Currently, dynamic ftrace support in the arm64 kernel assumes that all
core kernel code is within range of ordinary branch instructions that
occur in module code, which is usually the case, but is no longer
guaranteed now that we have support for module PLTs and address space
randomization.
Since on arm64, all patching of branch instructions involves function
calls to the same entry point [ftrace_caller()], we can emit the modules
with a trampoline that has unlimited range, and patch both the trampoline
itself and the branch instruction to redirect the call via the trampoline.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: minor clarification to smp_wmb() comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
When turning branch instructions into NOPs, we attempt to validate the
action by comparing the old value at the call site with the opcode of
a direct relative branch instruction pointing at the old target.
However, these call sites are statically initialized to call _mcount(),
and may be redirected via a PLT entry if the module is loaded far away
from the kernel text, leading to false negatives and spurious errors.
So skip the validation if CONFIG_ARM64_MODULE_PLTS is configured.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Wire up the existing arm64 support for SMBIOS tables (aka DMI) for ARM as
well, by moving the arm64 init code to drivers/firmware/efi/arm-runtime.c
(which is shared between ARM and arm64), and adding a asm/dmi.h header to
ARM that defines the mapping routines for the firmware tables.
This allows userspace to access these tables to discover system information
exposed by the firmware. It also sets the hardware name used in crash
dumps, e.g.:
Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = ed3c0000
[00000000] *pgd=bf1f3835
Internal error: Oops: 817 [#1] SMP THUMB2
Modules linked in:
CPU: 0 PID: 759 Comm: bash Not tainted 4.10.0-09601-g0e8f38792120-dirty #112
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
^^^
NOTE: This does *NOT* enable or encourage the use of DMI quirks, i.e., the
the practice of identifying the platform via DMI to decide whether
certain workarounds for buggy hardware and/or firmware need to be
enabled. This would require the DMI subsystem to be enabled much
earlier than we do on ARM, which is non-trivial.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20170602135207.21708-14-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 3fde2999fa ("arm64: cpufeature: Don't dump useless backtrace on
CPU_OUT_OF_SPEC") changed the cpufeature detection code to use add_taint
instead of WARN_TAINT_ONCE when detecting a heterogeneous system with
mismatched feature support. Unfortunately, this resulted in all systems
getting the taint, regardless of any feature mismatch.
This patch fixes the problem by conditionalising the taint on detecting
a feature mismatch.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that some functions that deal with arch topology information live
under drivers, there is a clash of naming that might create confusion.
Tidy things up by creating a topology namespace for interfaces used by
arch code; achieve this by prepending a 'topology_' prefix to driver
interfaces.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Create a new header file (include/linux/arch_topology.h) and put there
declarations of interfaces used by arm, arm64 and drivers code.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reduce the scope of cap_parsing_failed (making it static in
drivers/base/arch_topology.c) by slightly changing {arm,arm64} DT
parsing code.
For arm checking for !cap_parsing_failed before calling normalize_
cpu_capacity() is superfluous, as returning an error from parse_
cpu_capacity() (above) means cap_from _dt is set to false.
For arm64 we can simply check if raw_capacity points to something,
which is not if capacity parsing has failed.
Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
arm and arm64 share lot of code relative to parsing CPU capacity
information from DT, using that information for appropriate scaling and
exposing a sysfs interface for chaging such values at runtime.
Factorize such code in a common place (driver/base/arch_topology.c) in
preparation for further additions.
Suggested-by: Will Deacon <will.deacon@arm.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Perf has supported ARMv8.1 feature with 16-bit evtCount filed [see c210ae8
arm64: perf: Extend event mask for ARMv8.1], event config should be
extended to 16-bit too, otherwise, if use -e event_name whose event_code
is more than 0x3ff, pmu_config_term will return -EINVAL because function
pmu_format_max_value depends on event config.
This patch extends event config to 16-bit.
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
PCI core requires the NUMA node for the struct pci_host_bridge.dev to
be set by using the pcibus_to_node(struct pci_bus*) API, that on ARM64
systems relies on the struct pci_host_bridge->bus.dev NUMA node.
The struct pci_host_bridge.dev NUMA node is then propagated through
the PCI device hierarchy as PCI devices (and bridges) are enumerated
under it.
Therefore, in order to set-up the PCI NUMA hierarchy appropriately, the
struct pci_host_bridge->bus.dev NUMA node must be set before core
code calls pcibus_to_node(struct pci_bus*) on it so that PCI core can
retrieve the NUMA node for the struct pci_host_bridge.dev device and can
propagate it through the PCI bus tree.
On ARM64 ACPI based systems the struct pci_host_bridge->bus.dev NUMA
node can be set-up in pcibios_root_bridge_prepare() by parsing the root
bridge ACPI device firmware binding.
Add code to the pcibios_root_bridge_prepare() that, when booting with
ACPI, parse the root bridge ACPI device companion NUMA binding and set
the corresponding struct pci_host_bridge->bus.dev NUMA node
appropriately.
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Robert Richter <rrichter@cavium.com>
Tested-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It's useless to print machine name and setup arch-specific system
identifiers if of_flat_dt_get_machine_name() return NULL, especially
when ACPI-based boot.
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Unfortunately, it turns out that mismatched CPU features in big.LITTLE
systems are starting to appear in the wild. Whilst we should continue to
taint the kernel with CPU_OUT_OF_SPEC for features that differ in ways
that we can't fix up, dumping a useless backtrace out of the cpufeature
code is pointless and irritating.
This patch removes the backtrace from the taint.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Generic code expects show_regs() to dump the stack, but arm64's
show_regs() does not. This makes it hard to debug softlockups and
other issues that result in show_regs() being called.
This patch updates arm64's show_regs() to dump the stack, as common
code expects.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
[will: folded in bug_handler fix from mrutland]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Generic code expects show_regs() to also dump the stack, but arm64's
show_reg() does not do this. Some arm64 callers of show_regs() *only*
want the registers dumped, without the stack.
To enable generic code to work as expected, we need to make
show_regs() dump the stack. Where we only want the registers dumped,
we must use __show_regs().
This patch updates code to use __show_regs() where only registers are
desired. A subsequent patch will modify show_regs().
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The text patching functions which are invoked from jump_label and kprobes
code are protected against cpu hotplug at the call sites.
Use stop_machine_cpuslocked() to avoid recursion on the cpu hotplug
rwsem. stop_machine_cpuslocked() contains a lockdep assertion to catch any
unprotected callers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20170524081549.197070135@linutronix.de
Commit 093d24a204 ("arm64: PCI: Manage controller-specific data on
per-controller basis") added code to allocate ACPI PCI root_ops
dynamically on a per host bridge basis but failed to update the
corresponding memory allocation failure path in pci_acpi_scan_root()
leading to a potential memory leakage.
Fix it by adding the required kfree call.
Fixes: 093d24a204 ("arm64: PCI: Manage controller-specific data on per-controller basis")
Reviewed-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Timmy Li <lixiaoping3@huawei.com>
[lorenzo.pieralisi@arm.com: refactored code, rewrote commit log]
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To enable smp_processor_id() and might_sleep() debug checks earlier, it's
required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING.
Adjust the system_state check in smp_send_stop() to handle the extra states.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20170516184735.112589728@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, cpus_set_cap() calls static_branch_enable_cpuslocked(), which
must take the jump_label mutex.
We call cpus_set_cap() in the secondary bringup path, from the idle
thread where interrupts are disabled. Taking a mutex in this path "is a
NONO" regardless of whether it's contended, and something we must avoid.
We didn't spot this until recently, as ___might_sleep() won't warn for
this case until all CPUs have been brought up.
This patch avoids taking the mutex in the secondary bringup path. The
poking of static keys is deferred until enable_cpu_capabilities(), which
runs in a suitable context on the boot CPU. To account for the static
keys being set later, cpus_have_const_cap() is updated to use another
static key to check whether the const cap keys have been initialised,
falling back to the caps bitmap until this is the case.
This means that users of cpus_have_const_cap() gain should only gain a
single additional NOP in the fast path once the const caps are
initialised, but should always see the current cap value.
The hyp code should never dereference the caps array, since the caps are
initialized before we run the module initcall to initialise hyp. A check
is added to the hyp init code to document this requirement.
This change will sidestep a number of issues when the upcoming hotplug
locking rework is merged.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyniger <marc.zyngier@arm.com>
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Sewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
commit d98ecdaca2 ("arm64: perf: Count EL2 events if the kernel is
running in HYP") returns -EINVAL when perf system call perf_event_open is
called with exclude_hv != exclude_kernel. This change breaks applications
on VHE enabled ARMv8.1 platforms. The issue was observed with HHVM
application, which calls perf_event_open with exclude_hv = 1 and
exclude_kernel = 0.
There is no separate hypervisor privilege level when VHE is enabled, the
host kernel runs at EL2. So when VHE is enabled, we should ignore
exclude_hv from the application. This behaviour is consistent with PowerPC
where the exclude_hv is ignored when the hypervisor is not present and with
x86 where this flag is ignored.
