Add the per-directory "tasks" file for cgroupfs mounts; this allows the
user to determine which tasks are members of a cgroup by reading a
cgroup's "tasks", and to move a task into a cgroup by writing its pid to
its "tasks".
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cpuset code to present a list of tasks using a cpuset to user space could
write to an array that it had kmalloc'd, after a kmalloc request of zero size.
The problem was that the code didn't check for writes past the allocated end
of the array until -after- the first write.
This is a race condition that is likely rare -- it would only show up if a
cpuset went from being empty to having a task in it, during the brief time
between the allocation and the first write.
Prior to roughly 2.6.22 kernels, this was also a benign problem, because a
zero kmalloc returned a few usable bytes anyway, and no harm was done with the
bogus write.
With the 2.6.22 kernel changes to make issue a warning if code tries to write
to the location returned from a zero size allocation, this problem is no
longer benign. This cpuset code would occassionally trigger that warning.
The fix is trivial -- check before storing into the array, not after, whether
the array is big enough to hold the store.
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Serge E. Hallyn" <serue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is separate notifier header, but no separate notifier .c file.
Extract notifier code out of kernel/sys.c which will remain for
misc syscalls I hope. Merge kernel/die_notifier.c into kernel/notifier.c.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ssh://master.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt:
hrtimer: hook compat_sys_nanosleep up to high res timer code
hrtimer: Rework hrtimer_nanosleep to make sys_compat_nanosleep easier
Get rid of sparse related warnings from places that use integer as NULL
pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds items to the taststats struct to account for user and system
time based on scaling the CPU frequency and instruction issue rates.
Adds account_(user|system)_time_scaled callbacks which architectures
can use to account for time using this mechanism.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just removing white space at the end of lines.
Signed-off-by: Daniel Walker <dwalker@mvista.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Large chunks of 5 spaces instead of tabs.
Signed-off-by: Daniel Walker <dwalker@mvista.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Walker <dwalker@mvista.com>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lots of converting spaces to tabs.
Signed-off-by: Daniel Walker <dwalker@mvista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2. This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.
Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.
The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.
The capabilities of a program are set via the capability convolution
rules:
pI(post-exec) = pI(pre-exec)
pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
pE(post-exec) = fE ? pP(post-exec) : 0
at exec() time. As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.
The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.
Here is how it works:
Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where
(pI' & ~pI) & ~pP = 0.
That is, the only new things in pI' that were not present in pI need to
be present in pP.
The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:
if (pE & CAP_SETPCAP) {
pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */
}
This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.
One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After adding checking to register_sysctl_table and finding a whole new set
of bugs. Missed by countless code reviews and testers I have finally lost
patience with the binary sysctl interface.
The binary sysctl interface has been sort of deprecated for years and
finding a user space program that uses the syscall is more difficult then
finding a needle in a haystack. Problems continue to crop up, with the in
kernel implementation. So since supporting something that no one uses is
silly, deprecate sys_sysctl with a sufficient grace period and notice that
the handful of user space applications that care can be fixed or replaced.
The /proc/sys sysctl interface that people use will continue to be
supported indefinitely.
This patch moves the tested warning about sysctls from the path where
sys_sysctl to a separate path called from both implementations of
sys_sysctl, and it adds a proper entry into
Documentation/feature-removal-schedule.
Allowing us to revisit this in a couple years time and actually kill
sys_sysctl.
[lethal@linux-sh.org: sysctl: Fix syscall disabled build]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that the net/irda code didn't register any of it's binary paths
in the global sysctl.h header file so I missed them completely when making an
authoritative list of binary sysctl paths in the kernel. So add them to the
list of valid binary sysctl paths.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Samuel Ortiz <samuel@sortiz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Well it turns out after I dug into the problems a little more I was returning
a few false positives so this patch updates my logic to remove them.
- Don't complain about 0 ctl_names in sysctl_check_binary_path
It is valid for someone to remove the sysctl binary interface
and still keep the same sysctl proc interface.
- Count ctl_names and procnames as matching if they both don't
exist.
- Only warn about missing min&max when the generic functions care.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After going through the kernels sysctl tables several times it has become
clear that code review and testing is just not effective in prevent
problematic sysctl tables from being used in the stable kernel. I certainly
can't seem to fix the problems as fast as they are introduced.
Therefore this patch adds sysctl_check_table which is called when a sysctl
table is registered and checks to see if we have a problematic sysctl table.
The biggest part of the code is the table of valid binary sysctl entries, but
since we have frozen our set of binary sysctls this table should not need to
change, and it makes it much easier to detect when someone unintentionally
adds a new binary sysctl value.
As best as I can determine all of the several hundred errors spewed on boot up
now are legitimate.
[bunk@kernel.org: kernel/sysctl_check.c must #include <linux/string.h>]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It looks like we inadvertently killed the cad_pid binary sysctl support when
cap_pid was changed to be a struct pid. Since no one has complained just
remove the binary path.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of having a bunch of ifdefs in sysctl.c move all of the pty sysctl
logic into drivers/char/pty.c
As well as cleaning up the logic this prevents sysctl_check_table from
complaining that the root table has a NULL data pointer on something with
generic methods.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
aio-nr, aio-max-nr, acpi_video_flags are unsigned long values which sysctl
does not handle properly with a 64bit kernel and a 32bit user space.
