Commit Graph

370 Commits

Author SHA1 Message Date
Dan Williams 315c562536 libnvdimm, pfn: add 'align' attribute, default to HPAGE_SIZE
When setting aside capacity for struct page it must be aligned to the
largest mapping size that is to be made available via DAX.  Make the
alignment configurable to enable support for 1GiB page-size mappings.

The offset for PFN_MODE_RAM may now be larger than SZ_8K, so fixup the
offset check in nvdimm_namespace_attach_pfn().

Reported-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-12-12 15:04:26 -08:00
Dan Williams f7c6ab80fa libnvdimm, pfn: clean up pfn create parameters
In all cases __nd_pfn_create is called with default parameters which are
then overridden by values in the info block.  Clean up pfn creation by
dropping the parameters and setting default values internal to
__nd_pfn_create.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-12-10 16:11:59 -08:00
Dan Williams 9f1e8cee77 libnvdimm, pfn: kill ND_PFN_ALIGN
The alignment constraint isn't necessary now that devm_memremap_pages()
allows for unaligned mappings.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-12-10 15:14:20 -08:00
Dmitry Krivenok 6bb691ac08 nvdimm: do not show pfn_seed for non pmem regions
This simple change hides pfn_seed attribute for non pmem
regions because they don't support pfn anyway.

Signed-off-by: Dmitry V. Krivenok <krivenok.dmitry@gmail.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-12-08 16:27:30 -08:00
Dmitry Krivenok bd26d0d0ce nvdimm: improve diagnosibility of namespaces
In order to bind namespace to the driver user must first
set all mandatory attributes in the following order:
- uuid
- size
- sector_size (for blk namespace only)

If the order is wrong, then user either won't be able to set
the attribute or bind the namespace.

This simple patch improves diagnosibility of common operations
with namespaces by printing some details about the error
instead of failing silently.

Below are examples of error messages (assuming dyndbg is
enabled for nvdimms):

[/]# echo 4194304 > /sys/bus/nd/devices/region5/namespace5.0/size
[  288.372612] nd namespace5.0: __size_store: uuid not set
[  288.374839] nd namespace5.0: size_store: 400000 fail (-6)
sh: write error: No such device or address
[/]#

[/]# echo namespace5.0 > /sys/bus/nd/drivers/nd_blk/bind
[  554.671648] nd_blk namespace5.0: nvdimm_namespace_common_probe: sector size not set
[  554.674688]  ndbus1: nd_blk.probe(namespace5.0) = -19
sh: write error: No such device
[/]#

Signed-off-by: Dmitry V. Krivenok <krivenok.dmitry@gmail.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-12-08 16:27:30 -08:00
Dan Williams 589e75d157 libnvdimm, pmem: fix size trim in pmem_direct_access()
This masking prevents access to the end of the device via dax_do_io(),
and is unnecessary as arch_add_memory() would have rejected an unaligned
allocation.

Cc: <stable@vger.kernel.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-11-12 09:55:23 -08:00
Dan Williams f7256dc0cd libnvdimm, e820: fix numa node for e820-type-12 pmem ranges
Rather than punt on the numa node for these e820 ranges try to find a
better answer with memory_add_physaddr_to_nid() when it is available.

Cc: <stable@vger.kernel.org>
Reported-by: Boaz Harrosh <boaz@plexistor.com>
Tested-by: Boaz Harrosh <boaz@plexistor.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-11-12 09:21:18 -08:00
Linus Torvalds 3419b45039 Merge branch 'for-4.4/io-poll' of git://git.kernel.dk/linux-block
Pull block IO poll support from Jens Axboe:
 "Various groups have been doing experimentation around IO polling for
  (really) fast devices.  The code has been reviewed and has been
  sitting on the side for a few releases, but this is now good enough
  for coordinated benchmarking and further experimentation.

  Currently O_DIRECT sync read/write are supported.  A framework is in
  the works that allows scalable stats tracking so we can auto-tune
  this.  And we'll add libaio support as well soon.  Fow now, it's an
  opt-in feature for test purposes"

* 'for-4.4/io-poll' of git://git.kernel.dk/linux-block:
  direct-io: be sure to assign dio->bio_bdev for both paths
  directio: add block polling support
  NVMe: add blk polling support
  block: add block polling support
  blk-mq: return tag/queue combo in the make_request_fn handlers
  block: change ->make_request_fn() and users to return a queue cookie
2015-11-10 17:23:49 -08:00
Linus Torvalds 264015f8a8 libnvdimm for 4.4:
1/ Add support for the ACPI 6.0 NFIT hot add mechanism to process
    updates of the NFIT at runtime.
 
 2/ Teach the coredump implementation how to filter out DAX mappings.
 
 3/ Introduce NUMA hints for allocations made by the pmem driver, and as
    a side effect all devm allocations now hint their NUMA node by
    default.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWQX2sAAoJEB7SkWpmfYgCWsEQAK7w/xM9zClVY/DDlFJxFtYq
 DZJ4faPj+E3FMTiJIEDzjtRgQvOFE+wmJtntYsCqKH/QZmpnyk9jeT/CbJzEEL2k
 WsAk+qHGLcVUlSb36blwN1RFzYqC+IDYThewJqUvxDbOwL1AbiibbX7gplzZHLhW
 +rj3ScVlSNOPRDgGGpkAeLNNsttuKvsGo7nB/JZopm0tV6g14rSK09wQbVhv6S6T
 Lu7VGYqnJlkteL9YlzRiROf9hW2ZFCMGJz1YZydPTy3aX3hGTBX4w2qvmsPwBIKP
 kW/gCNisVJGk1cZCk4joSJ8i/b3x3fE0zdZ5waivJ5jDvYbUUfyk0KtJkfw207Rl
 14yWitUC6aeVuCeOqXHgsjRi+1QVN9Pg7i49xgGiUN1igQiUYRTgQPWZxDv6Zo/s
 USrLFQBaRd+hJw+dl7A47lJ3mUF96tPCoQb4LCQ7DVsg5U4J2TvqXLH9Gek/CCZ4
 QsMkZDTQlZw4+JEDlzBgg/L7xVty8DadplTADMdjaRhFU3y8zKNJ85Ileokt7KVt
 IsBT4+S5HeZLvinZY95932DwAmFp1DtsyENd1BUXL06ddyvlQrFJ6NQaXji4fuDc
 EVQmMoTAqDujZFupMAux9vkUBDFj/hmaVD5F7j3+MWP87OCritw/IZn+2LgTaKoX
 EmttaYrDr2jJwIaGyw+H
 =a2/L
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "Outside of the new ACPI-NFIT hot-add support this pull request is more
  notable for what it does not contain, than what it does.  There were a
  handful of development topics this cycle, dax get_user_pages, dax
  fsync, and raw block dax, that need more more iteration and will wait
  for 4.5.