Signed-off-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
[will: added comment to justify the behaviour of exclude_hv]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Silence module allocation failures when CONFIG_ARM*_MODULE_PLTS is
enabled. This requires a check for __GFP_NOWARN in alloc_vmap_area()
- Improve/sanitise user tagged pointers handling in the kernel
- Inline asm fixes/cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZFJszAAoJEGvWsS0AyF7xASwQAKsY72jJMu+FbLqzn9vS7Frx
AGlx+M20odn6htFBBEDhaJQxFTFSfuBUNb6z4WmRsVVcVZ722EHsvEFFkHU4naR1
lAdZ1iFNHBRwGxV/JwCt08JwG0ipuqvcuNQH7XaYeuqldQLWaVTf4cangH4cZGX4
Fcl54DI7Nfy6QYBnfkBSzi6Pqjhkdn6vh1JlNvkX40BwkT6Zt9WryXzvCwQha9A0
EsstRhBECK6yCSaBcp7MbwyRbpB56PyOxUaeRUNoPaag+bSa8xs65JFq/yvolmpa
Cm1Bt/hlVHvi3rgMIYnm+z1C4IVgLA1ouEKYAGdq4IpWA46BsPxwOBmmYG/0qLqH
b7F5my5W8bFm9w1LI9I9l4FwoM1BU7b+n8KOZDZGpgfTwy86jIODhb42e7E4vEtn
yHCwwu688zkxoI+JTt7PvY3Oue69zkP1/kXUWt5SILKH5LFyweZvdGc+VCSeQoGo
fjwlnxI0l12vYIt2RnZWGJcA+W/T1E4cPJtIvvid9U9uuXs3Vv/EQ3F5wgaXoPN2
UDyJTxwrv/iT2yMoZmaaVh36+6UDUPV+b2alA9Wq/3996axGlzeI3go+cdhQXj+E
8JFzWph+kIZqCnGUaWMt/FTphFhOHjMxC36WEgxVRQZigXrajdrKAgvCj+7n2Qtm
X0wL+XDgsWA8yPgt4WLK
=WZ6G
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
- Silence module allocation failures when CONFIG_ARM*_MODULE_PLTS is
enabled. This requires a check for __GFP_NOWARN in alloc_vmap_area()
- Improve/sanitise user tagged pointers handling in the kernel
- Inline asm fixes/cleanups
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Silence first allocation with CONFIG_ARM64_MODULE_PLTS=y
ARM: Silence first allocation with CONFIG_ARM_MODULE_PLTS=y
mm: Silence vmap() allocation failures based on caller gfp_flags
arm64: uaccess: suppress spurious clang warning
arm64: atomic_lse: match asm register sizes
arm64: armv8_deprecated: ensure extension of addr
arm64: uaccess: ensure extension of access_ok() addr
arm64: ensure extension of smp_store_release value
arm64: xchg: hazard against entire exchange variable
arm64: documentation: document tagged pointer stack constraints
arm64: entry: improve data abort handling of tagged pointers
arm64: hw_breakpoint: fix watchpoint matching for tagged pointers
arm64: traps: fix userspace cache maintenance emulation on a tagged pointer
When CONFIG_ARM64_MODULE_PLTS is enabled, the first allocation using the
module space fails, because the module is too big, and then the module
allocation is attempted from vmalloc space. Silence the first allocation
failure in that case by setting __GFP_NOWARN.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Our compat swp emulation holds the compat user address in an unsigned
int, which it passes to __user_swpX_asm(). When a 32-bit value is passed
in a register, the upper 32 bits of the register are unknown, and we
must extend the value to 64 bits before we can use it as a base address.
This patch casts the address to unsigned long to ensure it has been
suitably extended, avoiding the potential issue, and silencing a related
warning from clang.
Fixes: bd35a4adc4 ("arm64: Port SWP/SWPB emulation support from arm")
Cc: <stable@vger.kernel.org> # 3.19.x-
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When handling a data abort from EL0, we currently zero the top byte of
the faulting address, as we assume the address is a TTBR0 address, which
may contain a non-zero address tag. However, the address may be a TTBR1
address, in which case we should not zero the top byte. This patch fixes
that. The effect is that the full TTBR1 address is passed to the task's
signal handler (or printed out in the kernel log).
When handling a data abort from EL1, we leave the faulting address
intact, as we assume it's either a TTBR1 address or a TTBR0 address with
tag 0x00. This is true as far as I'm aware, we don't seem to access a
tagged TTBR0 address anywhere in the kernel. Regardless, it's easy to
forget about address tags, and code added in the future may not always
remember to remove tags from addresses before accessing them. So add tag
handling to the EL1 data abort handler as well. This also makes it
consistent with the EL0 data abort handler.
Fixes: d50240a5f6 ("arm64: mm: permit use of tagged pointers at EL0")
Cc: <stable@vger.kernel.org> # 3.12.x-
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When we take a watchpoint exception, the address that triggered the
watchpoint is found in FAR_EL1. We compare it to the address of each
configured watchpoint to see which one was hit.
The configured watchpoint addresses are untagged, while the address in
FAR_EL1 will have an address tag if the data access was done using a
tagged address. The tag needs to be removed to compare the address to
the watchpoints.
Currently we don't remove it, and as a result can report the wrong
watchpoint as being hit (specifically, always either the highest TTBR0
watchpoint or lowest TTBR1 watchpoint). This patch removes the tag.
Fixes: d50240a5f6 ("arm64: mm: permit use of tagged pointers at EL0")
Cc: <stable@vger.kernel.org> # 3.12.x-
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When we emulate userspace cache maintenance in the kernel, we can
currently send the task a SIGSEGV even though the maintenance was done
on a valid address. This happens if the address has a non-zero address
tag, and happens to not be mapped in.
When we get the address from a user register, we don't currently remove
the address tag before performing cache maintenance on it. If the
maintenance faults, we end up in either __do_page_fault, where find_vma
can't find the VMA if the address has a tag, or in do_translation_fault,
where the tagged address will appear to be above TASK_SIZE. In both
cases, the address is not mapped in, and the task is sent a SIGSEGV.
This patch removes the tag from the address before using it. With this
patch, the fault is handled correctly, the address gets mapped in, and
the cache maintenance succeeds.
As a second bug, if cache maintenance (correctly) fails on an invalid
tagged address, the address gets passed into arm64_notify_segfault,
where find_vma fails to find the VMA due to the tag, and the wrong
si_code may be sent as part of the siginfo_t of the segfault. With this
patch, the correct si_code is sent.
Fixes: 7dd01aef05 ("arm64: trap userspace "dc cvau" cache operation on errata-affected core")
Cc: <stable@vger.kernel.org> # 4.8.x-
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDKMoAAoJEGvWsS0AyF7xR+YP/0EMEz5MDfCv0PVYj7/AIa0G
Zphl7OhysIkeDAz7urXw9Jdl0NfORNIqmD1vZNVSc321IyNp56Od+kWd82lBrOWB
ad3nNT67pEmu0pAW7CO48ju3rTesEnEl3ra45E1tULeLihmv93jc4ZlfXgumlKq3
/GE84XJ5ZFmluuhq1zgNefeUtyl1tbxTxHJ74+INF7dTd/5sJcphpqS4Dzpb+msT
20WYliccQCBF9zBFUYHc2KjcXXKRQGxLulGS3MuoN2DLkD+U9YyR/OmA7SoXh2J2
WXC5b0x856xTQJFCJ39pb7rw5xHjt3l5zfU3VLSvqEVL/+asBqCcgGNtNUgOW1Es
dEHC6bc66Ley6mn7bbpFE3MK8D+K5q8HwMF6G5KDtIVB6DB/iQ6kzi5aXKoupxtb
1EuU4OW6cDhmOFQYjgIDofLgqbmVvJofdF6+NfxasfZmWrMgHzv0rYvaCDnAV/Tr
t7bhH7hf9/KcP/wpk86O2AMKKpgoNTqe1Qy8cWVFFLnut567Pb6zs/L3ZXfleoLv
t613yM8Zj2fE05ja8ylMDjaasidNpXGttb08/4kAn06Daaoueqla0jmduAhy4aaV
dQ3OFP9lJ5MFaFnMMTPfU3vtvNLMHuo9MZsYCrv5zCaNNs3lpAPUiPNh588ZscKa
sWx4PEiaCi+wcOsLsJvh
=SDkm
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
arm64: Print DT machine model in setup_machine_fdt()
arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills
arm64: module: split core and init PLT sections
arm64: pmuv3: handle pmuv3+
arm64: Add CNTFRQ_EL0 trap handler
arm64: Silence spurious kbuild warning on menuconfig
arm64: pmuv3: use arm_pmu ACPI framework
arm64: pmuv3: handle !PMUv3 when probing
drivers/perf: arm_pmu: add ACPI framework
arm64: add function to get a cpu's MADT GICC table
drivers/perf: arm_pmu: split out platform device probe logic
drivers/perf: arm_pmu: move irq request/free into probe
drivers/perf: arm_pmu: split cpu-local irq request/free
drivers/perf: arm_pmu: rename irq request/free functions
drivers/perf: arm_pmu: handle no platform_device
drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs()
drivers/perf: arm_pmu: factor out pmu registration
drivers/perf: arm_pmu: fold init into alloc
drivers/perf: arm_pmu: define armpmu_init_fn
...
