If SLAB doesn't support 4GB+ kmem caches (it never did), KASAN should
not do it as well.
Link: http://lkml.kernel.org/r/20180305200730.15812-20-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that all sizes are properly typed, propagate "unsigned int" down the
callgraph.
Link: http://lkml.kernel.org/r/20180305200730.15812-19-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux doesn't support negative length objects (including meta data).
Link: http://lkml.kernel.org/r/20180305200730.15812-18-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/*
* cpu_partial determined the maximum number of objects
* kept in the per cpu partial lists of a processor.
*/
Can't be negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-15-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->inuse is "the number of bytes in actual use by the object",
can't be negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-14-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->reserved is either 0 or sizeof(struct rcu_head), can't be negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-12-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->remote_node_defrag_ratio is in range 0..1000.
This also adds a check and modifies the behavior to return an error
code. Before this patch invalid values were ignored.
Link: http://lkml.kernel.org/r/20180305200730.15812-9-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
size_index_elem() always works with small sizes (kmalloc caches are
32-bit) and returns small indexes.
Link: http://lkml.kernel.org/r/20180305200730.15812-8-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All those small numbers are reverse indexes into kmalloc caches array
and can't be negative.
On x86_64 "unsigned int = fls()" can drop CDQE instruction:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-2 (-2)
Function old new delta
kmalloc_slab 101 99 -2
Link: http://lkml.kernel.org/r/20180305200730.15812-7-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct kmem_cache::size and ::align were always 32-bit.
Out of curiosity I created 4GB kmem_cache, it oopsed with division by 0.
kmem_cache_create(1UL<<32+1) created 1-byte cache as expected.
size_t doesn't work and never did.
Link: http://lkml.kernel.org/r/20180305200730.15812-6-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct kmem_cache::size has always been "int", all those
"size_t size" are fake.
Link: http://lkml.kernel.org/r/20180305200730.15812-5-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KMALLOC_MAX_CACHE_SIZE is 32-bit so is the largest kmalloc cache size.
Christoph said:
:
: Ok SLABs maximum allocation size is limited to 32M (see
: include/linux/slab.h:
:
: #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
: (MAX_ORDER + PAGE_SHIFT - 1) : 25)
:
: And SLUB/SLOB pass all larger requests to the page allocator anyways.
Link: http://lkml.kernel.org/r/20180305200730.15812-4-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmalloc_size() derives size of kmalloc cache from internal index, which
can't be negative.
Propagate unsignedness a bit.
Link: http://lkml.kernel.org/r/20180305200730.15812-3-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When SLUB_DEBUG catches some issues, it prints all the required debug
info. However, in a few cases where allocation and free of the object
has happened in a very short time, 'age' might be misleading. See the
example below:
=============================================================================
BUG kmalloc-256 (Tainted: G W O ): Poison overwritten
-----------------------------------------------------------------------------
...
INFO: Allocated in binder_transaction+0x4b0/0x2448 age=731 cpu=3 pid=5314
...
INFO: Freed in binder_free_transaction+0x2c/0x58 age=735 cpu=6 pid=2079
...
Object fffffff14956a870: 6b 6b 6b 6b 6b 6b 6b 6b 67 6b 6b 6b 6b 6b 6b a5 kkkkkkkkgkkkk
In this case, object got freed later but 'age' shows otherwise. This
could be because, while printing this info, we print allocation traces
first and free traces thereafter. In between, if we get schedule out or
jiffies increment, (jiffies - t->when) could become meaningless.
Use the jitter free reference to calculate age.
New output will exactly be same. 'age' is still staying with single
jiffies ref in both prints.
Change-Id: I0846565807a4229748649bbecb1ffb743d71fcd8
Link: http://lkml.kernel.org/r/1520492010-19389-1-git-send-email-cpandya@codeaurora.org
Signed-off-by: Chintan Pandya <cpandya@codeaurora.org>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmalloc caches aren't relocated after being set up neither does
"size_index" array.
Link: http://lkml.kernel.org/r/20180226203519.GA6886@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJawr05AAoJEPfTWPspceCmT2UP/1uuaqwzyl4VjFNb/k7KS7UM
+Cs/1HBlGomgMA8orDTGqtWqLRdR3z4RSh0+MvXTzQ78HpFVYz7CbDc9itHm+G9M
X0ypD4kF/JGCFb5cxk+x6qv28uO2nv4DP3+0hHqJWLH4UVJBWDY6bs4BPShsf9QB
I6XjioNMhoqylXgdOITLODJZz+TcChlJMDAqwhpJwh9TH1wjobleAZ6AdmCPfgi5
h0UCKMUKzcVJlNZwQUrzrs2cxcx9Uhunnbz7HK0ZV4n/FKFtDpGynFpQQ71pZxKe
Be0ZOBPCQvC3ykOM/egCIvC/e5y7FgrjORD6jxyu1PTwAugI5E1VYSMxHkXvgPAx
zOo9A7RT4GPO2tDQv+DbzNFpqeSAclTgSmr+/y1wmheBs8DiSt7MPVBiNM4zdCNv
NLk9z7IEjFhdmluSB/LbTb1aokypMb/q7QTLouPHdwGn80k7yrhFyLHgdjpNTQ2K
UHfHZvGxkOX6SmFhBNOtIFUkuSceenh64a0RkRle7filx+ImpbCVm2/GYi9zZNCu
EtctgzLbLmz40zMiyDaZS2bxBgGzfn6yf4xd9LsaAJPMhvZnmXogT0D9ctWXB0WU
mMaS7sOkLnNjnGkzF1fHkeiZ/oigrstJbe+CA7BtOdwxpWn6MZBgKEoFQ6iA2b3X
5J1axMgVH5LAsIEcEQVq
=RVhK
-----END PGP SIGNATURE-----
Merge tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe:
"It's a pretty quiet round this time, which is nice. This contains:
- series from Bart, cleaning up the way we set/test/clear atomic
queue flags.
- series from Bart, fixing races between gendisk and queue
registration and removal.
- set of bcache fixes and improvements from various folks, by way of
Michael Lyle.
- set of lightnvm updates from Matias, most of it being the 1.2 to
2.0 transition.
- removal of unused DIO flags from Nikolay.
- blk-mq/sbitmap memory ordering fixes from Omar.
- divide-by-zero fix for BFQ from Paolo.