  The patches to make devm and the pmem driver NUMA aware have been in
  -next for several weeks.  The hot-add support has not, but is
  contained to the NFIT driver and is passing unit tests.  The coredump
  support is straightforward and was looked over by Jeff.  All of it has
  received a 0day build success notification across 107 configs.

  Summary:

   - Add support for the ACPI 6.0 NFIT hot add mechanism to process
     updates of the NFIT at runtime.

   - Teach the coredump implementation how to filter out DAX mappings.

   - Introduce NUMA hints for allocations made by the pmem driver, and
     as a side effect all devm allocations now hint their NUMA node by
     default"

* tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
  coredump: add DAX filtering for FDPIC ELF coredumps
  coredump: add DAX filtering for ELF coredumps
  acpi: nfit: Add support for hot-add
  nfit: in acpi_nfit_init, break on a 0-length table
  pmem, memremap: convert to numa aware allocations
  devm_memremap_pages: use numa_mem_id
  devm: make allocations numa aware by default
  devm_memremap: convert to return ERR_PTR
  devm_memunmap: use devres_release()
  pmem: kill memremap_pmem()
  x86, mm: quiet arch_add_memory()
2015-11-10 12:07:22 -08:00
Jens Axboe dece16353e block: change ->make_request_fn() and users to return a queue cookie
No functional changes in this patch, but it prepares us for returning
a more useful cookie related to the IO that was queued up.

Signed-off-by: Jens Axboe <axboe@fb.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Keith Busch <keith.busch@intel.com>
2015-11-07 10:40:46 -07:00
Dan Williams 4125a09b0a block, libnvdimm, nvme: provide a built-in blk_integrity nop profile
The libnvidmm-btt and nvme drivers use blk_integrity to reserve space
for per-sector metadata, but sometimes without protection checksums.
This property is generically useful, so teach the block core to
internally specify a nop profile if one is not provided at registration
time.

Cc: Keith Busch <keith.busch@intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
[hch: kill the local nvme nop profile as well]
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 14:43:45 -06:00
Dan Williams 9609b9942b md, dm, scsi, nvme, libnvdimm: drop blk_integrity_unregister() at shutdown
Now that the integrity profile is statically allocated there is no work
to do when shutting down an integrity enabled block device.

Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: James Bottomley <JBottomley@Odin.com>
Acked-by: NeilBrown <neilb@suse.com>
Acked-by: Keith Busch <keith.busch@intel.com>
Acked-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 14:43:37 -06:00
Martin K. Petersen 25520d55cd block: Inline blk_integrity in struct gendisk
Up until now the_integrity profile has been dynamically allocated and
attached to struct gendisk after the disk has been made active.

This causes problems because NVMe devices need to register the profile
prior to the partition table being read due to a mandatory metadata
buffer requirement. In addition, DM goes through hoops to deal with
preallocating, but not initializing integrity profiles.

Since the integrity profile is small (4 bytes + a pointer), Christoph
suggested moving it to struct gendisk proper. This requires several
changes:

 - Moving the blk_integrity definition to genhd.h.

 - Inlining blk_integrity in struct gendisk.

 - Removing the dynamic allocation code.

 - Adding helper functions which allow gendisk to set up and tear down
   the integrity sysfs dir when a disk is added/deleted.

 - Adding a blk_integrity_revalidate() callback for updating the stable
   pages bdi setting.

 - The calls that depend on whether a device has an integrity profile or
   not now key off of the bi->profile pointer.

 - Simplifying the integrity support routines in DM (Mike Snitzer).

Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 14:42:42 -06:00
Martin K. Petersen 0f8087ecde block: Consolidate static integrity profile properties
We previously made a complete copy of a device's data integrity profile
even though several of the fields inside the blk_integrity struct are
pointers to fixed template entries in t10-pi.c.

Split the static and per-device portions so that we can reference the
template directly.

Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 14:42:38 -06:00
Dan Williams 538ea4aa44 pmem, memremap: convert to numa aware allocations
Given that pmem ranges come with numa-locality hints, arrange for the
resulting driver objects to be obtained from node-local memory.

Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-10-09 17:00:33 -04:00
Dan Williams b36f47617f devm_memremap: convert to return ERR_PTR
Make devm_memremap consistent with the error return scheme of
devm_memremap_pages to remove special casing in the pmem driver.

Cc: Christoph Hellwig <hch@lst.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-10-09 17:00:33 -04:00
Dan Williams a639315d6c pmem: kill memremap_pmem()
Now that the pmem-api is defined as "a set of apis that enables access
to WB mapped pmem",  the mapping type is implied.  Remove the wrapper
and push the functionality down into the pmem driver in preparation for
adding support for direct-mapped pmem.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-10-09 17:00:32 -04:00
Ross Zwisler ba8fe0f85e pmem: add proper fencing to pmem_rw_page()
pmem_rw_page() needs to call wmb_pmem() on writes to make sure that the
newly written data is durable.  This flow was added to pmem_rw_bytes()
and pmem_make_request() with this commit:

commit 61031952f4 ("arch, x86: pmem api for ensuring durability of
	persistent memory updates")

...the pmem_rw_page() path was missed.

