfpga: dts: Add Arria10 SDRAM EDAC DTS support
EDAC, altera: Add Arria10 EDAC support
EDAC, altera: Refactor for Altera CycloneV SoC
EDAC, altera: Generalize driver to use DT Memory size
EDAC, mce_amd_inj: Add README file
EDAC, mce_amd_inj: Add individual permissions field to dfs_node
EDAC, mce_amd_inj: Modify flags attribute to use string arguments
EDAC, mce_amd_inj: Read out number of MCE banks from the hardware
EDAC, mce_amd_inj: Use MCE_INJECT_GET macro for bank node too
EDAC, xgene: Fix cpuid abuse
EDAC, mpc85xx: Extend error address to 64 bit
EDAC, mpc8xxx: Adapt for FSL SoC
EDAC, edac_stub: Drop arch-specific include
...
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.
We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have many duplicates in definitions of
hugetlb_prefault_arch_hook. In all architectures this function is empty.
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CRIU is recreating the process memory layout by remapping the checkpointee
memory area on top of the current process (criu). This includes remapping
the vDSO to the place it has at checkpoint time.
However some architectures like powerpc are keeping a reference to the
vDSO base address to build the signal return stack frame by calling the
vDSO sigreturn service. So once the vDSO has been moved, this reference
is no more valid and the signal frame built later are not usable.
This patch serie is introducing a new mm hook framework, and a new
arch_remap hook which is called when mremap is done and the mm lock still
hold. The next patch is adding the vDSO remap and unmap tracking to the
powerpc architecture.
This patch (of 3):
This patch introduces a new set of header file to manage mm hooks:
- per architecture empty header file (arch/x/include/asm/mm-arch-hooks.h)
- a generic header (include/linux/mm-arch-hooks.h)
The architecture which need to overwrite a hook as to redefine it in its
header file, while architecture which doesn't need have nothing to do.
The default hooks are defined in the generic header and are used in the
case the architecture is not defining it.
In a next step, mm hooks defined in include/asm-generic/mm_hooks.h should
be moved here.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
for silicon that no one owns: these are really new features for
everyone.
* ARM: several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the VFIO
integration.
* s390: Some fixes/refactorings/optimizations, plus support for
2GB pages.
* x86: 1) host and guest support for marking kvmclock as a stable
scheduler clock. 2) support for write combining. 3) support for
system management mode, needed for secure boot in guests. 4) a bunch
of cleanups required for 2+3. 5) support for virtualized performance
counters on AMD; 6) legacy PCI device assignment is deprecated and
defaults to "n" in Kconfig; VFIO replaces it. On top of this there are
also bug fixes and eager FPU context loading for FPU-heavy guests.
* Common code: Support for multiple address spaces; for now it is
used only for x86 SMM but the s390 folks also have plans.
There are some x86 conflicts, one with the rc8 pull request and
the rest with Ingo's FPU rework.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJViYzhAAoJEL/70l94x66Dda0H/1IepMbfEy+o849d5G71fNTs
F8Y8qUP2GZuL7T53FyFUGSBw+AX7kimu9ia4gR/PmDK+QYsdosYeEjwlsolZfTBf
sHuzNtPoJhi5o1o/ur4NGameo0WjGK8f1xyzr+U8z74QDQyQv/QYCdK/4isp4BJL
ugHNHkuROX6Zng4i7jc9rfaSRg29I3GBxQUYpMkEnD3eMYMUBWGm6Rs8pHgGAMvL
vqzntgW00WNxehTqcAkmD/Wv+txxhkvIadZnjgaxH49e9JeXeBKTIR5vtb7Hns3s
SuapZUyw+c95DIipXq4EznxxaOrjbebOeFgLCJo8+XMXZum8RZf/ob24KroYad0=
=YsAR
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first batch of KVM updates from Paolo Bonzini:
"The bulk of the changes here is for x86. And for once it's not for
silicon that no one owns: these are really new features for everyone.
Details:
- ARM:
several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the
VFIO integration.
- s390:
Some fixes/refactorings/optimizations, plus support for 2GB
pages.
- x86:
* host and guest support for marking kvmclock as a stable
scheduler clock.
* support for write combining.
* support for system management mode, needed for secure boot in
guests.
* a bunch of cleanups required for the above
* support for virtualized performance counters on AMD
* legacy PCI device assignment is deprecated and defaults to "n"
in Kconfig; VFIO replaces it
On top of this there are also bug fixes and eager FPU context
loading for FPU-heavy guests.