- minor documentation patches from Randy.
- timeout fix from Tejun.
- Alpha "can't write a char atomically" fix from Mikulas.
- set of NVMe fixes by way of Keith.
- bsg and bsg-lib improvements from Christoph.
- a few sed-opal fixes from Jonas.
- cdrom check-disk-change deadlock fix from Maurizio.
- various little fixes, comment fixes, etc from various folks"
* tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block: (139 commits)
blk-mq: Directly schedule q->timeout_work when aborting a request
blktrace: fix comment in blktrace_api.h
lightnvm: remove function name in strings
lightnvm: pblk: remove some unnecessary NULL checks
lightnvm: pblk: don't recover unwritten lines
lightnvm: pblk: implement 2.0 support
lightnvm: pblk: implement get log report chunk
lightnvm: pblk: rename ppaf* to addrf*
lightnvm: pblk: check for supported version
lightnvm: implement get log report chunk helpers
lightnvm: make address conversions depend on generic device
lightnvm: add support for 2.0 address format
lightnvm: normalize geometry nomenclature
lightnvm: complete geo structure with maxoc*
lightnvm: add shorten OCSSD version in geo
lightnvm: add minor version to generic geometry
lightnvm: simplify geometry structure
lightnvm: pblk: refactor init/exit sequences
lightnvm: Avoid validation of default op value
lightnvm: centralize permission check for lightnvm ioctl
...
Pull sparc updates from David Miller:
1) Add support for ADI (Application Data Integrity) found in more
recent sparc64 cpus. Essentially this is keyed based access to
virtual memory, and if the key encoded in the virual address is
wrong you get a trap.
The mm changes were reviewed by Andrew Morton and others.
Work by Khalid Aziz.
2) Validate DAX completion index range properly, from Rob Gardner.
3) Add proper Kconfig deps for DAX driver. From Guenter Roeck.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next:
sparc64: Make atomic_xchg() an inline function rather than a macro.
sparc64: Properly range check DAX completion index
sparc: Make auxiliary vectors for ADI available on 32-bit as well
sparc64: Oracle DAX driver depends on SPARC64
sparc64: Update signal delivery to use new helper functions
sparc64: Add support for ADI (Application Data Integrity)
mm: Allow arch code to override copy_highpage()
mm: Clear arch specific VM flags on protection change
mm: Add address parameter to arch_validate_prot()
sparc64: Add auxiliary vectors to report platform ADI properties
sparc64: Add handler for "Memory Corruption Detected" trap
sparc64: Add HV fault type handlers for ADI related faults
sparc64: Add support for ADI register fields, ASIs and traps
mm, swap: Add infrastructure for saving page metadata on swap
signals, sparc: Add signal codes for ADI violations
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
This removes the entire architecture code for blackfin, cris, frv, m32r,
metag, mn10300, score, and tile, including the associated device drivers.
I have been working with the (former) maintainers for each one to ensure
that my interpretation was right and the code is definitely unused in
mainline kernels. Many had fond memories of working on the respective
ports to start with and getting them included in upstream, but also saw
no point in keeping the port alive without any users.
In the end, it seems that while the eight architectures are extremely
different, they all suffered the same fate: There was one company
in charge of an SoC line, a CPU microarchitecture and a software
ecosystem, which was more costly than licensing newer off-the-shelf
CPU cores from a third party (typically ARM, MIPS, or RISC-V). It seems
that all the SoC product lines are still around, but have not used the
custom CPU architectures for several years at this point. In contrast,
CPU instruction sets that remain popular and have actively maintained
kernel ports tend to all be used across multiple licensees.
The removal came out of a discussion that is now documented at
https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
marking any ports as deprecated but remove them all at once after I made
sure that they are all unused. Some architectures (notably tile, mn10300,
and blackfin) are still being shipped in products with old kernels,
but those products will never be updated to newer kernel releases.
After this series, we still have a few architectures without mainline
gcc support:
- unicore32 and hexagon both have very outdated gcc releases, but the
maintainers promised to work on providing something newer. At least
in case of hexagon, this will only be llvm, not gcc.
- openrisc, risc-v and nds32 are still in the process of finishing their
support or getting it added to mainline gcc in the first place.
They all have patched gcc-7.3 ports that work to some degree, but
complete upstream support won't happen before gcc-8.1. Csky posted
their first kernel patch set last week, their situation will be similar.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJawdL2AAoJEGCrR//JCVInuH0P/RJAZh1nTD+TR34ZhJq2TBoo
PgygwDU7Z2+tQVU+EZ453Gywz9/NMRFk1RWAZqrLix4ZtyIMvC6A1qfT2yH1Y7Fb
Qh6tccQeLe4ezq5u4S/46R/fQXu3Txr92yVwzJJUuPyU0arF9rv5MmI8e6p7L1en
yb74kSEaCe+/eMlsEj1Cc1dgthDNXGKIURHkRsILoweysCpesjiTg4qDcL+yTibV
FP2wjVbniKESMKS6qL71tiT5sexvLsLwMNcGiHPj94qCIQuI7DLhLdBVsL5Su6gI
sbtgv0dsq4auRYAbQdMaH1hFvu6WptsuttIbOMnz2Yegi2z28H8uVXkbk2WVLbqG
ZESUwutGh8MzOL2RJ4jyyQq5sfo++CRGlfKjr6ImZRv03dv0pe/W85062cK5cKNs
cgDDJjGRorOXW7dyU6jG2gRqODOQBObIv3w5efdq5OgzOWlbI4EC+Y5u1Z0JF/76
pSwtGXA6YhwC+9LLAlnVTHG+yOwuLmAICgoKcTbzTVDKA2YQZG/cYuQfI5S1wD8e
X6urPx3Md2GCwLXQ9mzKBzKZUpu/Tuhx0NvwF4qVxy6x1PELjn68zuP7abDHr46r
57/09ooVN+iXXnEGMtQVS/OPvYHSa2NgTSZz6Y86lCRbZmUOOlK31RDNlMvYNA+s
3iIVHovno/JuJnTOE8LY
=fQ8z
-----END PGP SIGNATURE-----
Merge tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pul removal of obsolete architecture ports from Arnd Bergmann:
"This removes the entire architecture code for blackfin, cris, frv,
m32r, metag, mn10300, score, and tile, including the associated device
drivers.
