Commit Graph

4 Commits

Author SHA1 Message Date
David E. Box 82a8094194 ACPICA: Update Copyright headers to 2015
ACPICA commit 8990e73ab2aa15d6a0068b860ab54feff25bee36

Link: https://github.com/acpica/acpica/commit/8990e73a
Signed-off-by: David E. Box <david.e.box@linux.intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-02-05 15:31:43 +01:00
Lv Zheng daba25d6e0 ACPICA: Linux: Add stub implementation of ACPICA 64-bit mathematics.
This patch adds default 64-bit mathematics in aclinux.h using do_div(). As
do_div() can be used for all Linux architectures, this can also be used as
stub macros for ACPICA 64-bit mathematics.

These macros are required by drivers/acpi/utmath.c when ACPI_USE_NATIVE_DIVIDE
is not defined.  It is used by ACPICA, so currently this is only meaningful to
CONFIG_ACPI builds.  So the kernel will not use these macros unless CONFIG_ACPI
is defined and ACPI_USE_DIVIDE is not defined.

For 64-bit kernels:
In include/acpi/actypes.h, for ACPI_MACHINE_WIDTH=64,
ACPI_USE_NATIVE_DIVIDE will be defined, thus these macros are not used.
In include/acpi/platform/aclinux.h, for __KERNEL__ surrounded code,
ACPI_MACHINE_WIDTH is defined to be BITS_PER_LONG.
So all 64-bit kernels do not use these macros.

For 32-bit kernels:
As mentioned above, these macros will be used when BITS_PER_LONG is 32.
Thus currently the i328 kernels are the only users for these macros.
But they won't use this default implementation provided by this patch,
because in arch/x86/include/asm/acenv.h, there are already overrides
implemented.  So these default macros are not used by 32-bit x86 (i386)
kernels.

These macros will only be used by future non x86 32-bit architectures
that try to support ACPI in Linux kernel.

During the period they do not have arch specific implementations of such
macros, we can avoid build errors for them.

And since they can see ACPICA functioning without implementing any arch
specific environment tunings, we  can also avoid function errors for
them.

As this implementation is not performance friendly, those architectures
still need to implement real support in the end.

Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-07-23 01:07:31 +02:00
Lv Zheng a238317ce8 ACPI: Clean up acpi_os_map/unmap_memory() to eliminate __iomem.
ACPICA doesn't include protections around address space checking, Linux
build tests always complain increased sparse warnings around ACPICA
internal acpi_os_map/unmap_memory() invocations.  This patch tries to fix
this issue permanently.

There are 2 choices left for us to solve this issue:
 1. Add __iomem address space awareness into ACPICA.
 2. Remove sparse checker of __iomem from ACPICA source code.

This patch chooses solution 2, because:
 1.  Most of the acpi_os_map/unmap_memory() invocations are used for ACPICA.
     table mappings, which in fact are not IO addresses.
 2.  The only IO addresses usage is for "system memory space" mapping code in:
      drivers/acpi/acpica/exregion.c
      drivers/acpi/acpica/evrgnini.c
      drivers/acpi/acpica/exregion.c
    The mapped address is accessed in the handler of "system memory space"
    - acpi_ex_system_memory_space_handler().  This function in fact can be
    changed to invoke acpi_os_read/write_memory() so that __iomem can
    always be type-casted in the OSL layer.

According to the above investigation, we drew the following conclusion:
It is not a good idea to introduce __iomem address space awareness into
ACPICA mostly in order to protect non-IO addresses.

We can simply remove __iomem for acpi_os_map/unmap_memory() to remove
__iomem checker for ACPICA code. Then we need to enforce external usages
to invoke other APIs that are aware of __iomem address space.
The external usages are:
 drivers/acpi/apei/einj.c
 drivers/acpi/acpi_extlog.c
 drivers/char/tpm/tpm_acpi.c
 drivers/acpi/nvs.c

This patch thus performs cleanups in this way:
 1. Add acpi_os_map/unmap_iomem() to be invoked by non-ACPICA code.
 2. Remove __iomem from acpi_os_map/unmap_memory().

Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-05-27 18:13:08 +02:00
Lv Zheng d13bd5a602 ACPICA: Linux headers: Add <acpi/platform/aclinuxex.h>
From ACPICA's perspective, <acpi/actypes.h> should be included after
inclusion of <acpi/platform/acenv.h>.  But currently in Linux,
<acpi/platform/aclinux.h> included by <acpi/platform/acenv.h> has
included <acpi/actypes.h> to find ACPICA types for inline functions.

This causes the following problem:
1. Redundant code in <asm/acpi.h> and <acpi/platform/aclinux.h>:
   Linux must be careful to keep conditions for <acpi/actypes.h> inclusion
   consistent with the conditions for <acpi/platform/aclinux.h> inclusion.
   Which finally leads to the issue that we have to keep many useless macro
   definitions in <acpi/platform/aclinux.h> or <asm/acpi.h>.
   Such conditions include:
     COMPILER_DEPENDENT_UINT64
     COMPILER_DEPENDENT_INT64
     ACPI_INLINE
     ACPI_SYSTEM_XFACE
     ACPI_EXTERNAL_XFACE
     ACPI_INTERNAL_XFACE
     ACPI_INTERNAL_VAR_XFACE
     ACPI_MUTEX_TYPE
     DEBUGGER_THREADING
     ACPI_ACQUIRE_GLOBAL_LOCK
     ACPI_RELEASE_GLOBAL_LOCK
     ACPI_FLUSH_CPU_CACHE
   They have default implementations in <include/acpi/platform/acenv.h>
   while Linux need to keep a copy in <asm/acpi.h> to avoid build errors.

This patch introduces <acpi/platform/aclinuxex.h> to fix this issue by
splitting conditions and declarations (most of them are inline functions)
into 2 header files so that the wrong inclusion of <acpi/actypes.h> can be
removed from <acpi/platform/aclinux.h>.

This patch also removes old ACPI_NATIVE_INTERFACE_HEADER mechanism which is
not preferred by Linux and adds the platform/acenvex.h to be the solution
to solve this issue.

Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-05-27 18:13:07 +02:00