Cc: <stable@vger.kernel.org>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-09-17 11:49:28 -04:00
Axel Lin 4ca8b57a0a libnvdimm: pfn_devs: Fix locking in namespace_store
Always take device_lock() before nvdimm_bus_lock() to prevent deadlock.

Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-09-17 11:47:50 -04:00
Axel Lin 4be9c1fc3d libnvdimm: btt_devs: Fix locking in namespace_store
Always take device_lock() before nvdimm_bus_lock() to prevent deadlock.

Cc: <stable@vger.kernel.org>
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-09-17 11:37:16 -04:00
Linus Torvalds 12f03ee606 libnvdimm for 4.3:
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
    mechanism for adding device-driver-discovered memory regions to the
    kernel's direct map.  This facility is used by the pmem driver to
    enable pfn_to_page() operations on the page frames returned by DAX
    ('direct_access' in 'struct block_device_operations'). For now, the
    'memmap' allocation for these "device" pages comes from "System
    RAM".  Support for allocating the memmap from device memory will
    arrive in a later kernel.
 
 2/ Introduce memremap() to replace usages of ioremap_cache() and
    ioremap_wt().  memremap() drops the __iomem annotation for these
    mappings to memory that do not have i/o side effects.  The
    replacement of ioremap_cache() with memremap() is limited to the
    pmem driver to ease merging the api change in v4.3.  Completion of
    the conversion is targeted for v4.4.
 
 3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
    driver, update the VFS DAX implementation and PMEM api to provide
    persistence guarantees for kernel operations on a DAX mapping.
 
 4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
    cacheable to improve performance.
 
 5/ Miscellaneous updates and fixes to libnvdimm including support
    for issuing "address range scrub" commands, clarifying the optimal
    'sector size' of pmem devices, a clarification of the usage of the
    ACPI '_STA' (status) property for DIMM devices, and other minor
    fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
 JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
 OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
 nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
 NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
 zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
 1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
 sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
 bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
 o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
 dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
 slsw6DkrWT60CRE42nbK
 =o57/
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "This update has successfully completed a 0day-kbuild run and has
  appeared in a linux-next release.  The changes outside of the typical
  drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
  removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
  the introduction of ZONE_DEVICE + devm_memremap_pages().

  Summary:

   - Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
     mechanism for adding device-driver-discovered memory regions to the
     kernel's direct map.

     This facility is used by the pmem driver to enable pfn_to_page()
     operations on the page frames returned by DAX ('direct_access' in
     'struct block_device_operations').

     For now, the 'memmap' allocation for these "device" pages comes
     from "System RAM".  Support for allocating the memmap from device
     memory will arrive in a later kernel.

   - Introduce memremap() to replace usages of ioremap_cache() and
     ioremap_wt().  memremap() drops the __iomem annotation for these
     mappings to memory that do not have i/o side effects.  The
     replacement of ioremap_cache() with memremap() is limited to the
     pmem driver to ease merging the api change in v4.3.

     Completion of the conversion is targeted for v4.4.

   - Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
     driver, update the VFS DAX implementation and PMEM api to provide
     persistence guarantees for kernel operations on a DAX mapping.

   - Convert the ACPI NFIT 'BLK' driver to map the block apertures as
     cacheable to improve performance.

   - Miscellaneous updates and fixes to libnvdimm including support for
     issuing "address range scrub" commands, clarifying the optimal
     'sector size' of pmem devices, a clarification of the usage of the
     ACPI '_STA' (status) property for DIMM devices, and other minor
     fixes"

* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
  libnvdimm, pmem: direct map legacy pmem by default
  libnvdimm, pmem: 'struct page' for pmem
  libnvdimm, pfn: 'struct page' provider infrastructure
  x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
  add devm_memremap_pages
  mm: ZONE_DEVICE for "device memory"
  mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
  dax: drop size parameter to ->direct_access()
  nd_blk: change aperture mapping from WC to WB
  nvdimm: change to use generic kvfree()
  pmem, dax: have direct_access use __pmem annotation
  dax: update I/O path to do proper PMEM flushing
  pmem: add copy_from_iter_pmem() and clear_pmem()
  pmem, x86: clean up conditional pmem includes
  pmem: remove layer when calling arch_has_wmb_pmem()
  pmem, x86: move x86 PMEM API to new pmem.h header
  libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
  pmem: switch to devm_ allocations
  devres: add devm_memremap
  libnvdimm, btt: write and validate parent_uuid
  ...
2015-09-08 14:35:59 -07:00
Linus Torvalds 1081230b74 Merge branch 'for-4.3/core' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
 "This first core part of the block IO changes contains:

   - Cleanup of the bio IO error signaling from Christoph.  We used to
     rely on the uptodate bit and passing around of an error, now we
     store the error in the bio itself.

   - Improvement of the above from myself, by shrinking the bio size
     down again to fit in two cachelines on x86-64.

   - Revert of the max_hw_sectors cap removal from a revision again,
     from Jeff Moyer.  This caused performance regressions in various
     tests.  Reinstate the limit, bump it to a more reasonable size
     instead.

   - Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
     Most devices have huge trim limits, which can cause nasty latencies
     when deleting files.  Enable the admin to configure the size down.
     We will look into having a more sane default instead of UINT_MAX
     sectors.

   - Improvement of the SGP gaps logic from Keith Busch.

   - Enable the block core to handle arbitrarily sized bios, which
     enables a nice simplification of bio_add_page() (which is an IO hot
     path).  From Kent.

   - Improvements to the partition io stats accounting, making it
     faster.  From Ming Lei.