Pull networking updates from David Millar:
"Here are some highlights from the 2065 networking commits that
happened this development cycle:
1) XDP support for IXGBE (John Fastabend) and thunderx (Sunil Kowuri)
2) Add a generic XDP driver, so that anyone can test XDP even if they
lack a networking device whose driver has explicit XDP support
(me).
3) Sparc64 now has an eBPF JIT too (me)
4) Add a BPF program testing framework via BPF_PROG_TEST_RUN (Alexei
Starovoitov)
5) Make netfitler network namespace teardown less expensive (Florian
Westphal)
6) Add symmetric hashing support to nft_hash (Laura Garcia Liebana)
7) Implement NAPI and GRO in netvsc driver (Stephen Hemminger)
8) Support TC flower offload statistics in mlxsw (Arkadi Sharshevsky)
9) Multiqueue support in stmmac driver (Joao Pinto)
10) Remove TCP timewait recycling, it never really could possibly work
well in the real world and timestamp randomization really zaps any
hint of usability this feature had (Soheil Hassas Yeganeh)
11) Support level3 vs level4 ECMP route hashing in ipv4 (Nikolay
Aleksandrov)
12) Add socket busy poll support to epoll (Sridhar Samudrala)
13) Netlink extended ACK support (Johannes Berg, Pablo Neira Ayuso,
and several others)
14) IPSEC hw offload infrastructure (Steffen Klassert)"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2065 commits)
tipc: refactor function tipc_sk_recv_stream()
tipc: refactor function tipc_sk_recvmsg()
net: thunderx: Optimize page recycling for XDP
net: thunderx: Support for XDP header adjustment
net: thunderx: Add support for XDP_TX
net: thunderx: Add support for XDP_DROP
net: thunderx: Add basic XDP support
net: thunderx: Cleanup receive buffer allocation
net: thunderx: Optimize CQE_TX handling
net: thunderx: Optimize RBDR descriptor handling
net: thunderx: Support for page recycling
ipx: call ipxitf_put() in ioctl error path
net: sched: add helpers to handle extended actions
qed*: Fix issues in the ptp filter config implementation.
qede: Fix concurrency issue in PTP Tx path processing.
stmmac: Add support for SIMATIC IOT2000 platform
net: hns: fix ethtool_get_strings overflow in hns driver
tcp: fix wraparound issue in tcp_lp
bpf, arm64: fix jit branch offset related to ldimm64
bpf, arm64: implement jiting of BPF_XADD
...
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- move BGRT handling to drivers/acpi so it can be shared between x86
and ARM
- bring the EFI stub's initrd and FDT allocation logic in line with
the latest changes to the arm64 boot protocol
- improvements and fixes to the EFI stub's command line parsing
routines
- randomize the virtual mapping of the UEFI runtime services on
ARM/arm64
- ... and other misc enhancements, cleanups and fixes"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/libstub/arm: Don't use TASK_SIZE when randomizing the RT space
ef/libstub/arm/arm64: Randomize the base of the UEFI rt services region
efi/libstub/arm/arm64: Disable debug prints on 'quiet' cmdline arg
efi/libstub: Unify command line param parsing
efi/libstub: Fix harmless command line parsing bug
efi/arm32-stub: Allow boot-time allocations in the vmlinux region
x86/efi: Clean up a minor mistake in comment
efi/pstore: Return error code (if any) from efi_pstore_write()
efi/bgrt: Enable ACPI BGRT handling on arm64
x86/efi/bgrt: Move efi-bgrt handling out of arch/x86
efi/arm-stub: Round up FDT allocation to mapping size
efi/arm-stub: Correct FDT and initrd allocation rules for arm64
Pull timer updates from Thomas Gleixner:
"The timer departement delivers:
- more year 2038 rework
- a massive rework of the arm achitected timer
- preparatory patches to allow NTP correction of clock event devices
to avoid early expiry
- the usual pile of fixes and enhancements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (91 commits)
timer/sysclt: Restrict timer migration sysctl values to 0 and 1
arm64/arch_timer: Mark errata handlers as __maybe_unused
Clocksource/mips-gic: Remove redundant non devicetree init
MIPS/Malta: Probe gic-timer via devicetree
clocksource: Use GENMASK_ULL in definition of CLOCKSOURCE_MASK
acpi/arm64: Add SBSA Generic Watchdog support in GTDT driver
clocksource: arm_arch_timer: add GTDT support for memory-mapped timer
acpi/arm64: Add memory-mapped timer support in GTDT driver
clocksource: arm_arch_timer: simplify ACPI support code.
acpi/arm64: Add GTDT table parse driver
clocksource: arm_arch_timer: split MMIO timer probing.
clocksource: arm_arch_timer: add structs to describe MMIO timer
clocksource: arm_arch_timer: move arch_timer_needs_of_probing into DT init call
clocksource: arm_arch_timer: refactor arch_timer_needs_probing
clocksource: arm_arch_timer: split dt-only rate handling
x86/uv/time: Set ->min_delta_ticks and ->max_delta_ticks
unicore32/time: Set ->min_delta_ticks and ->max_delta_ticks
um/time: Set ->min_delta_ticks and ->max_delta_ticks
tile/time: Set ->min_delta_ticks and ->max_delta_ticks
score/time: Set ->min_delta_ticks and ->max_delta_ticks
...
Pull uaccess unification updates from Al Viro:
"This is the uaccess unification pile. It's _not_ the end of uaccess
work, but the next batch of that will go into the next cycle. This one
mostly takes copy_from_user() and friends out of arch/* and gets the
zero-padding behaviour in sync for all architectures.
Dealing with the nocache/writethrough mess is for the next cycle;
fortunately, that's x86-only. Same for cleanups in iov_iter.c (I am
sold on access_ok() in there, BTW; just not in this pile), same for
reducing __copy_... callsites, strn*... stuff, etc. - there will be a
pile about as large as this one in the next merge window.
This one sat in -next for weeks. -3KLoC"
* 'work.uaccess' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (96 commits)
HAVE_ARCH_HARDENED_USERCOPY is unconditional now
CONFIG_ARCH_HAS_RAW_COPY_USER is unconditional now
m32r: switch to RAW_COPY_USER
hexagon: switch to RAW_COPY_USER
microblaze: switch to RAW_COPY_USER
get rid of padding, switch to RAW_COPY_USER
ia64: get rid of copy_in_user()
ia64: sanitize __access_ok()
ia64: get rid of 'segment' argument of __do_{get,put}_user()
ia64: get rid of 'segment' argument of __{get,put}_user_check()
ia64: add extable.h
powerpc: get rid of zeroing, switch to RAW_COPY_USER
esas2r: don't open-code memdup_user()
alpha: fix stack smashing in old_adjtimex(2)
don't open-code kernel_setsockopt()
mips: switch to RAW_COPY_USER
mips: get rid of tail-zeroing in primitives
mips: make copy_from_user() zero tail explicitly
mips: clean and reorder the forest of macros...
mips: consolidate __invoke_... wrappers
...
On arm32, the machine model specified in the device tree is printed
during boot-up, courtesy of of_flat_dt_match_machine().
On arm64, of_flat_dt_match_machine() is not called, and the machine
model information is not available from the kernel log.
Print the machine model to make it easier to derive the machine model
from an arbitrary kernel boot log.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add missing L2 cache events: read/write accesses and misses, as well as
the DTLB refills.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The arm64 module PLT code allocates all PLT entries in a single core
section, since the overhead of having a separate init PLT section is
not justified by the small number of PLT entries usually required for
init code.
However, the core and init module regions are allocated independently,
and there is a corner case where the core region may be allocated from
the VMALLOC region if the dedicated module region is exhausted, but the
init region, being much smaller, can still be allocated from the module
region. This leads to relocation failures if the distance between those
regions exceeds 128 MB. (In fact, this corner case is highly unlikely to
occur on arm64, but the issue has been observed on ARM, whose module
region is much smaller).
So split the core and init PLT regions, and name the latter ".init.plt"
so it gets allocated along with (and sufficiently close to) the .init
sections that it serves. Also, given that init PLT entries may need to
be emitted for branches that target the core module, modify the logic
that disregards defined symbols to only disregard symbols that are
defined in the same section as the relocated branch instruction.
Since there may now be two PLT entries associated with each entry in
the symbol table, we can no longer hijack the symbol::st_size fields
to record the addresses of PLT entries as we emit them for zero-addend
relocations. So instead, perform an explicit comparison to check for
duplicate entries.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit f1b36dcb5c ("arm64: pmuv3: handle !PMUv3 when probing") is
a little too restrictive, and prevents the use of of backwards
compatible PMUv3 extenstions, which have a PMUver value other than 1.