Since no one is likely to be using the binary sysctl values and the ascii
interface still works, this patch just removes support for the binary sysctl
interface from the kernel.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@sw.ru>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These functions are all wrapper functions for the proc interface that are
needed for them to work correctly.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@sw.ru>
Acked-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There as been no easy way to wrap the default sysctl strategy routine except
for returning 0. Which is not always what we want. The few instances I have
seen that want different behaviour have written their own version of
sysctl_data. While not too hard it is unnecessary code and has the potential
for extra bugs.
So to make these situations easier and make that part of sysctl more symetric
I have factord sysctl_data out of do_sysctl_strategy and exported as a
function everyone can use.
Further having sysctl_data be an explicit function makes checking for badly
formed sysctl tables much easier.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In sysctl.h the typedef struct ctl_table ctl_table violates coding style isn't
needed and is a bit of a nuisance because it makes it harder to recognize
ctl_table is a type name.
So this patch removes it from the generic sysctl code. Hopefully I will have
enough energy to send the rest of my patches will follow and to remove it from
the rest of the kernel.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions in a CPU notifier chain is called with CPU_UP_PREPARE event
before making the CPU online. If one of the callback returns NOTIFY_BAD, it
stops to deliver CPU_UP_PREPARE event, and CPU online operation is canceled.
Then CPU_UP_CANCELED event is delivered to the functions in a CPU notifier
chain again.
This CPU_UP_CANCELED event is delivered to the functions which have been
called with CPU_UP_PREPARE, not delivered to the functions which haven't been
called with CPU_UP_PREPARE.
The problem that makes existing cpu hotplug error handlings complex is that
the CPU_UP_CANCELED event is delivered to the function that has returned
NOTIFY_BAD, too.
Usually we don't expect to call destructor function against the object that
has failed to initialize. It is like:
err = register_something();
if (err) {
unregister_something();
return err;
}
So it is natural to deliver CPU_UP_CANCELED event only to the functions that
have returned NOTIFY_OK with CPU_UP_PREPARE event and not to call the function
that have returned NOTIFY_BAD. This is what this patch is doing.
Otherwise, every cpu hotplug notifiler has to track whether notifiler event is
failed or not for each cpu. (drivers/base/topology.c is doing this with
topology_dev_map)
Similary this patch makes same thing with CPU_DOWN_PREPARE and CPU_DOWN_FAILED
evnets.
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If memchr argument is longer than strlen(kp->name), there will be some
weird result.
It will casuse duplicate filenames in sysfs for the "nousb". kernel
warning messages are as bellow:
sysfs: duplicate filename 'usbcore' can not be created
WARNING: at fs/sysfs/dir.c:416 sysfs_add_one()
[<c01c4750>] sysfs_add_one+0xa0/0xe0
[<c01c4ab8>] create_dir+0x48/0xb0
[<c01c4b69>] sysfs_create_dir+0x29/0x50
[<c024e0fb>] create_dir+0x1b/0x50
[<c024e3b6>] kobject_add+0x46/0x150
[<c024e2da>] kobject_init+0x3a/0x80
[<c053b880>] kernel_param_sysfs_setup+0x50/0xb0
[<c053b9ce>] param_sysfs_builtin+0xee/0x130
[<c053ba33>] param_sysfs_init+0x23/0x60
[<c024d062>] __next_cpu+0x12/0x20
[<c052aa30>] kernel_init+0x0/0xb0
[<c052aa30>] kernel_init+0x0/0xb0
[<c052a856>] do_initcalls+0x46/0x1e0
[<c01bdb12>] create_proc_entry+0x52/0x90
[<c0158d4c>] register_irq_proc+0x9c/0xc0
[<c01bda94>] proc_mkdir_mode+0x34/0x50
[<c052aa30>] kernel_init+0x0/0xb0
[<c052aa92>] kernel_init+0x62/0xb0
[<c0104f83>] kernel_thread_helper+0x7/0x14
=======================
kobject_add failed for usbcore with -EEXIST, don't try to register things with the same name in the same directory.
[<c024e466>] kobject_add+0xf6/0x150
[<c053b880>] kernel_param_sysfs_setup+0x50/0xb0
[<c053b9ce>] param_sysfs_builtin+0xee/0x130
[<c053ba33>] param_sysfs_init+0x23/0x60
[<c024d062>] __next_cpu+0x12/0x20
[<c052aa30>] kernel_init+0x0/0xb0
[<c052aa30>] kernel_init+0x0/0xb0
[<c052a856>] do_initcalls+0x46/0x1e0
[<c01bdb12>] create_proc_entry+0x52/0x90
[<c0158d4c>] register_irq_proc+0x9c/0xc0
[<c01bda94>] proc_mkdir_mode+0x34/0x50
[<c052aa30>] kernel_init+0x0/0xb0
[<c052aa92>] kernel_init+0x62/0xb0
[<c0104f83>] kernel_thread_helper+0x7/0x14
=======================
Module 'usbcore' failed to be added to sysfs, error number -17
The system will be unstable now.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On platforms that copy sys_tz into the vdso (currently only x86_64, soon to
include powerpc), it is possible for the vdso to get out of sync if a user
calls (admittedly unusual) settimeofday(NULL, ptr).