   - Also from Ming Lei, a basic fixup for overflow of the sysfs pending
     file in blk-mq, as well as a fix for a blk-mq timeout race
     condition.

   - Ming Lin has been carrying Kents above mentioned patches forward
     for a while, and testing them.  Ming also did a few fixes around
     that.

   - Sasha Levin found and fixed a use-after-free problem introduced by
     the bio->bi_error changes from Christoph.

   - Small blk cgroup cleanup from Viresh Kumar"

* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
  blk: Fix bio_io_vec index when checking bvec gaps
  block: Replace SG_GAPS with new queue limits mask
  block: bump BLK_DEF_MAX_SECTORS to 2560
  Revert "block: remove artifical max_hw_sectors cap"
  blk-mq: fix race between timeout and freeing request
  blk-mq: fix buffer overflow when reading sysfs file of 'pending'
  Documentation: update notes in biovecs about arbitrarily sized bios
  block: remove bio_get_nr_vecs()
  fs: use helper bio_add_page() instead of open coding on bi_io_vec
  block: kill merge_bvec_fn() completely
  md/raid5: get rid of bio_fits_rdev()
  md/raid5: split bio for chunk_aligned_read
  block: remove split code in blkdev_issue_{discard,write_same}
  btrfs: remove bio splitting and merge_bvec_fn() calls
  bcache: remove driver private bio splitting code
  block: simplify bio_add_page()
  block: make generic_make_request handle arbitrarily sized bios
  blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
  block: don't access bio->bi_error after bio_put()
  block: shrink struct bio down to 2 cache lines again
  ...
2015-09-02 13:10:25 -07:00
Dan Williams 004f1afbe1 libnvdimm, pmem: direct map legacy pmem by default
The expectation is that the legacy / non-standard pmem discovery method
(e820 type-12) will only ever be used to describe small quantities of
persistent memory.  Larger capacities will be described via the ACPI
NFIT.  When "allocate struct page from pmem" support is added this default
policy can be overridden by assigning a legacy pmem namespace to a pfn
device, however this would be only be necessary if a platform used the
legacy mechanism to define a very large range.

Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-28 23:40:05 -04:00
Dan Williams 32ab0a3f51 libnvdimm, pmem: 'struct page' for pmem
Enable the pmem driver to handle PFN device instances.  Attaching a pmem
namespace to a pfn device triggers the driver to allocate and initialize
struct page entries for pmem.  Memory capacity for this allocation comes
exclusively from RAM for now which is suitable for low PMEM to RAM
ratios.  This mechanism will be expanded later for setting an "allocate
from PMEM" policy.

Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-28 23:40:04 -04:00
Dan Williams e1455744b2 libnvdimm, pfn: 'struct page' provider infrastructure
Implement the base infrastructure for libnvdimm PFN devices. Similar to
BTT devices they take a namespace as a backing device and layer
functionality on top. In this case the functionality is reserving space
for an array of 'struct page' entries to be handed out through
pfn_to_page(). For now this is just the basic libnvdimm-device-model for
configuring the base PFN device.

As the namespace claiming mechanism for PFN devices is mostly identical
to BTT devices drivers/nvdimm/claim.c is created to house the common
bits.

Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-28 23:39:36 -04:00
Dan Williams 96601adb74 x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
Given that a write-back (WB) mapping plus non-temporal stores is
expected to be the most efficient way to access PMEM, update the
definition of ARCH_HAS_PMEM_API to imply arch support for
WB-mapped-PMEM.  This is needed as a pre-requisite for adding PMEM to
the direct map and mapping it with struct page.

The above clarification for X86_64 means that memcpy_to_pmem() is
permitted to use the non-temporal arch_memcpy_to_pmem() rather than
needlessly fall back to default_memcpy_to_pmem() when the pcommit
instruction is not available.  When arch_memcpy_to_pmem() is not
guaranteed to flush writes out of cache, i.e. on older X86_32
implementations where non-temporal stores may just dirty cache,
ARCH_HAS_PMEM_API is simply disabled.

The default fall back for persistent memory handling remains.  Namely,
map it with the WT (write-through) cache-type and hope for the best.

arch_has_pmem_api() is updated to only indicate whether the arch
provides the proper helpers to meet the minimum "writes are visible
outside the cache hierarchy after memcpy_to_pmem() + wmb_pmem()".  Code
that cares whether wmb_pmem() actually flushes writes to pmem must now
call arch_has_wmb_pmem() directly.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
[hch: set ARCH_HAS_PMEM_API=n on x86_32]
Reviewed-by: Christoph Hellwig <hch@lst.de>
[toshi: x86_32 compile fixes]
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-27 19:40:59 -04:00
Dan Williams cb389b9c0e dax: drop size parameter to ->direct_access()
None of the implementations currently use it.  The common
bdev_direct_access() entry point handles all the size checks before
calling ->direct_access().

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-27 19:40:58 -04:00
Dan Williams 4a9bf88a5c Merge branch 'pmem-api' into libnvdimm-for-next 2015-08-27 19:40:26 -04:00
yalin wang a06a757652 nvdimm: change to use generic kvfree()
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-27 19:35:48 -04:00
Ross Zwisler e2e05394e4 pmem, dax: have direct_access use __pmem annotation
Update the annotation for the kaddr pointer returned by direct_access()
so that it is a __pmem pointer.  This is consistent with the PMEM driver
and with how this direct_access() pointer is used in the DAX code.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-20 14:07:24 -04:00
Dan Williams 7a67832c7e libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
We currently register a platform device for e820 type-12 memory and
register a nvdimm bus beneath it.  Registering the platform device
triggers the device-core machinery to probe for a driver, but that
search currently comes up empty.  Building the nvdimm-bus registration
into the e820_pmem platform device registration in this way forces
libnvdimm to be built-in.  Instead, convert the built-in portion of
CONFIG_X86_PMEM_LEGACY to simply register a platform device and move the
rest of the logic to the driver for e820_pmem, for the following
reasons:

1/ Letting e820_pmem support be a module allows building and testing
   libnvdimm.ko changes without rebooting

2/ All the normal policy around modules can be applied to e820_pmem
   (unbind to disable and/or blacklisting the module from loading by
   default)

3/ Moving the driver to a generic location and converting it to scan
   "iomem_resource" rather than "e820.map" means any other architecture can
   take advantage of this simple nvdimm resource discovery mechanism by
   registering a resource named "Persistent Memory (legacy)"

Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-19 00:34:34 -04:00
Christoph Hellwig 708ab62bef pmem: switch to devm_ allocations
Signed-off-by: Christoph Hellwig <hch@lst.de>
[djbw: tools/testing/nvdimm/ and memunmap_pmem support]
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-14 16:01:21 -04:00
Vishal Verma 6ec689542b libnvdimm, btt: write and validate parent_uuid
When a BTT is instantiated on a namespace it must validate the namespace
uuid matches the 'parent_uuid' stored in the btt superblock. This
property enforces that changing the namespace UUID invalidates all
former BTT instances on that storage. For "IO namespaces" that don't
have a label or UUID, the parent_uuid is set to zero, and this
validation is skipped. For such cases, old BTTs have to be invalidated
by forcing the namespace to raw mode, and overwriting the BTT info
blocks.

Based on a patch by Dan Williams <dan.j.williams@intel.com>

Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-14 13:43:04 -04:00
Vishal Verma ab45e76327 libnvdimm, btt: consolidate arena validation
Use arena_is_valid as a common routine for checking the validity of an
info block from both discover_arenas, and nd_btt_probe.

As a result, don't check for validity of the BTT's UUID, and lbasize.
The checksum in the BTT info block guarantees self-consistency, and when
we're called from nd_btt_probe, we don't have a valid uuid or lbasize
available to check against.

Also cleanup to return a bool instead of an int.

Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-14 13:43:04 -04:00
Vishal Verma fbde1414ac libnvdimm, btt: clean up internal interfaces
Consolidate the parameters passed to arena_is_valid into just nd_btt,
and an info block to increase re-usability.

Similarly, btt_arena_write_layout doesn't need to be passed a uuid, as
it can be obtained from arena->nd_btt.

Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-14 13:43:04 -04:00
Randy Dunlap f6ef5a2a50 nvdimm: fix inline function return type warning
Fix multiple build warnings when CONFIG_BTT is not enabled:

In file included from ../drivers/nvdimm/bus.c:29:0:
../drivers/nvdimm/nd.h:169:15: warning: return type defaults to 'int' [-Wreturn-type]
 static inline nd_btt_probe(struct nd_namespace_common *ndns, void *drvdata)
               ^

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-nvdimm@lists.01.org
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-07-31 18:17:09 -04:00
Christoph Hellwig 4246a0b63b block: add a bi_error field to struct bio
Currently we have two different ways to signal an I/O error on a BIO:

 (1) by clearing the BIO_UPTODATE flag
 (2) by returning a Linux errno value to the bi_end_io callback

The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario.  Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.

So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-29 08:55:15 -06:00
Vishal Verma 6b47496a6f libnvdimm, pmem: Change pmem physical sector size to PAGE_SIZE
Based on a patch: c8fa317 brd: Request from fdisk 4k alignment by Boaz
Harrosh, allow fdisk to create properly aligned partitions for DAX. This
will also cause mkfs.ext4 to emit a warning if using a file system block
size of less than PAGE_SIZE.

Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Elliott, Robert <Elliott@hp.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Boaz Harrosh <boaz@plexistor.com>
Acked-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-07-27 22:53:19 -04:00
Dan Williams 5e32940621 libnvdimm, btt: sparse fix
Fix:
drivers/nvdimm/btt.c:635:29: warning: restricted __le64 degrades to integer

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-07-27 22:53:19 -04:00
Dan Williams 8ca243536d libnvdimm: fix namespace seed creation
A new BLK namespace "seed" device is created whenever the current seed
is successfully probed.  However, if that namespace is assigned to a BTT
it may never directly experience a successful probe as it is a
subordinate device to a BTT configuration.

The effect of the current code is that no new namespaces can be
instantiated, after the seed namespace, to consume available BLK DPA
capacity.  Fix this by treating a successful BTT probe event as a
successful probe event for the backing namespace.

Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-07-25 09:57:56 -07:00
Axel Lin daa1dee405 nvdimm: Fix return value of nvdimm_bus_init() if class_create() fails
Return proper error if class_create() fails.

Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-30 14:30:34 -04:00
Dan Williams af834d457d libnvdimm: smatch cleanups in __nd_ioctl
Drop use of access_ok() since we are already using copy_{to|from}_user()
which do their own access_ok().

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-30 14:10:09 -04:00
Ross Zwisler 61031952f4 arch, x86: pmem api for ensuring durability of persistent memory updates
Based on an original patch by Ross Zwisler [1].

Writes to persistent memory have the potential to be posted to cpu
cache, cpu write buffers, and platform write buffers (memory controller)
before being committed to persistent media.  Provide apis,
memcpy_to_pmem(), wmb_pmem(), and memremap_pmem(), to write data to
pmem and assert that it is durable in PMEM (a persistent linear address
range).  A '__pmem' attribute is added so sparse can track proper usage
of pointers to pmem.

This continues the status quo of pmem being x86 only for 4.2, but
reworks to ioremap, and wider implementation of memremap() will enable
other archs in 4.3.

[1]: https://lists.01.org/pipermail/linux-nvdimm/2015-May/000932.html

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
[djbw: various reworks]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Toshi Kani 74ae66c3b1 libnvdimm: Add sysfs numa_node to NVDIMM devices
Add support of sysfs 'numa_node' to I/O-related NVDIMM devices
under /sys/bus/nd/devices, regionN, namespaceN.0, and bttN.x.