For instance, ARMv8.1 PMU extensions (as implemented by ThunderX2) are
reported with PMUver value 4.
Per the usual ID register principles, at least 0x1-0x7 imply a
PMUv3-compatible PMU. It's not currently clear whether 0x8-0xe imply the
same.
For the time being, treat the value as signed, and with 0x1-0x7 treated
as meaning PMUv3 is implemented. This may be relaxed by future patches.
Reported-by: Jayachandran C <jnair@caviumnetworks.com>
Tested-by: Jayachandran C <jnair@caviumnetworks.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We now trap accesses to CNTVCT_EL0 when the counter is broken
enough to require the kernel to mediate the access. But it
turns out that some existing userspace (such as OpenMPI) do
probe for the counter frequency, leading to an UNDEF exception
as CNTVCT_EL0 and CNTFRQ_EL0 share the same control bit.
The fix is to handle the exception the same way we do for CNTVCT_EL0.
Fixes: a86bd139f2 ("arm64: arch_timer: Enable CNTVCT_EL0 trap if workaround is enabled")
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Reviewed-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have a framework to handle the ACPI bits, make the PMUv3
code use this. The framework is a little different to what was
originally envisaged, and we can drop some unused support code in the
process of moving over to it.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
[will: make armv8_pmu_driver_init static]
Signed-off-by: Will Deacon <will.deacon@arm.com>
When probing via ACPI, we won't know up-front whether a CPU has a PMUv3
compatible PMU. Thus we need to consult ID registers during probe time.
This patch updates our PMUv3 probing code to test for the presence of
PMUv3 functionality before touching an PMUv3-specific registers, and
before updating the struct arm_pmu with PMUv3 data.
When a PMUv3-compatible PMU is not present, probing will return -ENODEV.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently the ACPI parking protocol code needs to parse each CPU's MADT
GICC table to extract the mailbox address and so on. Each time we parse
a GICC table, we call back to the parking protocol code to parse it.
This has been fine so far, but we're about to have more code that needs
to extract data from the GICC tables, and adding a callback for each
user is going to get unwieldy.
Instead, this patch ensures that we stash a copy of each CPU's GICC
table at boot time, such that anything needing to parse it can later
request it. This will allow for other parsers of GICC, and for
simplification to the ACPI parking protocol code. Note that we must
store a copy, rather than a pointer, since the core ACPI code
temporarily maps/unmaps tables while iterating over them.
Since we parse the MADT before we know how many CPUs we have (and hence
before we setup the percpu areas), we must use an NR_CPUS sized array.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We now return HVC_STUB_ERR when a stub hypercall fails, but we
leave whatever was in x0 on success. Zeroing it on return seems
like a good idea.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Nobody is using __hyp_get_vectors anymore, so let's remove both
implementations (hyp-stub and KVM).
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Let's define a new stub hypercall that resets the HYP configuration
to its default: hyp-stub vectors, and MMU disabled.
Of course, for the hyp-stub itself, this is a trivial no-op.
Hypervisors will have a bit more work to do.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Define a standard return value to be returned when a hyp stub
call fails, and make KVM use it for ARM_EXCEPTION_HYP_GONE
(instead of using a KVM-specific value).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
The EL2 code is not corrupting lr anymore, so don't bother preserving
it in the EL1 trampoline code.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When entering the kernel hyp stub, we check whether or not we've
made it here through an HVC instruction, clobbering lr (aka x30)
in the process.
This is completely pointless, as HVC is the only way to get here
(all traps to EL2 are disabled, no interrupt override is applied).
So let's remove this bit of code whose only point is to corrupt
a valuable register.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
- Allow checking of a CPU-local erratum
- Add CNTVCT_EL0 trap handler
- Define Cortex-A73 MIDR
- Allow an erratum to be match for all revisions of a core
- Add capability to advertise Cortex-A73 erratum 858921
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAljnlbgVHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDx+YP/1OU8GnrVBR2cjEctaTz3s51sPRR
+7j1BZ3pbKnwY3XpM6GJpxc//sSBSphqWZXN5GJZW1lSgw7hpl02mA9rh62G4Xmh
wUqR2hmQ5UdenoR5tE39BZrzMFlef90bA7AZyatSqum6AEQcYPJZEgzOvEvfw/mY
Bc4w73At9OTILRXeZjJZabdeJ4aJLs+6xMfsc9ApgxiZIZ5xhJ7CQzcJFdQ2tFeB
9wYqxkt8i9aZfmj3IX14m3fXISQ4JlXoi8QTBqy7qunCMEFU6jtCwC5aZKj1U3Hh
zebVWomcWMQpFaJw3qxZgjVXftv5r2UsHbMoLo4wFa98Qerr7t9/bGifbFqpKm7S
hA0uzcftUHoQF+l/Qxt9rTlsPKrBMoXjY2XDkKiWP/hqXsXKDBnngKQb2ZFJFT5r
UABMBhqlBQpI2l0/Qn0fL7aEC1xZCVnSgGpAXFvg/Ci7X2K+HH37brt5uNh3vDZI
c5UaWUUycDa5GcCnmoK3QWVeitVW/ydJGaoIT06CKBDrktcpsoO4u4w6CI8xsIJL
RbJwCb72JU5HV7XDpdbc/lLzi30kWceOEUSHrs3dCEnkr41kOunDGm/Xxk/Sm8VL
SeYSx9UotuJvWWozZzVWpLiUSizjh6UB2XWnkSLkT++KA6YPX4L2/hYAw7E3bYVe
FAFoLL7jUYdrjpCF
=XSx4
-----END PGP SIGNATURE-----
Merge tag 'arch-timer-errata-prereq' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into for-next/core
Pre-requisites for the arch timer errata workarounds:
- Allow checking of a CPU-local erratum
- Add CNTVCT_EL0 trap handler
- Define Cortex-A73 MIDR
- Allow an erratum to be match for all revisions of a core
- Add capability to advertise Cortex-A73 erratum 858921
* tag 'arch-timer-errata-prereq' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms:
arm64: cpu_errata: Add capability to advertise Cortex-A73 erratum 858921
arm64: cpu_errata: Allow an erratum to be match for all revisions of a core
arm64: Define Cortex-A73 MIDR
arm64: Add CNTVCT_EL0 trap handler
arm64: Allow checking of a CPU-local erratum
In order to work around Cortex-A73 erratum 858921 in a subsequent
patch, add the required capability that advertise the erratum.
As the configuration option it depends on is not present yet,
this has no immediate effect.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some minor erratum may not be fixed in further revisions of a core,
leading to a situation where the workaround needs to be updated each
time an updated core is released.
Introduce a MIDR_ALL_VERSIONS match helper that will work for all
versions of that MIDR, once and for all.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since people seem to make a point in breaking the userspace visible
counter, we have no choice but to trap the access. Add the required
handler.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
this_cpu_has_cap() only checks the feature array, and not the errata
one. In order to be able to check for a CPU-local erratum, allow it
to inspect the latter as well.
This is consistent with cpus_have_cap()'s behaviour, which includes
errata already.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.
A user space tool, like kexec-tools, is responsible for allocating
a separate region for the core's ELF header within crash kdump kernel
memory and filling it in when executing kexec_load().
Then, its location will be advertised to crash dump kernel via a new
device-tree property, "linux,elfcorehdr", and crash dump kernel preserves
the region for later use with reserve_elfcorehdr() at boot time.
On crash dump kernel, /proc/vmcore will access the primary kernel's memory
with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing
it since it does not reside in linear mapping on crash dump kernel.
Meanwhile, elfcorehdr_read() is simple as the region is always mapped.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In addition to common VMCOREINFO's defined in
crash_save_vmcoreinfo_init(), we need to know, for crash utility,
- kimage_voffset
- PHYS_OFFSET
to examine the contents of a dump file (/proc/vmcore) correctly
due to the introduction of KASLR (CONFIG_RANDOMIZE_BASE) in v4.6.
- VA_BITS
is also required for makedumpfile command.
arch_crash_save_vmcoreinfo() appends them to the dump file.
More VMCOREINFO's may be added later.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Primary kernel calls machine_crash_shutdown() to shut down non-boot cpus
and save registers' status in per-cpu ELF notes before starting crash
dump kernel. See kernel_kexec().
Even if not all secondary cpus have shut down, we do kdump anyway.
As we don't have to make non-boot(crashed) cpus offline (to preserve
correct status of cpus at crash dump) before shutting down, this patch
also adds a variant of smp_send_stop().
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since arch_kexec_protect_crashkres() removes a mapping for crash dump
kernel image, the loaded data won't be preserved around hibernation.
In this patch, helper functions, crash_prepare_suspend()/
crash_post_resume(), are additionally called before/after hibernation so
that the relevant memory segments will be mapped again and preserved just
as the others are.