I have been working with the (former) maintainers for each one to
ensure that my interpretation was right and the code is definitely
unused in mainline kernels. Many had fond memories of working on the
respective ports to start with and getting them included in upstream,
but also saw no point in keeping the port alive without any users.
In the end, it seems that while the eight architectures are extremely
different, they all suffered the same fate: There was one company in
charge of an SoC line, a CPU microarchitecture and a software
ecosystem, which was more costly than licensing newer off-the-shelf
CPU cores from a third party (typically ARM, MIPS, or RISC-V). It
seems that all the SoC product lines are still around, but have not
used the custom CPU architectures for several years at this point. In
contrast, CPU instruction sets that remain popular and have actively
maintained kernel ports tend to all be used across multiple licensees.
[ See the new nds32 port merged in the previous commit for the next
generation of "one company in charge of an SoC line, a CPU
microarchitecture and a software ecosystem" - Linus ]
The removal came out of a discussion that is now documented at
https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
marking any ports as deprecated but remove them all at once after I
made sure that they are all unused. Some architectures (notably tile,
mn10300, and blackfin) are still being shipped in products with old
kernels, but those products will never be updated to newer kernel
releases.
After this series, we still have a few architectures without mainline
gcc support:
- unicore32 and hexagon both have very outdated gcc releases, but the
maintainers promised to work on providing something newer. At least
in case of hexagon, this will only be llvm, not gcc.
- openrisc, risc-v and nds32 are still in the process of finishing
their support or getting it added to mainline gcc in the first
place. They all have patched gcc-7.3 ports that work to some
degree, but complete upstream support won't happen before gcc-8.1.
Csky posted their first kernel patch set last week, their situation
will be similar
[ Palmer Dabbelt points out that RISC-V support is in mainline gcc
since gcc-7, although gcc-7.3.0 is the recommended minimum - Linus ]"
This really says it all:
2498 files changed, 95 insertions(+), 467668 deletions(-)
* tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (74 commits)
MAINTAINERS: UNICORE32: Change email account
staging: iio: remove iio-trig-bfin-timer driver
tty: hvc: remove tile driver
tty: remove bfin_jtag_comm and hvc_bfin_jtag drivers
serial: remove tile uart driver
serial: remove m32r_sio driver
serial: remove blackfin drivers
serial: remove cris/etrax uart drivers
usb: Remove Blackfin references in USB support
usb: isp1362: remove blackfin arch glue
usb: musb: remove blackfin port
usb: host: remove tilegx platform glue
pwm: remove pwm-bfin driver
i2c: remove bfin-twi driver
spi: remove blackfin related host drivers
watchdog: remove bfin_wdt driver
can: remove bfin_can driver
mmc: remove bfin_sdh driver
input: misc: remove blackfin rotary driver
input: keyboard: remove bf54x driver
...
Pull x86 mm updates from Ingo Molnar:
- Extend the memmap= boot parameter syntax to allow the redeclaration
and dropping of existing ranges, and to support all e820 range types
(Jan H. Schönherr)
- Improve the W+X boot time security checks to remove false positive
warnings on Xen (Jan Beulich)
- Support booting as Xen PVH guest (Juergen Gross)
- Improved 5-level paging (LA57) support, in particular it's possible
now to have a single kernel image for both 4-level and 5-level
hardware (Kirill A. Shutemov)
- AMD hardware RAM encryption support (SME/SEV) fixes (Tom Lendacky)
- Preparatory commits for hardware-encrypted RAM support on Intel CPUs.
(Kirill A. Shutemov)
- Improved Intel-MID support (Andy Shevchenko)
- Show EFI page tables in page_tables debug files (Andy Lutomirski)
- ... plus misc fixes and smaller cleanups
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
x86/cpu/tme: Fix spelling: "configuation" -> "configuration"
x86/boot: Fix SEV boot failure from change to __PHYSICAL_MASK_SHIFT
x86/mm: Update comment in detect_tme() regarding x86_phys_bits
x86/mm/32: Remove unused node_memmap_size_bytes() & CONFIG_NEED_NODE_MEMMAP_SIZE logic
x86/mm: Remove pointless checks in vmalloc_fault
x86/platform/intel-mid: Add special handling for ACPI HW reduced platforms
ACPI, x86/boot: Introduce the ->reduced_hw_early_init() ACPI callback
ACPI, x86/boot: Split out acpi_generic_reduce_hw_init() and export
x86/pconfig: Provide defines and helper to run MKTME_KEY_PROG leaf
x86/pconfig: Detect PCONFIG targets
x86/tme: Detect if TME and MKTME is activated by BIOS
x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G
x86/boot/compressed/64: Use page table in trampoline memory
x86/boot/compressed/64: Use stack from trampoline memory
x86/boot/compressed/64: Make sure we have a 32-bit code segment
x86/mm: Do not use paravirtualized calls in native_set_p4d()
kdump, vmcoreinfo: Export pgtable_l5_enabled value
x86/boot/compressed/64: Prepare new top-level page table for trampoline
x86/boot/compressed/64: Set up trampoline memory
x86/boot/compressed/64: Save and restore trampoline memory
...
Using this helper allows us to avoid the in-kernel calls to the
sys_readahead() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_readahead().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_mmap_pgoff() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_mmap_pgoff().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the ksys_fadvise64_64() helper allows us to avoid the in-kernel
calls to the sys_fadvise64_64() syscall. The ksys_ prefix denotes that
this function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as ksys_fadvise64_64().
Some compat stubs called sys_fadvise64(), which then just passed through
the arguments to sys_fadvise64_64(). Get rid of this indirection, and call
ksys_fadvise64_64() directly.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the mm-internal kernel_[sg]et_mempolicy() helper allows us to get
rid of the mm-internal calls to the sys_[sg]et_mempolicy() syscalls.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the mm-internal kernel_mbind() helper allows us to get rid of the
mm-internal call to the sys_mbind() syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Move compat_sys_move_pages() to mm/migrate.c and make it call a newly
introduced helper -- kernel_move_pages() -- instead of the syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Move compat_sys_migrate_pages() to mm/mempolicy.c and make it call a newly
introduced helper -- kernel_migrate_pages() -- instead of the syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
This will be used by powerpc to allocate per-cpu stacks and other
data structures node-local where possible.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Drop stray change to memblock_alloc_range() as noticed by akpm]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
A crash is observed when kmemleak_scan accesses the object->pointer,
likely due to the following race.