An example of numa_node values on a 2-socket system with a single
NVDIMM range on each socket is shown below.
  /sys/bus/nd/devices
  |-- btt0.0/numa_node:0
  |-- btt1.0/numa_node:1
  |-- btt1.1/numa_node:1
  |-- namespace0.0/numa_node:0
  |-- namespace1.0/numa_node:1
  |-- region0/numa_node:0
  |-- region1/numa_node:1

These numa_node files are then linked under the block class of
their device names.
  /sys/class/block/pmem0/device/numa_node:0
  /sys/class/block/pmem1s/device/numa_node:1

This enables numactl(8) to accept 'block:' and 'file:' paths of
pmem and btt devices as shown in the examples below.
  numactl --preferred block:pmem0 --show
  numactl --preferred file:/dev/pmem1s --show

Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Toshi Kani 41d7a6d637 libnvdimm: Set numa_node to NVDIMM devices
ACPI NFIT table has System Physical Address Range Structure entries that
describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is
set in the flags.

Change acpi_nfit_register_region() to map a proximity ID to its node ID,
and set it to a new numa_node field of nd_region_desc, which is then
conveyed to the nd_region device.

The device core arranges for btt and namespace devices to inherit their
node from their parent region.

Signed-off-by: Toshi Kani <toshi.kani@hp.com>
[djbw: move set_dev_node() from region.c to bus.c]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Dan Williams 5813882094 libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
Upon detection of an unarmed dimm in a region, arrange for descendant
BTT, PMEM, or BLK instances to be read-only.  A dimm is primarily marked
"unarmed" via flags passed by platform firmware (NFIT).

The flags in the NFIT memory device sub-structure indicate the state of
the data on the nvdimm relative to its energy source or last "flush to
persistence".  For the most part there is nothing the driver can do but
advertise the state of these flags in sysfs and emit a message if
firmware indicates that the contents of the device may be corrupted.
However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for
the block devices incorporating that nvdimm to be marked read-only.
This is a safe default as the data is still available and new writes are
held off until the administrator either forces read-write mode, or the
energy source becomes armed.

A 'read_only' attribute is added to REGION devices to allow for
overriding the default read-only policy of all descendant block devices.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Dan Williams 0f51c4fa7f pmem: flag pmem block devices as non-rotational
...since they are effectively SSDs as far as userspace is concerned.

Reviewed-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Dan Williams f0dc089ce2 libnvdimm: enable iostat
This is disabled by default as the overhead is prohibitive, but if the
user takes the action to turn it on we'll oblige.

Reviewed-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Dan Williams edc870e546 pmem: make_request cleanups
Various cleanups:

1/ Kill the BUG_ON since we've already told the block layer we don't
   support DISCARD on all these drivers.

2/ Kill the 'rw' variable, no need to cache it.

3/ Kill the local 'sector' variable.  bio_for_each_segment() is already
   advancing the iterator's sector number by the bio_vec length.

4/ Kill the check for accessing past the end of device
   generic_make_request_checks() already does that.

Suggested-by: Christoph Hellwig <hch@lst.de>
[hch: kill access past end of the device check]
Reviewed-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Dan Williams 43d3fa3a04 libnvdimm, pmem: fix up max_hw_sectors
There is no hardware limit to enforce on the size of the i/o that can be passed
to an nvdimm block device, so set it to UINT_MAX.

Reviewed-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Vishal Verma fcae695737 libnvdimm, blk: add support for blk integrity
Support multiple block sizes (sector + metadata) for nd_blk in the
same way as done for the BTT. Add the idea of an 'internal' lbasize,
which is properly aligned and padded, and store metadata in this space.

Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Vishal Verma 41cd8b70c3 libnvdimm, btt: add support for blk integrity
Support multiple block sizes (sector + metadata) using the blk integrity
framework. This registers a new integrity template that defines the
protection information tuple size based on the configured metadata size,
and simply acts as a passthrough for protection information generated by
another layer. The metadata is written to the storage as-is, and read back
with each sector.

Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Ross Zwisler 047fc8a1f9 libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
The libnvdimm implementation handles allocating dimm address space (DPA)
between PMEM and BLK mode interfaces.  After DPA has been allocated from
a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O
as a struct bio based block device. Unlike PMEM, BLK is required to
handle platform specific details like mmio register formats and memory
controller interleave.  For this reason the libnvdimm generic nd_blk
driver calls back into the bus provider to carry out the I/O.

This initial implementation handles the BLK interface defined by the
ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from
DCR (dimm control region), BDW (block data window), IDT (interleave
descriptor) NFIT structures and the hardware register format.
[1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
[2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Vishal Verma 5212e11fde nd_btt: atomic sector updates
BTT stands for Block Translation Table, and is a way to provide power
fail sector atomicity semantics for block devices that have the ability
to perform byte granularity IO. It relies on the capability of libnvdimm
namespace devices to do byte aligned IO.

The BTT works as a stacked blocked device, and reserves a chunk of space
from the backing device for its accounting metadata. It is a bio-based
driver because all IO is done synchronously, and there is no queuing or
asynchronous completions at either the device or the driver level.

The BTT uses 'lanes' to index into various 'on-disk' data structures,
and lanes also act as a synchronization mechanism in case there are more
CPUs than available lanes. We did a comparison between two lane lock
strategies - first where we kept an atomic counter around that tracked
which was the last lane that was used, and 'our' lane was determined by
atomically incrementing that. That way, for the nr_cpus > nr_lanes case,
theoretically, no CPU would be blocked waiting for a lane. The other
strategy was to use the cpu number we're scheduled on to and hash it to
a lane number. Theoretically, this could block an IO that could've
otherwise run using a different, free lane. But some fio workloads
showed that the direct cpu -> lane hash performed faster than tracking
'last lane' - my reasoning is the cache thrash caused by moving the
atomic variable made that approach slower than simply waiting out the
in-progress IO. This supports the conclusion that the driver can be a
very simple bio-based one that does synchronous IOs instead of queuing.