In addition, to minimize the size of hibernation image, crash_is_nosave()
is added to pfn_is_nosave() in order to recognize only the pages that hold
loaded crash dump kernel image as saveable. Hibernation excludes any pages
that are marked as Reserved and yet "nosave."
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arch_kexec_protect_crashkres() and arch_kexec_unprotect_crashkres()
are meant to be called by kexec_load() in order to protect the memory
allocated for crash dump kernel once the image is loaded.
The protection is implemented by unmapping the relevant segments in crash
dump kernel memory, rather than making it read-only as other archs do,
to prevent coherency issues due to potential cache aliasing (with
mismatched attributes).
Page-level mappings are consistently used here so that we can change
the attributes of segments in page granularity as well as shrink the region
also in page granularity through /sys/kernel/kexec_crash_size, putting
the freed memory back to buddy system.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
"crashkernel=" kernel parameter specifies the size (and optionally
the start address) of the system ram to be used by crash dump kernel.
reserve_crashkernel() will allocate and reserve that memory at boot time
of primary kernel.
The memory range will be exposed to userspace as a resource named
"Crash kernel" in /proc/iomem.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Pratyush Anand <panand@redhat.com>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that the ACPI BGRT handling code has been made generic, we can
enable it for arm64.
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
[ Updated commit log to reflect that BGRT is only enabled for arm64, and added
missing 'return' statement to the dummy acpi_parse_bgrt() function. ]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20170404160245.27812-8-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To prevent unintended modifications to the kernel text (malicious or
otherwise) while running the EFI stub, describe the kernel image as
two separate sections: a .text section with read-execute permissions,
covering .text, .rodata and .init.text, and a .data section with
read-write permissions, covering .init.data, .data and .bss.
This relies on the firmware to actually take the section permission
flags into account, but this is something that is currently being
implemented in EDK2, which means we will likely start seeing it in
the wild between one and two years from now.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Replace open coded constants with symbolic ones throughout the
Image and the EFI headers. No binary level changes are intended.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel's EFI PE/COFF header contains a dummy .reloc section, and
an explanatory comment that claims that this is required for the EFI
application loader to accept the Image as a relocatable image (i.e.,
one that can be loaded at any offset and fixed up in place)
This was inherited from the x86 implementation, which has elaborate host
tooling to mangle the PE/COFF header post-link time, and which populates
the .reloc section with a single dummy base relocation. On ARM, no such
tooling exists, and the .reloc section remains empty, and is never even
exposed via the BaseRelocationTable directory entry, which is where the
PE/COFF loader looks for it.
The PE/COFF spec is unclear about relocatable images that do not require
any fixups, but the EDK2 implementation, which is the de facto reference
for PE/COFF in the UEFI space, clearly does not care, and explicitly
mentions (in a comment) that relocatable images with no base relocations
are perfectly fine, as long as they don't have the RELOCS_STRIPPED
attribute set (which is not the case for our PE/COFF image)
So simply remove the .reloc section altogether.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Bring the PE/COFF header in line with the PE/COFF spec, by setting
NumberOfSymbols to 0, and removing the section alignment flags.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
After having split off the PE header, clean up the bits that remain:
use .long consistently, merge two adjacent #ifdef CONFIG_EFI blocks,
fix the offset of the PE header pointer and remove the redundant .align
that follows it.
Also, since we will be eliminating all open coded constants from the
EFI header in subsequent patches, let's replace the open coded "ARM\x64"
magic number with its .ascii equivalent.
No changes to the resulting binary image are intended.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation of yet another round of modifications to the PE/COFF
header, macroize it and move the definition into a separate source
file.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
read_system_reg() can readily be confused with read_sysreg(),
whereas these are really quite different in their meaning.
This patches attempts to reduce the ambiguity be reserving "sysreg"
for the actual system register accessors.
read_system_reg() is instead renamed to read_sanitised_ftr_reg(),
to make it more obvious that the Linux-defined sanitised feature
register cache is being accessed here, not the underlying
architectural system registers.
cpufeature.c's internal __raw_read_system_reg() function is renamed
in line with its actual purpose: a form of read_sysreg() that
indexes on (non-compiletime-constant) encoding rather than symbolic
register name.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 5c492c3f52 ("arm64: smp: Add function to determine if cpus are
stuck in the kernel") added a helper function to determine if die() is
supported in cpu_ops. This function assumes a cpu will have a valid
cpu_ops entry, but that may not be the case for cpu0 is spin-table or
parking protocol is used to boot secondary cpus. In that case, there
is a NULL dereference if have_cpu_die() is called by cpu0. So add a
check for a valid cpu_ops before dereferencing it.
Fixes: 5c492c3f52 ("arm64: smp: Add function to determine if cpus are stuck in the kernel")
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are two unnecessary newlines, one is in show_regs, another
is in __show_regs(), drop them.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To avoid having mappings that are writable and executable at the same
time, split the init region into a .init.text region that is mapped
read-only, and a .init.data region that is mapped non-executable.
This is possible now that the alternative patching occurs via the linear
mapping, and the linear alias of the init region is always mapped writable
(but never executable).
Since the alternatives descriptions themselves are read-only data, move
those into the .init.text region.
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
One important rule of thumb when desiging a secure software system is
that memory should never be writable and executable at the same time.
We mostly adhere to this rule in the kernel, except at boot time, when
regions may be mapped RWX until after we are done applying alternatives
or making other one-off changes.
For the alternative patching, we can improve the situation by applying
the fixups via the linear mapping, which is never mapped with executable
permissions. So map the linear alias of .text with RW- permissions
initially, and remove the write permissions as soon as alternative
patching has completed.
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We only need to initialise sctlr_el1 if we're installing an EL2 stub, so
we may as well defer this until we're doing so. Similarly, we can defer
intialising CPTR_EL2 until then, as we do not access any trapped
functionality as part of el2_setup.
This patch modified el2_setup accordingly, allowing us to remove a
branch and simplify the code flow.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The early el2_setup code is a little convoluted, with two branches where
one would do. This makes the code more painful to read than is
necessary.
We can remove a branch and simplify the logic by moving the early return
in the booted-at-EL1 case earlier in the function. This separates it
from all the setup logic that only makes sense for EL2.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If kernel image extends across alignment boundary, existing
code increases the KASLR offset by size of kernel image. The
offset is masked after resizing. There are cases, where after
masking, we may still have kernel image extending across
boundary. This eventually results in only 2MB block getting
mapped while creating the page tables. This results in data aborts
while accessing unmapped regions during second relocation (with
kaslr offset) in __primary_switch. To fix this problem, round up the
kernel image size, by swapper block size, before adding it for
correction.
For example consider below case, where kernel image still crosses
1GB alignment boundary, after masking the offset, which is fixed
by rounding up kernel image size.
SWAPPER_TABLE_SHIFT = 30
Swapper using section maps with section size 2MB.
CONFIG_PGTABLE_LEVELS = 3
VA_BITS = 39
_text : 0xffffff8008080000
_end : 0xffffff800aa1b000
offset : 0x1f35600000
mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1)
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7c
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
offset after existing correction (before mask) = 0x1f37f9b000
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
offset (after mask) = 0x1f37e00000
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7c
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
new offset w/ rounding up = 0x1f38000000
(_text + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
(_end + offset) >> SWAPPER_TABLE_SHIFT = 0x3fffffe7d
Fixes: f80fb3a3d5 ("arm64: add support for kernel ASLR")
Cc: <stable@vger.kernel.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Srinivas Ramana <sramana@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv8.3 adds new instructions to support Release Consistent
processor consistent (RCpc) model, which is weaker than the
RCsc model.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.3 adds support for new instructions to aid floating-point
multiplication and addition of complex numbers. Expose the support
via HWCAP and MRS emulation
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.3 adds support for a new instruction to perform conversion
from double precision floating point to integer to match the
architected behaviour of the equivalent Javascript conversion.
Expose the availability via HWCAP and MRS emulation.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for detecting VPIPT I-caches, as introduced by ARMv8.2.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
cachetype.h and cache.h are small and both obviously related to caches.
Merge them together to reduce clutter.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As a recent change to ARMv8, ASID-tagged VIVT I-caches are removed
retrospectively from the architecture. Consequently, we don't need to
support them in Linux either.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The CCSIDR_EL1.{NumSets,Associativity,LineSize} fields are only for use
in conjunction with set/way cache maintenance and are not guaranteed to
represent the actual microarchitectural features of a design.
The architecture explicitly states:
| You cannot make any inference about the actual sizes of caches based
| on these parameters.
Furthermore, CCSIDR_EL1.{WT,WB,RA,WA} have been removed retrospectively
from ARMv8 and are now considered to be UNKNOWN.
Since the kernel doesn't make use of set/way cache maintenance and it is
not possible for userspace to execute these instructions, we have no
need for the CCSIDR information in the kernel.
This patch removes the accessors, along with the related portions of the
cacheinfo support, which should instead be reintroduced when firmware has
a mechanism to provide us with reliable information.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The CCSIDR_EL1.{NumSets,Associativity,LineSize} fields are only for use
in conjunction with set/way cache maintenance and are not guaranteed to
represent the actual microarchitectural features of a design.