TASK A TASK B TASK C
kmemleak_write
(with "scan" and
NOT "scan=on")
kmemleak_scan()
create_object
kmem_cache_alloc fails
kmemleak_disable
kmemleak_do_cleanup
kmemleak_free_enabled = 0
kfree
kmemleak_free bails out
(kmemleak_free_enabled is 0)
slub frees object->pointer
update_checksum
crash - object->pointer
freed (DEBUG_PAGEALLOC)
kmemleak_do_cleanup waits for the scan thread to complete, but not for
direct call to kmemleak_scan via kmemleak_write. So add a wait for
kmemleak_scan completion before disabling kmemleak_free, and while at it
fix the comment on stop_scan_thread.
[vinmenon@codeaurora.org: fix stop_scan_thread comment]
Link: http://lkml.kernel.org/r/1522219972-22809-1-git-send-email-vinmenon@codeaurora.org
Link: http://lkml.kernel.org/r/1522063429-18992-1-git-send-email-vinmenon@codeaurora.org
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a couple of places where parameter description and function
name do not match the actual code. Fix it.
Link: http://lkml.kernel.org/r/1520843448-17347-1-git-send-email-honglei.wang@oracle.com
Signed-off-by: Honglei Wang <honglei.wang@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Attempting to hotplug CPUs with CONFIG_VM_EVENT_COUNTERS enabled can
cause vmstat_update() to report a BUG due to preemption not being
disabled around smp_processor_id().
Discovered on Ubiquiti EdgeRouter Pro with Cavium Octeon II processor.
BUG: using smp_processor_id() in preemptible [00000000] code:
kworker/1:1/269
caller is vmstat_update+0x50/0xa0
CPU: 0 PID: 269 Comm: kworker/1:1 Not tainted
4.16.0-rc4-Cavium-Octeon-00009-gf83bbd5-dirty #1
Workqueue: mm_percpu_wq vmstat_update
Call Trace:
show_stack+0x94/0x128
dump_stack+0xa4/0xe0
check_preemption_disabled+0x118/0x120
vmstat_update+0x50/0xa0
process_one_work+0x144/0x348
worker_thread+0x150/0x4b8
kthread+0x110/0x140
ret_from_kernel_thread+0x14/0x1c
Link: http://lkml.kernel.org/r/1520881552-25659-1-git-send-email-steven.hill@cavium.com
Signed-off-by: Steven J. Hill <steven.hill@cavium.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <htejun@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes commit 5f48f0bd4e ("mm, page_owner: skip unnecessary
stack_trace entries").
Because if we skip first two entries then logic of checking count value
as 2 for recursion is broken and code will go in one depth recursion.
so we need to check only one call of _RET_IP(__set_page_owner) while
checking for recursion.
Current Backtrace while checking for recursion:-
(save_stack) from (__set_page_owner) // (But recursion returns true here)
(__set_page_owner) from (get_page_from_freelist)
(get_page_from_freelist) from (__alloc_pages_nodemask)
(__alloc_pages_nodemask) from (depot_save_stack)
(depot_save_stack) from (save_stack) // recursion should return true here
(save_stack) from (__set_page_owner)
(__set_page_owner) from (get_page_from_freelist)
(get_page_from_freelist) from (__alloc_pages_nodemask+)
(__alloc_pages_nodemask) from (depot_save_stack)
(depot_save_stack) from (save_stack)
(save_stack) from (__set_page_owner)
(__set_page_owner) from (get_page_from_freelist)
Correct Backtrace with fix:
(save_stack) from (__set_page_owner) // recursion returned true here
(__set_page_owner) from (get_page_from_freelist)
(get_page_from_freelist) from (__alloc_pages_nodemask+)
(__alloc_pages_nodemask) from (depot_save_stack)
(depot_save_stack) from (save_stack)
(save_stack) from (__set_page_owner)
(__set_page_owner) from (get_page_from_freelist)
Link: http://lkml.kernel.org/r/1521607043-34670-1-git-send-email-maninder1.s@samsung.com
Fixes: 5f48f0bd4e ("mm, page_owner: skip unnecessary stack_trace entries")
Signed-off-by: Maninder Singh <maninder1.s@samsung.com>
Signed-off-by: Vaneet Narang <v.narang@samsung.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@techadventures.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ayush Mittal <ayush.m@samsung.com>
Cc: Prakash Gupta <guptap@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Vasyl Gomonovych <gomonovych@gmail.com>
Cc: Amit Sahrawat <a.sahrawat@samsung.com>
Cc: <pankaj.m@samsung.com>
Cc: Vaneet Narang <v.narang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the root caches are linked into slab_root_caches which was
introduced by the commit 510ded33e0 ("slab: implement slab_root_caches
list") but it missed to add the SLAB's kmem_cache.
While experimenting with opt-in/opt-out kmem accounting, I noticed
system crashes due to NULL dereference inside cache_from_memcg_idx()
while deferencing kmem_cache.memcg_params.memcg_caches. The upstream
clean kernel will not see these crashes but SLAB should be consistent
with SLUB which does linked its boot caches (kmem_cache_node and
kmem_cache) into slab_root_caches.
Link: http://lkml.kernel.org/r/20180319210020.60289-1-shakeelb@google.com
Fixes: 510ded33e0 ("slab: implement slab_root_caches list")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
node_memmap_size_bytes() has been unused since the v3.9 kernel, so remove it.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: f03574f2d5 ("x86-32, mm: Rip out x86_32 NUMA remapping code")
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803262325540.256524@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A lot of Kconfig symbols have architecture specific dependencies.
In those cases that depend on architectures we have already removed,
they can be omitted.
Acked-by: Kalle Valo <kvalo@codeaurora.org>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Commit 2516035499 ("mm, thp: remove __GFP_NORETRY from khugepaged and
madvised allocations") changed the page allocator to no longer detect
thp allocations based on __GFP_NORETRY.
It did not, however, modify the mem cgroup try_charge() path to avoid
oom kill for either khugepaged collapsing or thp faulting. It is never
expected to oom kill a process to allocate a hugepage for thp; reclaim
is governed by the thp defrag mode and MADV_HUGEPAGE, but allocations
(and charging) should fallback instead of oom killing processes.