This patch adds a hook for architectures that set
CONFIG_GENERIC_TIME_VSYSCALL to ensure when sys_tz is updated they can also
updatee their copy in the vdso.
Signed-off-by: Tony Breeds <tony@bakeyournoodle.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hell knows what happened in commit 63b05203af57e7de4f3bb63b8b81d43bc196d32b
during 2.6.9 development. Commit introduced io_wait field which remained
write-only than and still remains write-only.
Also garbage collect macros which "use" io_wait.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make hibernation_platform_enter() execute the enter-a-sleep-state sequence
instead of the mixed shutdown-with-entering-S4 thing.
Replace the shutting down of devices done by kernel_shutdown_prepare(), before
entering the ACPI S4 sleep state, with suspending them and the shutting down
of sysdevs with calling device_power_down(PMSG_SUSPEND) (just like before
entering S1 or S3, but the target state is now S4). Also, disable the
nonboot CPUs before entering the sleep state (S4), which generally always is a
good idea.
This is known to fix the "double disk spin down during hibernation" on some
machines, eg. HPC nx6325 (ref. http://lkml.org/lkml/2007/8/7/316 and the
following thread). Moreover, it has been reported to make
/sys/class/rtc/rtc0/wakealarm work correctly with hibernation for some users.
It also generally causes the hibernation state (ACPI S4) to be entered faster.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following scenario leads to total confusion of the platform firmware on
some boxes (eg. HPC nx6325):
* Hibernate with ACPI enabled
* Resume passing "acpi=off" to the boot kernel
To prevent this from happening it's necessary to check if ACPI is enabled (and
enable it if that's not the case) _right_ _after_ control has been transfered
from the boot kernel to the image kernel, before device_power_up() is called
(ie. with interrupts disabled). Enabling ACPI after calling
device_power_up() turns out to be insufficient.
For this reason, introduce new hibernation callback ->leave() that will be
executed before device_power_up() by the restored image kernel. To make it
work, it also is necessary to move swsusp_suspend() from swsusp.c to disk.c
(it's name is changed to "create_image", which is more up to the point).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the bits needed for supporting arbitrary boot kernels to the common
hibernation code.
To support arbitrary boot kernels, make it possible to replace the 'struct
new_utsname' and the kernel version in the hibernation image header by some
architecture specific data that will be used to verify if the image is valid
and to restore the image.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, there's a CONFIG_DISABLE_CONSOLE_SUSPEND that allows one to stop
the serial console from being suspended when the rest of the machine goes
to sleep. This is incredibly useful for debugging power management-related
things; however, having it as a compile-time option has proved to be
incredibly inconvenient for us (OLPC). There are plenty of times that we
want serial console to not suspend, but for the most part we'd like serial
console to be suspended.
This drops CONFIG_DISABLE_CONSOLE_SUSPEND, and replaces it with a kernel
boot parameter (no_console_suspend). By default, the serial console will
be suspended along with the rest of the system; by passing
'no_console_suspend' to the kernel during boot, serial console will remain
alive during suspend.
For now, this is pretty serial console specific; further fixes could be
applied to make this work for things like netconsole.
Signed-off-by: Andres Salomon <dilinger@debian.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@suspend2.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Measure the time of the freezing of tasks, even if it doesn't fail.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Increase the freezer's verbosity a bit, so that it's easier to read problem
reports related to it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes the unused EXPORT_SYMBOL(pm_power_off_prepare).
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The freezer should not send signals to kernel threads, since that may lead to
subtle problems. In particular, commit
b74d0deb96 has changed recalc_sigpending_tsk()
so that it doesn't clear TIF_SIGPENDING. For this reason, if the freezer
continues to send fake signals to kernel threads and the freezing of kernel
threads fails, some of them may be running with TIF_SIGPENDING set forever.
Accordingly, recalc_sigpending_tsk() shouldn't set the task's TIF_SIGPENDING
flag if TIF_FREEZE is set.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tasks should go to the refrigerator only if explicitly requested to do that by
the freezer and not as a result of inheriting the TIF_FREEZE flag set from the
parent. Make it happen.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The syncing of filesystems from within the freezer is generally not needed.
Also, if there's an ext3 filesystem loopback-mounted from a FUSE one, the
syncing results in writes to it and deadlocks. Similarly, it will deadlock if
FUSE implements sync.
Change freeze_processes() so that it doesn't execute sys_sync() and make the
suspend and hibernation code path sync filesystems independently of the
freezer.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename 'struct hibernation_ops' to 'struct platform_hibernation_ops' in
analogy with 'struct platform_suspend_ops'.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>