The architecture explicitly states:
| You cannot make any inference about the actual sizes of caches based
| on these parameters.
We currently use these fields to determine whether or the I-cache is
aliasing, which is bogus and known to break on some platforms. Instead,
assume the I-cache is always aliasing if it advertises a VIPT policy.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit af391b15f7 ("arm64: kernel: rename __cpu_suspend to keep it
aligned with arm") renamed cpu_suspend() to arm_cpuidle_suspend(), but
forgot to update the kerneldoc header.
Fixes: af391b15f7 ("arm64: kernel: rename __cpu_suspend to keep it aligned with arm")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit fc62d0207a ("kprobes: Introduce weak variant of
kprobe_exceptions_notify()") introduces a generic empty version of the
function for architectures that don't need special handling, like arm64.
As such, remove the arch/arm64/ specific handler.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Unlike most sysreg defintiions, the GICv3 definitions don't have a SYS_
prefix, and they don't live in <asm/sysreg.h>. Additionally, some
definitions are duplicated elsewhere (e.g. in the KVM save/restore
code).
For consistency, and to make it possible to share a common definition
for these sysregs, this patch moves the definitions to <asm/sysreg.h>,
adding a SYS_ prefix, and sorting the registers per their encoding.
Existing users of the definitions are fixed up so that this change is
not problematic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of including the full <linux/signal.h>, we are going to include the
types-only <linux/signal_types.h> header in <linux/sched.h>, to further
decouple the scheduler header from the signal headers.
This means that various files which relied on the full <linux/signal.h> need
to be updated to gain an explicit dependency on it.
Update the code that relies on sched.h's inclusion of the <linux/signal.h> header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/hotplug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/hotplug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/topology.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_count);/mmgrab\(\1\);/'
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_count);/mmgrab\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-1-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Often all is needed is these small helpers, instead of compiler.h or a
full kprobes.h. This is important for asm helpers, in fact even some
asm/kprobes.h make use of these helpers... instead just keep a generic
asm file with helpers useful for asm code with the least amount of
clutter as possible.
Likewise we need now to also address what to do about this file for both
when architectures have CONFIG_HAVE_KPROBES, and when they do not. Then
for when architectures have CONFIG_HAVE_KPROBES but have disabled
CONFIG_KPROBES.
Right now most asm/kprobes.h do not have guards against CONFIG_KPROBES,
this means most architecture code cannot include asm/kprobes.h safely.
Correct this and add guards for architectures missing them.
Additionally provide architectures that not have kprobes support with
the default asm-generic solution. This lets us force asm/kprobes.h on
the header include/linux/kprobes.h always, but most importantly we can
now safely include just asm/kprobes.h on architecture code without
bringing the full kitchen sink of header files.
Two architectures already provided a guard against CONFIG_KPROBES on its
kprobes.h: sh, arch. The rest of the architectures needed gaurds added.
We avoid including any not-needed headers on asm/kprobes.h unless
kprobes have been enabled.
In a subsequent atomic change we can try now to remove compiler.h from
include/linux/kprobes.h.
During this sweep I've also identified a few architectures defining a
common macro needed for both kprobes and ftrace, that of the definition
of the breakput instruction up. Some refer to this as
BREAKPOINT_INSTRUCTION. This must be kept outside of the #ifdef
CONFIG_KPROBES guard.
[mcgrof@kernel.org: fix arm64 build]
Link: http://lkml.kernel.org/r/CAB=NE6X1WMByuARS4mZ1g9+W=LuVBnMDnh_5zyN0CLADaVh=Jw@mail.gmail.com
[sfr@canb.auug.org.au: fixup for kprobes declarations moving]
Link: http://lkml.kernel.org/r/20170214165933.13ebd4f4@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170203233139.32682-1-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJYpIxqAAoJELescNyEwWM0xdwH/AsTYAXPZDMdRnrQUyV0Fd2H
/9pMzww6dHXEmCMKkImf++otUD6S+gTCJTsj7kEAXT5sZzLk27std5lsW7R9oPjc
bGQMalZy+ovLR1gJ6v072seM3In4xph/qAYOpD8Q0AfYCLHjfMMArQfoLa8Esgru
eSsrAgzVAkrK7XHi3sYycUjr9Hac9tvOOuQ3SaZkDz4MfFIbI4b43+c1SCF7wgT9
tQUHLhhxzGmgxjViI2lLYZuBWsIWsE+algvOe1qocvA9JEIXF+W8NeOuCjdL8WwX
3aoqYClC+qD/9+/skShFv5gM5fo0/IweLTUNIHADXpB6OkCYDyg+sxNM+xnEWQU=
=YrPg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (74 commits)
arm64/kprobes: consistently handle MRS/MSR with XZR
arm64: cpufeature: correctly handle MRS to XZR
arm64: traps: correctly handle MRS/MSR with XZR
arm64: ptrace: add XZR-safe regs accessors
arm64: include asm/assembler.h in entry-ftrace.S
arm64: fix warning about swapper_pg_dir overflow
arm64: Work around Falkor erratum 1003
arm64: head.S: Enable EL1 (host) access to SPE when entered at EL2
arm64: arch_timer: document Hisilicon erratum 161010101
arm64: use is_vmalloc_addr
arm64: use linux/sizes.h for constants
arm64: uaccess: consistently check object sizes
perf: add qcom l2 cache perf events driver
arm64: remove wrong CONFIG_PROC_SYSCTL ifdef
ARM: smccc: Update HVC comment to describe new quirk parameter
arm64: do not trace atomic operations
ACPI/IORT: Fix the error return code in iort_add_smmu_platform_device()
ACPI/IORT: Fix iort_node_get_id() mapping entries indexing
arm64: mm: enable CONFIG_HOLES_IN_ZONE for NUMA
perf: xgene: Include module.h
...
CONFIG_SET_MODULE_RONX to the more sensible CONFIG_STRICT_KERNEL_RWX and
CONFIG_STRICT_MODULE_RWX.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJYrJ2ZAAoJEIly9N/cbcAmb4UQAIDnJYF4xecUfxofypQwt7ey
DcR8SH+g/Rkm3v2bUOrVdlP333ePRUEs6C47PgYSLlKsZiQA3H6bsTILHJZGHZ3j
laNH4sjQ0j+Sr2rHXk8fLz3YpHHwIy49bfu2ERXFH92BMnTMCv1h9IWFgOMH+4y5
09n16TPHMUj1k0DGjHO/n03qLIKOo3Xy/Va5dhQ/6dGU4zR4KhOBnhLlG3IU7Atd
KTR+ba/qym7bDQbTezMuaajTiZctr6a45yBKDWu4Knu+ot2a7K7fYvfRT3YVb5SU
aTSYps7NKQbewcQSqNdek1zytoy2Ck7CH511e+3ypwNmao5KQwRgH7OX1pDEXyZv
rGDaVzKMTSddH23jLEKUbpR847Lza9+V3h5YtbMG8GgiCKs91Ec666iEE3NVZBO8
1hiiYhE2iDxi10B/EZZcn2gOt2JaB2m2GxWIrJOz4txtDAWbUYlhUpWEUynBTPQ0
cYBZVnge81awipZJTWUv57LyufnTnMSK3i8Q8t0woj4C7pFbPYfjnKCrgwTQyAvr
mD4uFBrgFb1lftbc3kfTdeoZmXerzvubsstWdr3rU3nsiJFzY1SwJZe8n0THyL4g
DzURFrj/8UXb32Kavysz6FTxFO9u87mJm6yqHn/Y3bEK7Y7cch/NYjRC9Q6dpH+4
ld9apHF6iRrqgf+x6oOh
=7KhR
-----END PGP SIGNATURE-----
Merge tag 'rodata-v4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull rodata updates from Kees Cook:
"This renames the (now inaccurate) DEBUG_RODATA and related
SET_MODULE_RONX configs to the more sensible STRICT_KERNEL_RWX and
STRICT_MODULE_RWX"
* tag 'rodata-v4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arch: Rename CONFIG_DEBUG_RODATA and CONFIG_DEBUG_MODULE_RONX
arch: Move CONFIG_DEBUG_RODATA and CONFIG_SET_MODULE_RONX to be common
Now that we have XZR-safe helpers for fiddling with registers, use these
in the arm64 kprobes code rather than open-coding the logic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In emulate_mrs() we may erroneously write back to the user SP rather
than XZR if we trap an MRS instruction where Xt == 31.
Use the new pt_regs_write_reg() helper to handle this correctly.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 77c97b4ee2 ("arm64: cpufeature: Expose CPUID registers by emulation")
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently we hand-roll XZR-safe register handling in
user_cache_maint_handler(), though we forget to do the same in
ctr_read_handler(), and may erroneously write back to the user SP rather
than XZR.