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803191409420.124411@chino.kir.corp.google.com
Fixes: 2516035499 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations")
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 726d061fbd ("mm: vmscan: kick flushers when we encounter dirty
pages on the LRU") added flusher invocation to shrink_inactive_list()
when many dirty pages on the LRU are encountered.
However, shrink_inactive_list() doesn't wake up flushers for legacy
cgroup reclaim, so the next commit bbef938429 ("mm: vmscan: remove old
flusher wakeup from direct reclaim path") removed the only source of
flusher's wake up in legacy mem cgroup reclaim path.
This leads to premature OOM if there is too many dirty pages in cgroup:
# mkdir /sys/fs/cgroup/memory/test
# echo $$ > /sys/fs/cgroup/memory/test/tasks
# echo 50M > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
# dd if=/dev/zero of=tmp_file bs=1M count=100
Killed
dd invoked oom-killer: gfp_mask=0x14000c0(GFP_KERNEL), nodemask=(null), order=0, oom_score_adj=0
Call Trace:
dump_stack+0x46/0x65
dump_header+0x6b/0x2ac
oom_kill_process+0x21c/0x4a0
out_of_memory+0x2a5/0x4b0
mem_cgroup_out_of_memory+0x3b/0x60
mem_cgroup_oom_synchronize+0x2ed/0x330
pagefault_out_of_memory+0x24/0x54
__do_page_fault+0x521/0x540
page_fault+0x45/0x50
Task in /test killed as a result of limit of /test
memory: usage 51200kB, limit 51200kB, failcnt 73
memory+swap: usage 51200kB, limit 9007199254740988kB, failcnt 0
kmem: usage 296kB, limit 9007199254740988kB, failcnt 0
Memory cgroup stats for /test: cache:49632KB rss:1056KB rss_huge:0KB shmem:0KB
mapped_file:0KB dirty:49500KB writeback:0KB swap:0KB inactive_anon:0KB
active_anon:1168KB inactive_file:24760KB active_file:24960KB unevictable:0KB
Memory cgroup out of memory: Kill process 3861 (bash) score 88 or sacrifice child
Killed process 3876 (dd) total-vm:8484kB, anon-rss:1052kB, file-rss:1720kB, shmem-rss:0kB
oom_reaper: reaped process 3876 (dd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
Wake up flushers in legacy cgroup reclaim too.
Link: http://lkml.kernel.org/r/20180315164553.17856-1-aryabinin@virtuozzo.com
Fixes: bbef938429 ("mm: vmscan: remove old flusher wakeup from direct reclaim path")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_unused_huge_shrink() gets called from reclaim path. Waiting for
page lock may lead to deadlock there.
There was a bug report that may be attributed to this:
http://lkml.kernel.org/r/alpine.LRH.2.11.1801242349220.30642@mail.ewheeler.net
Replace lock_page() with trylock_page() and skip the page if we failed
to lock it. We will get to the page on the next scan.
We can test for the PageTransHuge() outside the page lock as we only
need protection against splitting the page under us. Holding pin oni
the page is enough for this.
Link: http://lkml.kernel.org/r/20180316210830.43738-1-kirill.shutemov@linux.intel.com
Fixes: 779750d20b ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Eric Wheeler <linux-mm@lists.ewheeler.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
deferred_split_scan() gets called from reclaim path. Waiting for page
lock may lead to deadlock there.
Replace lock_page() with trylock_page() and skip the page if we failed
to lock it. We will get to the page on the next scan.
Link: http://lkml.kernel.org/r/20180315150747.31945-1-kirill.shutemov@linux.intel.com
Fixes: 9a982250f7 ("thp: introduce deferred_split_huge_page()")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged is not yet able to convert PTE-mapped huge pages back to PMD
mapped. We do not collapse such pages. See check
khugepaged_scan_pmd().
But if between khugepaged_scan_pmd() and __collapse_huge_page_isolate()
somebody managed to instantiate THP in the range and then split the PMD
back to PTEs we would have a problem --
VM_BUG_ON_PAGE(PageCompound(page)) will get triggered.
It's possible since we drop mmap_sem during collapse to re-take for
write.
Replace the VM_BUG_ON() with graceful collapse fail.
Link: http://lkml.kernel.org/r/20180315152353.27989-1-kirill.shutemov@linux.intel.com
Fixes: b1caa957ae ("khugepaged: ignore pmd tables with THP mapped with ptes")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A vma with vm_pgoff large enough to overflow a loff_t type when
converted to a byte offset can be passed via the remap_file_pages system
call. The hugetlbfs mmap routine uses the byte offset to calculate
reservations and file size.
A sequence such as:
mmap(0x20a00000, 0x600000, 0, 0x66033, -1, 0);
remap_file_pages(0x20a00000, 0x600000, 0, 0x20000000000000, 0);
will result in the following when task exits/file closed,
kernel BUG at mm/hugetlb.c:749!
Call Trace:
hugetlbfs_evict_inode+0x2f/0x40
evict+0xcb/0x190
__dentry_kill+0xcb/0x150
__fput+0x164/0x1e0
task_work_run+0x84/0xa0
exit_to_usermode_loop+0x7d/0x80
do_syscall_64+0x18b/0x190
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
The overflowed pgoff value causes hugetlbfs to try to set up a mapping
with a negative range (end < start) that leaves invalid state which
causes the BUG.
The previous overflow fix to this code was incomplete and did not take
the remap_file_pages system call into account.
[mike.kravetz@oracle.com: v3]
Link: http://lkml.kernel.org/r/20180309002726.7248-1-mike.kravetz@oracle.com
[akpm@linux-foundation.org: include mmdebug.h]
[akpm@linux-foundation.org: fix -ve left shift count on sh]
Link: http://lkml.kernel.org/r/20180308210502.15952-1-mike.kravetz@oracle.com
Fixes: 045c7a3f53 ("hugetlbfs: fix offset overflow in hugetlbfs mmap")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nic Losby <blurbdust@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Jones reported fs_reclaim lockdep warnings.