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Neil Brown <neilb@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
[jmoyer: fix nmi watchdog timeout in btt_map_init]
[jmoyer: move btt initialization to module load path]
[jmoyer: fix memory leak in the btt initialization path]
[jmoyer: Don't overwrite corrupted arenas]
Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26 11:23:38 -04:00
Dan Williams 8c2f7e8658 libnvdimm: infrastructure for btt devices
NVDIMM namespaces, in addition to accepting "struct bio" based requests,
also have the capability to perform byte-aligned accesses.  By default
only the bio/block interface is used.  However, if another driver can
make effective use of the byte-aligned capability it can claim namespace
interface and use the byte-aligned ->rw_bytes() interface.

The BTT driver is the initial first consumer of this mechanism to allow
adding atomic sector update semantics to a pmem or blk namespace.  This
patch is the sysfs infrastructure to allow configuring a BTT instance
for a namespace.  Enabling that BTT and performing i/o is in a
subsequent patch.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 04:20:04 -04:00
Dan Williams 0ba1c63489 libnvdimm: write blk label set
After 'uuid', 'size', 'sector_size', and optionally 'alt_name' have been
set to valid values the labels on the dimm can be updated.  The
difference with the pmem case is that blk namespaces are limited to one
dimm and can cover discontiguous ranges in dpa space.

Also, after allocating label slots, it is useful for userspace to know
how many slots are left.  Export this information in sysfs.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams f524bf271a libnvdimm: write pmem label set
After 'uuid', 'size', and optionally 'alt_name' have been set to valid
values the labels on the dimms can be updated.

Write procedure is:
1/ Allocate and write new labels in the "next" index
2/ Free the old labels in the working copy
3/ Write the bitmap and the label space on the dimm
4/ Write the index to make the update valid

Label ranges directly mirror the dpa resource values for the given
label_id of the namespace.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 1b40e09a12 libnvdimm: blk labels and namespace instantiation
A blk label set describes a namespace comprised of one or more
discontiguous dpa ranges on a single dimm.  They may alias with one or
more pmem interleave sets that include the given dimm.

This is the runtime/volatile configuration infrastructure for sysfs
manipulation of 'alt_name', 'uuid', 'size', and 'sector_size'.  A later
patch will make these settings persistent by writing back the label(s).

Unlike pmem namespaces, multiple blk namespaces can be created per
region.  Once a blk namespace has been created a new seed device
(unconfigured child of a parent blk region) is instantiated.  As long as
a region has 'available_size' != 0 new child namespaces may be created.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams bf9bccc14c libnvdimm: pmem label sets and namespace instantiation.
A complete label set is a PMEM-label per-dimm per-interleave-set where
all the UUIDs match and the interleave set cookie matches the hosting
interleave set.

Present sysfs attributes for manipulation of a PMEM-namespace's
'alt_name', 'uuid', and 'size' attributes.  A later patch will make
these settings persistent by writing back the label.

Note that PMEM allocations grow forwards from the start of an interleave
set (lowest dimm-physical-address (DPA)).  BLK-namespaces that alias
with a PMEM interleave set will grow allocations backward from the
highest DPA.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 4a826c83db libnvdimm: namespace indices: read and validate
This on media label format [1] consists of two index blocks followed by
an array of labels.  None of these structures are ever updated in place.
A sequence number tracks the current active index and the next one to
write, while labels are written to free slots.

    +------------+
    |            |
    |  nsindex0  |
    |            |
    +------------+
    |            |
    |  nsindex1  |
    |            |
    +------------+
    |   label0   |
    +------------+
    |   label1   |
    +------------+
    |            |
     ....nslot...
    |            |
    +------------+
    |   labelN   |
    +------------+

After reading valid labels, store the dpa ranges they claim into
per-dimm resource trees.

[1]: http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf

Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams eaf961536e libnvdimm, nfit: add interleave-set state-tracking infrastructure
On platforms that have firmware support for reading/writing per-dimm
label space, a portion of the dimm may be accessible via an interleave
set PMEM mapping in addition to the dimm's BLK (block-data-window
aperture(s)) interface.  A label, stored in a "configuration data
region" on the dimm, disambiguates which dimm addresses are accessed
through which exclusive interface.

Add infrastructure that allows the kernel to block modifications to a
label in the set while any member dimm is active.  Note that this is
meant only for enforcing "no modifications of active labels" via the
coarse ioctl command.  Adding/deleting namespaces from an active
interleave set is always possible via sysfs.

Another aspect of tracking interleave sets is tracking their integrity
when DIMMs in a set are physically re-ordered.  For this purpose we
generate an "interleave-set cookie" that can be recorded in a label and
validated against the current configuration.  It is the bus provider
implementation's responsibility to calculate the interleave set cookie
and attach it to a given region.

Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 9f53f9fa4a libnvdimm, pmem: add libnvdimm support to the pmem driver
nd_pmem attaches to persistent memory regions and namespaces emitted by
the libnvdimm subsystem, and, same as the original pmem driver, presents
the system-physical-address range as a block device.

The existing e820-type-12 to pmem setup is converted to an nvdimm_bus
that emits an nd_namespace_io device.

Note that the X in 'pmemX' is now derived from the parent region.  This
provides some stability to the pmem devices names from boot-to-boot.
The minor numbers are also more predictable by passing 0 to
alloc_disk().

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 18da2c9ee4 libnvdimm, pmem: move pmem to drivers/nvdimm/
Prepare the pmem driver to consume PMEM namespaces emitted by regions of
an nvdimm_bus instance.  No functional change.

Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 3d88002e4a libnvdimm: support for legacy (non-aliasing) nvdimms
The libnvdimm region driver is an intermediary driver that translates
non-volatile "region"s into "namespace" sub-devices that are surfaced by
persistent memory block-device drivers (PMEM and BLK).