Use the new helpers to handle these cases correctly and consistently.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 116c81f427 ("arm64: Work around systems with mismatched cache line sizes")
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In a randconfig build I ran into this build error:
arch/arm64/kernel/entry-ftrace.S: Assembler messages:
arch/arm64/kernel/entry-ftrace.S:101: Error: unknown mnemonic `ldr_l' -- `ldr_l x2,ftrace_trace_function'
The macro is defined in asm/assembler.h, so we should include that file.
Fixes: 829d2bd133 ("arm64: entry-ftrace.S: avoid open-coded {adr,ldr}_l")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries
using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum
is triggered, page table entries using the new translation table base
address (BADDR) will be allocated into the TLB using the old ASID. All
circumstances leading to the incorrect ASID being cached in the TLB arise
when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory
operation is in the process of performing a translation using the specific
TTBRx_EL1 being written, and the memory operation uses a translation table
descriptor designated as non-global. EL2 and EL3 code changing the EL1&0
ASID is not subject to this erratum because hardware is prohibited from
performing translations from an out-of-context translation regime.
Consider the following pseudo code.
write new BADDR and ASID values to TTBRx_EL1
Replacing the above sequence with the one below will ensure that no TLB
entries with an incorrect ASID are used by software.
write reserved value to TTBRx_EL1[ASID]
ISB
write new value to TTBRx_EL1[BADDR]
ISB
write new value to TTBRx_EL1[ASID]
ISB
When the above sequence is used, page table entries using the new BADDR
value may still be incorrectly allocated into the TLB using the reserved
ASID. Yet this will not reduce functionality, since TLB entries incorrectly
tagged with the reserved ASID will never be hit by a later instruction.
Based on work by Shanker Donthineni <shankerd@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The SPE architecture requires each exception level to enable access
to the SPE controls for the exception level below it, since additional
context-switch logic may be required to handle the buffer safely.
This patch allows EL1 (host) access to the SPE controls when entered at
EL2.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The sysfs cpu_capacity entry for each CPU has nothing to do with
PROC_FS, nor it's in /proc/sys path.
Remove such ifdef.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-and-suggested-by: Sudeep Holla <sudeep.holla@arm.com>
Fixes: be8f185d8a ('arm64: add sysfs cpu_capacity attribute')
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Both of these options are poorly named. The features they provide are
necessary for system security and should not be considered debug only.
Change the names to CONFIG_STRICT_KERNEL_RWX and
CONFIG_STRICT_MODULE_RWX to better describe what these options do.
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Jessica Yu <jeyu@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
This patch adds a Qualcomm specific quirk to the arm_smccc_smc call.
On Qualcomm ARM64 platforms, the SMC call can return before it has
completed. If this occurs, the call can be restarted, but it requires
using the returned session ID value from the interrupted SMC call.
The quirk stores off the session ID from the interrupted call in the
quirk structure so that it can be used by the caller.
This patch folds in a fix given by Sricharan R:
https://lkml.org/lkml/2016/9/28/272
Signed-off-by: Andy Gross <andy.gross@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds a quirk parameter to the arm_smccc_(smc/hvc) calls.
The quirk structure allows for specialized SMC operations due to SoC
specific requirements. The current arm_smccc_(smc/hvc) is renamed and
macros are used instead to specify the standard arm_smccc_(smc/hvc) or
the arm_smccc_(smc/hvc)_quirk function.
This patch and partial implementation was suggested by Will Deacon.
Signed-off-by: Andy Gross <andy.gross@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When building with debugging symbols, take the absolute path to the
vmlinux binary and add it to the special PE/COFF debug table entry.
This allows a debug EFI build to find the vmlinux binary, which is
very helpful in debugging, given that the offset where the Image is
first loaded by EFI is highly unpredictable.
On implementations of UEFI that choose to implement it, this
information is exposed via the EFI debug support table, which is a UEFI
configuration table that is accessible both by the firmware at boot time
and by the OS at runtime, and lists all PE/COFF images loaded by the
system.
The format of the NB10 Codeview entry is based on the definition used
by EDK2, which is our primary reference when it comes to the use of
PE/COFF in the context of UEFI firmware.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: use realpath instead of shell invocation, as discussed on list]
Signed-off-by: Will Deacon <will.deacon@arm.com>
We recently discovered that __raw_read_system_reg() erroneously mapped
sysreg IDs to the wrong registers.
To ensure that we don't get hit by a similar issue in future, this patch
makes __raw_read_system_reg() use a macro for each case statement,
ensuring that each case reads the correct register.
To ensure that this patch hasn't introduced an issue, I've binary-diffed
the object files before and after this patch. No code or data sections
differ (though some debug section differ due to line numbering
changing).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since it was introduced in commit da8d02d19f ("arm64/capabilities:
Make use of system wide safe value"), __raw_read_system_reg() has
erroneously mapped some sysreg IDs to other registers.
For the fields in ID_ISAR5_EL1, our local feature detection will be
erroneous. We may spuriously detect that a feature is uniformly
supported, or may fail to detect when it actually is, meaning some
compat hwcaps may be erroneous (or not enforced upon hotplug).
This patch corrects the erroneous entries.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: da8d02d19f ("arm64/capabilities: Make use of system wide safe value")
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
Instead of open-coding the loop, let's use canned macro.
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
During a TLB invalidate sequence targeting the inner shareable domain,
Falkor may prematurely complete the DSB before all loads and stores using
the old translation are observed. Instruction fetches are not subject to
the conditions of this erratum. If the original code sequence includes
multiple TLB invalidate instructions followed by a single DSB, onle one of
the TLB instructions needs to be repeated to work around this erratum.
While the erratum only applies to cases in which the TLBI specifies the
inner-shareable domain (*IS form of TLBI) and the DSB is ISH form or
stronger (OSH, SYS), this changes applies the workaround overabundantly--
to local TLBI, DSB NSH sequences as well--for simplicity.
Based on work by Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If an EL0 instruction in the SYS class triggers an exception, do_sysintr
looks for a sys64_hook matching the instruction, and if none is found,
injects a SIGILL. This mirrors what we do for undefined instruction
encodings in do_undefinstr, where we look for an undef_hook matching the
instruction, and if none is found, inject a SIGILL.
Over time, new SYS instruction encodings may be allocated. Prior to
allocation, exceptions resulting from these would be handled by
do_undefinstr, whereas after allocation these may be handled by
do_sysintr.
To ensure that we have consistent behaviour if and when this happens, it
would be beneficial to have do_sysinstr fall back to do_undefinstr.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On ACPI based systems where the topology is setup using the API
store_cpu_topology, at the moment we do not have necessary code
to parse cpu capacity and handle cpufreq notifier, thus
resulting in a kernel panic.
Stack:
init_cpu_capacity_callback+0xb4/0x1c8
notifier_call_chain+0x5c/0xa0
__blocking_notifier_call_chain+0x58/0xa0
blocking_notifier_call_chain+0x3c/0x50
cpufreq_set_policy+0xe4/0x328
cpufreq_init_policy+0x80/0x100
cpufreq_online+0x418/0x710
cpufreq_add_dev+0x118/0x180
subsys_interface_register+0xa4/0xf8
cpufreq_register_driver+0x1c0/0x298
cppc_cpufreq_init+0xdc/0x1000 [cppc_cpufreq]
do_one_initcall+0x5c/0x168
do_init_module+0x64/0x1e4
load_module+0x130c/0x14d0
SyS_finit_module+0x108/0x120
el0_svc_naked+0x24/0x28
Fixes: 7202bde8b7 ("arm64: parse cpu capacity-dmips-mhz from DT")
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Memory regions marked as NOMAP should not be used for general allocation
by the kernel, and should not even be covered by the linear mapping
(hence the name). However, drivers or other subsystems (such as ACPI)
that access the firmware directly may legally access them, which means
it is also reasonable for such drivers to claim them by invoking
request_resource(). Currently, this is prevented by the fact that arm64's
request_standard_resources() marks reserved regions as IORESOURCE_BUSY.
So drop the IORESOURCE_BUSY flag from these requests.
Reported-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If CONFIG_DEBUG_VIRTUAL=y and CONFIG_ARM64_SW_TTBR0_PAN=y:
virt_to_phys used for non-linear address: ffffff8008cc0000 (empty_zero_page+0x0/0x1000)
WARNING: CPU: 0 PID: 0 at arch/arm64/mm/physaddr.c:14 __virt_to_phys+0x28/0x60
...
[<ffffff800809abb4>] __virt_to_phys+0x28/0x60
[<ffffff8008a02600>] setup_arch+0x46c/0x4d4
Fixes: 2077be6783 ("arm64: Use __pa_symbol for kernel symbols")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Generally, taking an unexpected exception should be a fatal event, and
bad_mode is intended to cater for this. However, it should be possible
to contain unexpected synchronous exceptions from EL0 without bringing
the kernel down, by sending a SIGILL to the task.
We tried to apply this approach in commit 9955ac47f4 ("arm64:
don't kill the kernel on a bad esr from el0"), by sending a signal for
any bad_mode call resulting from an EL0 exception.