============================================
WARNING: possible recursive locking detected
4.15.0-rc9-backup-debug+ #1 Not tainted
--------------------------------------------
sshd/24800 is trying to acquire lock:
(fs_reclaim){+.+.}, at: [<0000000084f438c2>] fs_reclaim_acquire.part.102+0x5/0x30
but task is already holding lock:
(fs_reclaim){+.+.}, at: [<0000000084f438c2>] fs_reclaim_acquire.part.102+0x5/0x30
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(fs_reclaim);
lock(fs_reclaim);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by sshd/24800:
#0: (sk_lock-AF_INET6){+.+.}, at: [<000000001a069652>] tcp_sendmsg+0x19/0x40
#1: (fs_reclaim){+.+.}, at: [<0000000084f438c2>] fs_reclaim_acquire.part.102+0x5/0x30
stack backtrace:
CPU: 3 PID: 24800 Comm: sshd Not tainted 4.15.0-rc9-backup-debug+ #1
Call Trace:
dump_stack+0xbc/0x13f
__lock_acquire+0xa09/0x2040
lock_acquire+0x12e/0x350
fs_reclaim_acquire.part.102+0x29/0x30
kmem_cache_alloc+0x3d/0x2c0
alloc_extent_state+0xa7/0x410
__clear_extent_bit+0x3ea/0x570
try_release_extent_mapping+0x21a/0x260
__btrfs_releasepage+0xb0/0x1c0
btrfs_releasepage+0x161/0x170
try_to_release_page+0x162/0x1c0
shrink_page_list+0x1d5a/0x2fb0
shrink_inactive_list+0x451/0x940
shrink_node_memcg.constprop.88+0x4c9/0x5e0
shrink_node+0x12d/0x260
try_to_free_pages+0x418/0xaf0
__alloc_pages_slowpath+0x976/0x1790
__alloc_pages_nodemask+0x52c/0x5c0
new_slab+0x374/0x3f0
___slab_alloc.constprop.81+0x47e/0x5a0
__slab_alloc.constprop.80+0x32/0x60
__kmalloc_track_caller+0x267/0x310
__kmalloc_reserve.isra.40+0x29/0x80
__alloc_skb+0xee/0x390
sk_stream_alloc_skb+0xb8/0x340
tcp_sendmsg_locked+0x8e6/0x1d30
tcp_sendmsg+0x27/0x40
inet_sendmsg+0xd0/0x310
sock_write_iter+0x17a/0x240
__vfs_write+0x2ab/0x380
vfs_write+0xfb/0x260
SyS_write+0xb6/0x140
do_syscall_64+0x1e5/0xc05
entry_SYSCALL64_slow_path+0x25/0x25
This warning is caused by commit d92a8cfcb3 ("locking/lockdep:
Rework FS_RECLAIM annotation") which replaced the use of
lockdep_{set,clear}_current_reclaim_state() in __perform_reclaim()
and lockdep_trace_alloc() in slab_pre_alloc_hook() with
fs_reclaim_acquire()/ fs_reclaim_release().
Since __kmalloc_reserve() from __alloc_skb() adds __GFP_NOMEMALLOC |
__GFP_NOWARN to gfp_mask, and all reclaim path simply propagates
__GFP_NOMEMALLOC, fs_reclaim_acquire() in slab_pre_alloc_hook() is
trying to grab the 'fake' lock again when __perform_reclaim() already
grabbed the 'fake' lock.
The
/* this guy won't enter reclaim */
if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
return false;
test which causes slab_pre_alloc_hook() to try to grab the 'fake' lock
was added by commit cf40bd16fd ("lockdep: annotate reclaim context
(__GFP_NOFS)"). But that test is outdated because PF_MEMALLOC thread
won't enter reclaim regardless of __GFP_NOMEMALLOC after commit
341ce06f69 ("page allocator: calculate the alloc_flags for allocation
only once") added the PF_MEMALLOC safeguard (
/* Avoid recursion of direct reclaim */
if (p->flags & PF_MEMALLOC)
goto nopage;
in __alloc_pages_slowpath()).
Thus, let's fix outdated test by removing __GFP_NOMEMALLOC test and
allow __need_fs_reclaim() to return false.
Link: http://lkml.kernel.org/r/201802280650.FJC73911.FOSOMLJVFFQtHO@I-love.SAKURA.ne.jp
Fixes: d92a8cfcb3 ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Tested-by: Dave Jones <davej@codemonkey.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alexander reported a use of uninitialized memory in __mpol_equal(),
which is caused by incorrect use of preferred_node.
When mempolicy in mode MPOL_PREFERRED with flags MPOL_F_LOCAL, it uses
numa_node_id() instead of preferred_node, however, __mpol_equal() uses
preferred_node without checking whether it is MPOL_F_LOCAL or not.
[akpm@linux-foundation.org: slight comment tweak]
Link: http://lkml.kernel.org/r/4ebee1c2-57f6-bcb8-0e2d-1833d1ee0bb7@huawei.com
Fixes: fc36b8d3d8 ("mempolicy: use MPOL_F_LOCAL to Indicate Preferred Local Policy")
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull percpu fixes from Tejun Heo:
"Late percpu pull request for v4.16-rc6.
- percpu allocator pool replenishing no longer triggers OOM or
warning messages.
Also, the alloc interface now understands __GFP_NORETRY and
__GFP_NOWARN. This is to allow avoiding OOMs from userland
triggered actions like bpf map creation.
Also added cond_resched() in alloc loop.
- perpcu allocation now can be interrupted by kill sigs to avoid
deadlocking OOM killer.
- Added Dennis Zhou as a co-maintainer.
He has rewritten the area map allocator, understands most of the
code base and has been responsive for all bug reports"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu_ref: Update doc to dissuade users from depending on internal RCU grace periods
mm: Allow to kill tasks doing pcpu_alloc() and waiting for pcpu_balance_workfn()
percpu: include linux/sched.h for cond_resched()
percpu: add a schedule point in pcpu_balance_workfn()
percpu: allow select gfp to be passed to underlying allocators
percpu: add __GFP_NORETRY semantics to the percpu balancing path
percpu: match chunk allocator declarations with definitions
percpu: add Dennis Zhou as a percpu co-maintainer
In case of memory deficit and low percpu memory pages,
pcpu_balance_workfn() takes pcpu_alloc_mutex for a long
time (as it makes memory allocations itself and waits
for memory reclaim). If tasks doing pcpu_alloc() are
choosen by OOM killer, they can't exit, because they
are waiting for the mutex.