ACPI 6 introduces the concept that a given nvdimm may simultaneously
offer multiple access modes to its media through direct PMEM load/store
access, or windowed BLK mode.  Existing nvdimms mostly implement a PMEM
interface, some offer a BLK-like mode, but never both as ACPI 6 defines.
If an nvdimm is single interfaced, then there is no need for dimm
metadata labels.  For these devices we can take the region boundaries
directly to create a child namespace device (nd_namespace_io).

Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 1f7df6f88b libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory)
A "region" device represents the maximum capacity of a BLK range (mmio
block-data-window(s)), or a PMEM range (DAX-capable persistent memory or
volatile memory), without regard for aliasing.  Aliasing, in the
dimm-local address space (DPA), is resolved by metadata on a dimm to
designate which exclusive interface will access the aliased DPA ranges.
Support for the per-dimm metadata/label arrvies is in a subsequent
patch.

The name format of "region" devices is "regionN" where, like dimms, N is
a global ida index assigned at discovery time.  This id is not reliable
across reboots nor in the presence of hotplug.  Look to attributes of
the region or static id-data of the sub-namespace to generate a
persistent name.  However, if the platform configuration does not change
it is reasonable to expect the same region id to be assigned at the next
boot.

"region"s have 2 generic attributes "size", and "mapping"s where:
- size: the BLK accessible capacity or the span of the
  system physical address range in the case of PMEM.

- mappingN: a tuple describing a dimm's contribution to the region's
  capacity in the format (<nmemX>,<dpa>,<size>).  For a PMEM-region
  there will be at least one mapping per dimm in the interleave set.  For
  a BLK-region there is only "mapping0" listing the starting DPA of the
  BLK-region and the available DPA capacity of that space (matches "size"
  above).

The max number of mappings per "region" is hard coded per the
constraints of sysfs attribute groups.  That said the number of mappings
per region should never exceed the maximum number of possible dimms in
the system.  If the current number turns out to not be enough then the
"mappings" attribute clarifies how many there are supposed to be. "32
should be enough for anybody...".

Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 4d88a97aa9 libnvdimm, nvdimm: dimm driver and base libnvdimm device-driver infrastructure
* Implement the device-model infrastructure for loading modules and
  attaching drivers to nvdimm devices.  This is a simple association of a
  nd-device-type number with a driver that has a bitmask of supported
  device types.  To facilitate userspace bind/unbind operations 'modalias'
  and 'devtype', that also appear in the uevent, are added as generic
  sysfs attributes for all nvdimm devices.  The reason for the device-type
  number is to support sub-types within a given parent devtype, be it a
  vendor-specific sub-type or otherwise.

* The first consumer of this infrastructure is the driver
  for dimm devices.  It simply uses control messages to retrieve and
  store the configuration-data image (label set) from each dimm.

Note: nd_device_register() arranges for asynchronous registration of
      nvdimm bus devices by default.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 62232e45f4 libnvdimm: control (ioctl) messages for nvdimm_bus and nvdimm devices
Most discovery/configuration of the nvdimm-subsystem is done via sysfs
attributes.  However, some nvdimm_bus instances, particularly the
ACPI.NFIT bus, define a small set of messages that can be passed to the
platform.  For convenience we derive the initial libnvdimm-ioctl command
formats directly from the NFIT DSM Interface Example formats.

    ND_CMD_SMART: media health and diagnostics
    ND_CMD_GET_CONFIG_SIZE: size of the label space
    ND_CMD_GET_CONFIG_DATA: read label space
    ND_CMD_SET_CONFIG_DATA: write label space
    ND_CMD_VENDOR: vendor-specific command passthrough
    ND_CMD_ARS_CAP: report address-range-scrubbing capabilities
    ND_CMD_ARS_START: initiate scrubbing
    ND_CMD_ARS_STATUS: report on scrubbing state
    ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events

If a platform later defines different commands than this set it is
straightforward to extend support to those formats.

Most of the commands target a specific dimm.  However, the
address-range-scrubbing commands target the bus.  The 'commands'
attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported
commands for that object.

Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams e6dfb2de47 libnvdimm, nfit: dimm/memory-devices
Enable nvdimm devices to be registered on a nvdimm_bus.  The kernel
assigned device id for nvdimm devicesis dynamic.  If userspace needs a
more static identifier it should consult a provider-specific attribute.
In the case where NFIT is the provider, the 'nmemX/nfit/handle' or
'nmemX/nfit/serial' attributes may be used for this purpose.

Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams 45def22c1f libnvdimm: control character device and nvdimm_bus sysfs attributes
The control device for a nvdimm_bus is registered as an "nd" class
device.  The expectation is that there will usually only be one "nd" bus
registered under /sys/class/nd.  However, we allow for the possibility
of multiple buses and they will listed in discovery order as
ndctl0...ndctlN.  This character device hosts the ioctl for passing
control messages.  The initial command set has a 1:1 correlation with
the commands listed in the by the "NFIT DSM Example" document [1], but
this scheme is extensible to future command sets.

Note, nd_ioctl() and the backing ->ndctl() implementation are defined in
a subsequent patch.  This is simply the initial registrations and sysfs
attributes.

[1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf

Cc: Neil Brown <neilb@suse.de>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00
Dan Williams b94d5230d0 libnvdimm, nfit: initial libnvdimm infrastructure and NFIT support
A struct nvdimm_bus is the anchor device for registering nvdimm
resources and interfaces, for example, a character control device,
nvdimm devices, and I/O region devices.  The ACPI NFIT (NVDIMM Firmware
Interface Table) is one possible platform description for such
non-volatile memory resources in a system.  The nfit.ko driver attaches
to the "ACPI0012" device that indicates the presence of the NFIT and
parses the table to register a struct nvdimm_bus instance.

Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-24 21:24:10 -04:00