However, this also applies to other unexpected exceptions, such as
SError and FIQ. The entry paths for these exceptions branch to bad_mode
without configuring the link register, and have no kernel_exit. Thus, if
we take one of these exceptions from EL0, bad_mode will eventually
return to the original user link register value.
This patch fixes this by introducing a new bad_el0_sync handler to cater
for the recoverable case, and restoring bad_mode to its original state,
whereby it calls panic() and never returns. The recoverable case
branches to bad_el0_sync with a bl, and returns to userspace via the
usual ret_to_user mechanism.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 9955ac47f4 ("arm64: don't kill the kernel on a bad esr from el0")
Reported-by: Mark Salter <msalter@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We cannot preserve partial fields for hardware breakpoints, because
the values written by userspace to the hardware breakpoint
registers can't subsequently be recovered intact from the hardware.
So, just reject attempts to write incomplete fields with -EINVAL.
Cc: <stable@vger.kernel.org> # 3.7.x-
Fixes: 478fcb2cdb ("arm64: Debugging support")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.
Cc: <stable@vger.kernel.org> # 4.3.x-
Fixes: 5d220ff942 ("arm64: Better native ptrace support for compat tasks")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.
Cc: <stable@vger.kernel.org> # 3.19.x-
Fixes: 766a85d7bc ("arm64: ptrace: add NT_ARM_SYSTEM_CALL regset")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.
Cc: <stable@vger.kernel.org> # 3.7.x-
Fixes: 478fcb2cdb ("arm64: Debugging support")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some places in the kernel open-code sequences using ADRP for a symbol
another instruction using a :lo12: relocation for that same symbol.
These sequences are easy to get wrong, and more painful to read than is
necessary. For these reasons, it is preferable to use the
{adr,ldr,str}_l macros for these cases.
This patch makes use of these in entry-ftrace.S, removing open-coded
sequences using adrp. This results in a minor code change, since a
temporary register is not used when generating the address for some
symbols, but this is fine, as the value of the temporary register is not
used elsewhere.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some places in the kernel open-code sequences using ADRP for a symbol
another instruction using a :lo12: relocation for that same symbol.
These sequences are easy to get wrong, and more painful to read than is
necessary. For these reasons, it is preferable to use the
{adr,ldr,str}_l macros for these cases.
This patch makes use of these in efi-entry.S, removing open-coded
sequences using adrp.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some places in the kernel open-code sequences using ADRP for a symbol
another instruction using a :lo12: relocation for that same symbol.
These sequences are easy to get wrong, and more painful to read than is
necessary. For these reasons, it is preferable to use the
{adr,ldr,str}_l macros for these cases.
This patch makes use of adr_l these in head.S, removing an open-coded
sequence using adrp.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The cache hierarchy can be identified through Cache Level ID(CLIDR)
architected system register. However in some cases it will provide
only the number of cache levels that are integrated into the processor
itself. In other words, it can't provide any information about the
caches that are external and/or transparent.
Some platforms require to export the information about all such external
caches to the userspace applications via the sysfs interface.
This patch adds support to override the cache levels using device tree
to take such external non-architected caches into account.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Tested-by: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Definition of cpu ranges are hard to read if the cpu variant is not
zero. Provide MIDR_CPU_VAR_REV() macro to describe the full hardware
revision of a cpu including variant and (minor) revision.
Signed-off-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM v8.1 extensions include support for rounding double multiply
add/subtract instructions to the A64 SIMD instructions set. Let
the userspace know about it via a HWCAP bit.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
__pa_symbol is technically the marcro that should be used for kernel
symbols. Switch to this as a pre-requisite for DEBUG_VIRTUAL which
will do bounds checking.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Documentation for the infrastructure to expose CPU feature
register by emulating MRS.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds the hook for emulating MRS instruction to
export the 'user visible' value of supported system registers.
We emulate only the following id space for system registers:
Op0=3, Op1=0, CRn=0, CRm=[0, 4-7]
The rest will fall back to SIGILL. This capability is also
advertised via a new HWCAP_CPUID.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: add missing static keyword to enable_mrs_emulation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Track the user visible fields of a CPU feature register. This will be
used for exposing the value to the userspace. All the user visible
fields of a feature register will be passed on as it is, while the
others would be filled with their respective safe value.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a helper to extract the register field from a given
instruction.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch does the following clean ups :
1) All undescribed fields of a register are now treated as 'strict'
with a safe value of 0. Hence we could leave an empty table for
describing registers which are RAZ.
2) ID_AA64DFR1_EL1 is RAZ and should use the table for RAZ register.
3) ftr_generic32 is used to represent a register with a 32bit feature
value. Rename this to ftr_singl32 to make it more obvious. Since
we don't have a 64bit singe feature register, kill ftr_generic.
Based on a patch by Mark Rutland.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently have some RAZ fields described explicitly in our
arm64_ftr_bits arrays. These are inconsistently commented, grouped,
and/or applied, and maintaining these is error-prone.
Luckily, we don't need these at all. We'll never need to inspect RAZ
fields to determine feature support, and init_cpu_ftr_reg() will ensure
that any bits without a corresponding arm64_ftr_bits entry are treated
as RES0 with strict matching requirements. In check_update_ftr_reg()
we'll then compare these bits from the relevant cpuinfo_arm64
structures, and need not store them in a arm64_ftr_reg.
This patch removes the unnecessary arm64_ftr_bits entries for RES0 bits.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Any fields not defined in an arm64_ftr_bits entry are propagated to the
system-wide register value in init_cpu_ftr_reg(), and while we require
that these strictly match for the sanity checks, we don't update them in
update_cpu_ftr_reg().
Generally, the lack of an arm64_ftr_bits entry indicates that the bits
are currently RES0 (as is the case for the upper 32 bits of all
supposedly 32-bit registers).
A better default would be to use zero for the system-wide value of
unallocated bits, making all register checking consistent, and allowing
for subsequent simplifications to the arm64_ftr_bits arrays.
This patch updates init_cpu_ftr_reg() to treat unallocated bits as RES0
for the purpose of the system-wide safe value. These bits will still be
sanity checked with strict match requirements, as is currently the case.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The statistical profiling extension (SPE) is an optional feature of
ARMv8.1 and is unlikely to be supported by all of the CPUs in a
heterogeneous system.
This patch updates the cpufeature checks so that such systems are not
tainted as unsupported.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Perf already supports multiple PMU instances for heterogeneous systems,
so there's no need to be strict in the cpufeature checking, particularly
as the PMU extension is optional in the architecture.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since its introduction, the UAO enable call was broken, and useless.
commit 2a6dcb2b5f ("arm64: cpufeature: Schedule enable() calls instead
of calling them via IPI"), fixed the framework so that these calls
are scheduled, so that they can modify PSTATE.
Now it is just useless. Remove it. UAO is enabled by the code patching
which causes get_user() and friends to use the 'ldtr' family of
instructions. This relies on the PSTATE.UAO bit being set to match
addr_limit, which we do in uao_thread_switch() called via __switch_to().
All that is needed to enable UAO is patch the code, and call schedule().
__apply_alternatives_multi_stop() calls stop_machine() when it modifies
the kernel text to enable the alternatives, (including the UAO code in
uao_thread_switch()). Once stop_machine() has finished __switch_to() is
called to reschedule the original task, this causes PSTATE.UAO to be set
appropriately. An explicit enable() call is not needed.
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
In commit 23c8a500c2 ("arm64: kernel: use ordinary return/argument
register for el2_setup()"), we stopped using w20 as a global stash of
the boot mode flag, and instead pass this around in w0 as a function
parameter.
Unfortunately, we missed a couple of comments, which still refer to the
old convention of using w20/x20.
This patch fixes up the comments to describe the code as it currently
works.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A few printk calls in arm64 omit a trailing newline, even though there
is no subsequent KERN_CONT printk associated with them, and we actually
want a newline.
This can result in unrelated lines being appended, rather than appearing
on a new line. Additionally, timestamp prefixes may appear in-line. This
makes the logs harder to read than necessary.
Avoid this by adding a trailing newline.
These were found with a shortlist generated by:
$ git grep 'pr\(intk\|_.*\)(.*)' -- arch/arm64 | grep -v pr_fmt | grep -v '\\n"'
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
CC: James Morse <james.morse@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Function graph tracer shows negative time (wrap around) when tracing
__switch_to if the nosleep-time trace option is enabled.
Time compensation for nosleep-time is done by an ftrace probe on
sched_switch. This doesn't work well for the following events (with
letters representing timestamps):
A - sched switch probe called for task T switch out
B - __switch_to calltime is recorded
C - sched_switch probe called for task T switch in
D - __switch_to rettime is recorded
If C - A > D - B, then we end up over compensating for the time spent in
__switch_to giving rise to negative times in the trace output.
On x86, __switch_to is not traced if function graph tracer is enabled.
Do the same for arm64 as well.
Cc: Todd Kjos <tkjos@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>