The patch makes pcpu_alloc() to care about killing signal
and use mutex_lock_killable(), when it's allowed by GFP
flags. This guarantees, a task does not miss SIGKILL
from OOM killer.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
microblaze build broke due to missing declaration of the
cond_resched() invocation added recently. Let's include linux/sched.h
explicitly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: kbuild test robot <fengguang.wu@intel.com>
ADI is a new feature supported on SPARC M7 and newer processors to allow
hardware to catch rogue accesses to memory. ADI is supported for data
fetches only and not instruction fetches. An app can enable ADI on its
data pages, set version tags on them and use versioned addresses to
access the data pages. Upper bits of the address contain the version
tag. On M7 processors, upper four bits (bits 63-60) contain the version
tag. If a rogue app attempts to access ADI enabled data pages, its
access is blocked and processor generates an exception. Please see
Documentation/sparc/adi.txt for further details.
This patch extends mprotect to enable ADI (TSTATE.mcde), enable/disable
MCD (Memory Corruption Detection) on selected memory ranges, enable
TTE.mcd in PTEs, return ADI parameters to userspace and save/restore ADI
version tags on page swap out/in or migration. ADI is not enabled by
default for any task. A task must explicitly enable ADI on a memory
range and set version tag for ADI to be effective for the task.
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Khalid Aziz <khalid@gonehiking.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When protection bits are changed on a VMA, some of the architecture
specific flags should be cleared as well. An examples of this are the
PKEY flags on x86. This patch expands the current code that clears
PKEY flags for x86, to support similar functionality for other
architectures as well.
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Khalid Aziz <khalid@gonehiking.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
A protection flag may not be valid across entire address space and
hence arch_validate_prot() might need the address a protection bit is
being set on to ensure it is a valid protection flag. For example, sparc
processors support memory corruption detection (as part of ADI feature)
flag on memory addresses mapped on to physical RAM but not on PFN mapped
pages or addresses mapped on to devices. This patch adds address to the
parameters being passed to arch_validate_prot() so protection bits can
be validated in the relevant context.
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Khalid Aziz <khalid@gonehiking.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
If a processor supports special metadata for a page, for example ADI
version tags on SPARC M7, this metadata must be saved when the page is
swapped out. The same metadata must be restored when the page is swapped
back in. This patch adds two new architecture specific functions -
arch_do_swap_page() to be called when a page is swapped in, and
arch_unmap_one() to be called when a page is being unmapped for swap
out. These architecture hooks allow page metadata to be saved if the
architecture supports it.
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Khalid Aziz <khalid@gonehiking.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Tile was the only remaining architecture to implement alloc_remap(),
and since that is being removed, there is no point in keeping this
function.
Removing all callers simplifies the mem_map handling.
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The CONFIG_MPU option was only defined on blackfin, and that architecture
is now being removed, so the respective code can be simplified.
A lot of other microcontrollers have an MPU, but I suspect that if we
want to bring that support back, we'd do it differently anyway.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This reverts commit 864b75f9d6.
Commit 864b75f9d6 ("mm/page_alloc: fix memmap_init_zone pageblock
alignment") modified the logic in memmap_init_zone() to initialize
struct pages associated with invalid PFNs, to appease a VM_BUG_ON()
in move_freepages(), which is redundant by its own admission, and
dereferences struct page fields to obtain the zone without checking
whether the struct pages in question are valid to begin with.
Commit 864b75f9d6 only makes it worse, since the rounding it does
may cause pfn assume the same value it had in a prior iteration of
the loop, resulting in an infinite loop and a hang very early in the
boot. Also, since it doesn't perform the same rounding on start_pfn
itself but only on intermediate values following an invalid PFN, we
may still hit the same VM_BUG_ON() as before.
So instead, let's fix this at the core, and ensure that the BUG
check doesn't dereference struct page fields of invalid pages.
Fixes: 864b75f9d6 ("mm/page_alloc: fix memmap_init_zone pageblock alignment")
Tested-by: Jan Glauber <jglauber@cavium.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Daniel Vacek <neelx@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns
where possible") introduced a bug where move_freepages() triggers a
VM_BUG_ON() on uninitialized page structure due to pageblock alignment.
To fix this, simply align the skipped pfns in memmap_init_zone() the
same way as in move_freepages_block().
Seen in one of the RHEL reports:
crash> log | grep -e BUG -e RIP -e Call.Trace -e move_freepages_block -e rmqueue -e freelist -A1
kernel BUG at mm/page_alloc.c:1389!
invalid opcode: 0000 [#1] SMP
--
RIP: 0010:[<ffffffff8118833e>] [<ffffffff8118833e>] move_freepages+0x15e/0x160
RSP: 0018:ffff88054d727688 EFLAGS: 00010087
--
Call Trace:
[<ffffffff811883b3>] move_freepages_block+0x73/0x80
[<ffffffff81189e63>] __rmqueue+0x263/0x460
[<ffffffff8118c781>] get_page_from_freelist+0x7e1/0x9e0
[<ffffffff8118caf6>] __alloc_pages_nodemask+0x176/0x420
--
RIP [<ffffffff8118833e>] move_freepages+0x15e/0x160
RSP <ffff88054d727688>
crash> page_init_bug -v | grep RAM
<struct resource 0xffff88067fffd2f8> 1000 - 9bfff System RAM (620.00 KiB)
<struct resource 0xffff88067fffd3a0> 100000 - 430bffff System RAM ( 1.05 GiB = 1071.75 MiB = 1097472.00 KiB)
<struct resource 0xffff88067fffd410> 4b0c8000 - 4bf9cfff System RAM ( 14.83 MiB = 15188.00 KiB)
<struct resource 0xffff88067fffd480> 4bfac000 - 646b1fff System RAM (391.02 MiB = 400408.00 KiB)
<struct resource 0xffff88067fffd560> 7b788000 - 7b7fffff System RAM (480.00 KiB)
<struct resource 0xffff88067fffd640> 100000000 - 67fffffff System RAM ( 22.00 GiB)
crash> page_init_bug | head -6
<struct resource 0xffff88067fffd560> 7b788000 - 7b7fffff System RAM (480.00 KiB)
<struct page 0xffffea0001ede200> 1fffff00000000 0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32 4096 1048575
<struct page 0xffffea0001ede200> 505736 505344 <struct page 0xffffea0001ed8000> 505855 <struct page 0xffffea0001edffc0>
<struct page 0xffffea0001ed8000> 0 0 <struct pglist_data 0xffff88047ffd9000> 0 <struct zone 0xffff88047ffd9000> DMA 1 4095
<struct page 0xffffea0001edffc0> 1fffff00000400 0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32 4096 1048575
BUG, zones differ!