- Common code:
Support for multiple address spaces; for now it is used only for
x86 SMM but the s390 folks also have plans"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
KVM: s390: clear floating interrupt bitmap and parameters
KVM: x86/vPMU: Enable PMU handling for AMD PERFCTRn and EVNTSELn MSRs
KVM: x86/vPMU: Implement AMD vPMU code for KVM
KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch
KVM: x86/vPMU: introduce kvm_pmu_msr_idx_to_pmc
KVM: x86/vPMU: reorder PMU functions
KVM: x86/vPMU: whitespace and stylistic adjustments in PMU code
KVM: x86/vPMU: use the new macros to go between PMC, PMU and VCPU
KVM: x86/vPMU: introduce pmu.h header
KVM: x86/vPMU: rename a few PMU functions
KVM: MTRR: do not map huge page for non-consistent range
KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type
KVM: MTRR: introduce mtrr_for_each_mem_type
KVM: MTRR: introduce fixed_mtrr_addr_* functions
KVM: MTRR: sort variable MTRRs
KVM: MTRR: introduce var_mtrr_range
KVM: MTRR: introduce fixed_mtrr_segment table
KVM: MTRR: improve kvm_mtrr_get_guest_memory_type
KVM: MTRR: do not split 64 bits MSR content
KVM: MTRR: clean up mtrr default type
...
Pull livepatching fixes from Jiri Kosina:
- symbol lookup locking fix, from Miroslav Benes
- error handling improvements in case of failure of the module coming
notifier, from Minfei Huang
- we were too pessimistic when kASLR has been enabled on x86 and were
dropping address hints on the floor unnecessarily in such case. Fix
from Jiri Kosina
- a few other small fixes and cleanups
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: add module locking around kallsyms calls
livepatch: annotate klp_init() with __init
livepatch: introduce patch/func-walking helpers
livepatch: make kobject in klp_object statically allocated
livepatch: Prevent patch inconsistencies if the coming module notifier fails
livepatch: match return value to function signature
x86: kaslr: fix build due to missing ALIGN definition
livepatch: x86: make kASLR logic more accurate
x86: introduce kaslr_offset()
This patch defines a new function pointer struct (kvm_pmu_ops) to
support vPMU for both Intel and AMD. The functions pointers defined in
this new struct will be linked with Intel and AMD functions later. In the
meanwhile the struct that maps from event_sel bits to PERF_TYPE_HARDWARE
events is renamed and moved from Intel specific code to kvm_host.h as a
common struct.
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
Pul x86 microcode updates from Ingo Molnar:
"x86 microcode loader updates from Borislav Petkov:
- early parsing of the built-in microcode
- cleanups
- misc smaller fixes"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Correct CPU family related variable types
x86/microcode: Disable builtin microcode loading on 32-bit for now
x86/microcode/intel: Rename get_matching_sig()
x86/microcode/intel: Simplify get_matching_sig()
x86/microcode/intel: Simplify update_match_cpu()
x86/microcode/intel: Rename get_matching_microcode
x86/cpu/microcode: Zap changelog
x86/microcode: Parse built-in microcode early
x86/microcode/intel: Remove unused @rev arg of get_matching_sig()
x86/microcode/intel: Get rid of revision_is_newer()
Pull x86 FPU updates from Ingo Molnar:
"This tree contains two main changes:
- The big FPU code rewrite: wide reaching cleanups and reorganization
that pulls all the FPU code together into a clean base in
arch/x86/fpu/.
The resulting code is leaner and faster, and much easier to
understand. This enables future work to further simplify the FPU
code (such as removing lazy FPU restores).
By its nature these changes have a substantial regression risk: FPU
code related bugs are long lived, because races are often subtle
and bugs mask as user-space failures that are difficult to track
back to kernel side backs. I'm aware of no unfixed (or even
suspected) FPU related regression so far.
- MPX support rework/fixes. As this is still not a released CPU
feature, there were some buglets in the code - should be much more
robust now (Dave Hansen)"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (250 commits)
x86/fpu: Fix double-increment in setup_xstate_features()
x86/mpx: Allow 32-bit binaries on 64-bit kernels again
x86/mpx: Do not count MPX VMAs as neighbors when unmapping
x86/mpx: Rewrite the unmap code
x86/mpx: Support 32-bit binaries on 64-bit kernels
x86/mpx: Use 32-bit-only cmpxchg() for 32-bit apps
x86/mpx: Introduce new 'directory entry' to 'addr' helper function
x86/mpx: Add temporary variable to reduce masking
x86: Make is_64bit_mm() widely available
x86/mpx: Trace allocation of new bounds tables
x86/mpx: Trace the attempts to find bounds tables
x86/mpx: Trace entry to bounds exception paths
x86/mpx: Trace #BR exceptions
x86/mpx: Introduce a boot-time disable flag
x86/mpx: Restrict the mmap() size check to bounds tables
x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK
x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
x86/mpx: Use the new get_xsave_field_ptr()API
x86/fpu/xstate: Wrap get_xsave_addr() to make it safer
x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions
...
Pull x86 CPU features from Ingo Molnar:
"Various CPU feature support related changes: in particular the
/proc/cpuinfo model name sanitization change should be monitored, it
has a chance to break stuff. (but really shouldn't and there are no
regression reports)"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Give access to the number of nodes in a physical package
x86/cpu: Trim model ID whitespace
x86/cpu: Strip any /proc/cpuinfo model name field whitespace
x86/cpu/amd: Set X86_FEATURE_EXTD_APICID for future processors
x86/gart: Check for GART support before accessing GART registers
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Clean up types in xlate_dev_mem_ptr() some more
x86: Deinline dma_free_attrs()
x86: Deinline dma_alloc_attrs()
x86: Remove unused TI_cpu
x86: Merge common 32-bit values in asm-offsets.c
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- lockless wakeup support for futexes and IPC message queues
(Davidlohr Bueso, Peter Zijlstra)
- Replace spinlocks with atomics in thread_group_cputimer(), to
improve scalability (Jason Low)
- NUMA balancing improvements (Rik van Riel)
- SCHED_DEADLINE improvements (Wanpeng Li)
- clean up and reorganize preemption helpers (Frederic Weisbecker)
- decouple page fault disabling machinery from the preemption
counter, to improve debuggability and robustness (David
Hildenbrand)
- SCHED_DEADLINE documentation updates (Luca Abeni)
- topology CPU masks cleanups (Bartosz Golaszewski)
- /proc/sched_debug improvements (Srikar Dronamraju)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
sched/deadline: Remove needless parameter in dl_runtime_exceeded()
sched: Remove superfluous resetting of the p->dl_throttled flag
sched/deadline: Drop duplicate init_sched_dl_class() declaration
sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
sched/deadline: Make init_sched_dl_class() __init
sched/deadline: Optimize pull_dl_task()
sched/preempt: Add static_key() to preempt_notifiers
sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
sched/debug: Properly format runnable tasks in /proc/sched_debug
sched/numa: Only consider less busy nodes as numa balancing destinations
Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
sched/fair: Prevent throttling in early pick_next_task_fair()
preempt: Reorganize the notrace definitions a bit
preempt: Use preempt_schedule_context() as the official tracing preemption point
sched: Make preempt_schedule_context() function-tracing safe
x86: Remove cpu_sibling_mask() and cpu_core_mask()
x86: Replace cpu_**_mask() with topology_**_cpumask()
...
Pull locking updates from Ingo Molnar:
"The main changes are:
- 'qspinlock' support, enabled on x86: queued spinlocks - these are
now the spinlock variant used by x86 as they outperform ticket
spinlocks in every category. (Waiman Long)
- 'pvqspinlock' support on x86: paravirtualized variant of queued
spinlocks. (Waiman Long, Peter Zijlstra)
- 'qrwlock' support, enabled on x86: queued rwlocks. Similar to
queued spinlocks, they are now the variant used by x86:
CONFIG_ARCH_USE_QUEUED_SPINLOCKS=y
CONFIG_QUEUED_SPINLOCKS=y
CONFIG_ARCH_USE_QUEUED_RWLOCKS=y
CONFIG_QUEUED_RWLOCKS=y
- various lockdep fixlets
- various locking primitives cleanups, further WRITE_ONCE()
propagation"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
locking/lockdep: Remove hard coded array size dependency
locking/qrwlock: Don't contend with readers when setting _QW_WAITING
lockdep: Do not break user-visible string
locking/arch: Rename set_mb() to smp_store_mb()
locking/arch: Add WRITE_ONCE() to set_mb()
rtmutex: Warn if trylock is called from hard/softirq context
arch: Remove __ARCH_HAVE_CMPXCHG
locking/rtmutex: Drop usage of __HAVE_ARCH_CMPXCHG
locking/qrwlock: Rename QUEUE_RWLOCK to QUEUED_RWLOCKS
locking/pvqspinlock: Rename QUEUED_SPINLOCK to QUEUED_SPINLOCKS
locking/pvqspinlock: Replace xchg() by the more descriptive set_mb()
locking/pvqspinlock, x86: Enable PV qspinlock for Xen
locking/pvqspinlock, x86: Enable PV qspinlock for KVM
locking/pvqspinlock, x86: Implement the paravirt qspinlock call patching
locking/pvqspinlock: Implement simple paravirt support for the qspinlock
locking/qspinlock: Revert to test-and-set on hypervisors
locking/qspinlock: Use a simple write to grab the lock
locking/qspinlock: Optimize for smaller NR_CPUS
locking/qspinlock: Extract out code snippets for the next patch
locking/qspinlock: Add pending bit
...
This will be used for private function used by AMD- and Intel-specific
PMU implementations.
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sort all valid variable MTRRs based on its base address, it will help us to
check a range to see if it's fully contained in variable MTRRs
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Fix list insertion sort, simplify var_mtrr_range_is_valid to just
test the V bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Variable MTRR MSRs are 64 bits which are directly accessed with full length,
no reason to split them to two 32 bits
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mtrr->enable, omit the decode/code workload and get rid of
all the hard code
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only KVM_NR_VAR_MTRR variable MTRRs are available in KVM guest
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vMTRR does not depend on any host MTRR feature and fixed MTRRs have always
been implemented, so drop this field
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MTRR code locates in x86.c and mmu.c so that move them to a separate file to
make the organization more clearer and it will be the place where we fully
implement vMTRR
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stash the number of nodes in a physical processor package
locally and add an accessor to be called by interested parties.
The first user is the MCE injection module which uses it to find
the node base core in a package for injecting a certain type of
errors.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
[ Rewrote the commit message, merged it with the accessor patch and unified naming. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: mchehab@osg.samsung.com
Link: http://lkml.kernel.org/r/1433868317-18417-2-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>