Note that this range follows two not populated sections
68000000-77ffffff in this zone. 7b788000-7b7fffff is the first one
after a gap. This makes memmap_init_zone() skip all the pfns up to the
beginning of this range. But this range is not pageblock (2M) aligned.
In fact no range has to be.
crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b787000 7b788000
PAGE PHYSICAL MAPPING INDEX CNT FLAGS
ffffea0001e00000 78000000 0 0 0 0
ffffea0001ed7fc0 7b5ff000 0 0 0 0
ffffea0001ed8000 7b600000 0 0 0 0 <<<<
ffffea0001ede1c0 7b787000 0 0 0 0
ffffea0001ede200 7b788000 0 0 1 1fffff00000000
Top part of page flags should contain nodeid and zonenr, which is not
the case for page ffffea0001ed8000 here (<<<<).
crash> log | grep -o fffea0001ed[^\ ]* | sort -u
fffea0001ed8000
fffea0001eded20
fffea0001edffc0
crash> bt -r | grep -o fffea0001ed[^\ ]* | sort -u
fffea0001ed8000
fffea0001eded00
fffea0001eded20
fffea0001edffc0
Initialization of the whole beginning of the section is skipped up to
the start of the range due to the commit b92df1de5d. Now any code
calling move_freepages_block() (like reusing the page from a freelist as
in this example) with a page from the beginning of the range will get
the page rounded down to start_page ffffea0001ed8000 and passed to
move_freepages() which crashes on assertion getting wrong zonenr.
> VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
Note, page_zone() derives the zone from page flags here.
From similar machine before commit b92df1de5d28:
crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b7fe000 7b7ff000
PAGE PHYSICAL MAPPING INDEX CNT FLAGS
fffff73941e00000 78000000 0 0 1 1fffff00000000
fffff73941ed7fc0 7b5ff000 0 0 1 1fffff00000000
fffff73941ed8000 7b600000 0 0 1 1fffff00000000
fffff73941edff80 7b7fe000 0 0 1 1fffff00000000
fffff73941edffc0 7b7ff000 ffff8e67e04d3ae0 ad84 1 1fffff00020068 uptodate,lru,active,mappedtodisk
All the pages since the beginning of the section are initialized.
move_freepages()' not gonna blow up.
The same machine with this fix applied:
crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b7fe000 7b7ff000
PAGE PHYSICAL MAPPING INDEX CNT FLAGS
ffffea0001e00000 78000000 0 0 0 0
ffffea0001e00000 7b5ff000 0 0 0 0
ffffea0001ed8000 7b600000 0 0 1 1fffff00000000
ffffea0001edff80 7b7fe000 0 0 1 1fffff00000000
ffffea0001edffc0 7b7ff000 ffff88017fb13720 8 2 1fffff00020068 uptodate,lru,active,mappedtodisk
At least the bare minimum of pages is initialized preventing the crash
as well.
Customers started to report this as soon as 7.4 (where b92df1de5d was
merged in RHEL) was released. I remember reports from
September/October-ish times. It's not easily reproduced and happens on
a handful of machines only. I guess that's why. But that does not make
it less serious, I think.
Though there actually is a report here:
https://bugzilla.kernel.org/show_bug.cgi?id=196443
And there are reports for Fedora from July:
https://bugzilla.redhat.com/show_bug.cgi?id=1473242
and CentOS:
https://bugs.centos.org/view.php?id=13964
and we internally track several dozens reports for RHEL bug
https://bugzilla.redhat.com/show_bug.cgi?id=1525121
Link: http://lkml.kernel.org/r/0485727b2e82da7efbce5f6ba42524b429d0391a.1520011945.git.neelx@redhat.com
Fixes: b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns where possible")
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just a cleanup. It aids handling the special end case in the
next commit.
[akpm@linux-foundation.org: make it work against current -linus, not against -mm]
[akpm@linux-foundation.org: make it work against current -linus, not against -mm some more]
Link: http://lkml.kernel.org/r/1ca478d4269125a99bcfb1ca04d7b88ac1aee924.1520011944.git.neelx@redhat.com
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KVM is hanging during postcopy live migration with userfaultfd because
get_user_pages_unlocked is not capable to handle FOLL_NOWAIT.
Earlier FOLL_NOWAIT was only ever passed to get_user_pages.
Specifically faultin_page (the callee of get_user_pages_unlocked caller)
doesn't know that if FAULT_FLAG_RETRY_NOWAIT was set in the page fault
flags, when VM_FAULT_RETRY is returned, the mmap_sem wasn't actually
released (even if nonblocking is not NULL). So it sets *nonblocking to
zero and the caller won't release the mmap_sem thinking it was already
released, but it wasn't because of FOLL_NOWAIT.
Link: http://lkml.kernel.org/r/20180302174343.5421-2-aarcange@redhat.com
Fixes: ce53053ce3 ("kvm: switch get_user_page_nowait() to get_user_pages_unlocked()")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Tested-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Rue has noticed that libhugetlbfs test suite fails counter test:
# mount_point="/mnt/hugetlb/"
# echo 200 > /proc/sys/vm/nr_hugepages
# mkdir -p "${mount_point}"
# mount -t hugetlbfs hugetlbfs "${mount_point}"
# export LD_LIBRARY_PATH=/root/libhugetlbfs/libhugetlbfs-2.20/obj64
# /root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters
Starting testcase "/root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters", pid 3319
Base pool size: 0
Clean...
FAIL Line 326: Bad HugePages_Total: expected 0, actual 1
The bug was bisected to 0c397daea1 ("mm, hugetlb: further simplify
hugetlb allocation API").
The reason is that alloc_surplus_huge_page() misaccounts per node
surplus pages. We should increase surplus_huge_pages_node rather than
nr_huge_pages_node which is already handled by alloc_fresh_huge_page.
Link: http://lkml.kernel.org/r/20180221191439.GM2231@dhcp22.suse.cz
Fixes: 0c397daea1 ("mm, hugetlb: further simplify hugetlb allocation API")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Rue <dan.rue@linaro.org>
Tested-by: Dan Rue <dan.rue@linaro.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches remove the metag architecture and tightly dependent
drivers from the kernel. With the 4.16 kernel the ancient gcc 4.2.4
based metag toolchain we have been using is hitting compiler bugs, so
now seems a good time to drop it altogether.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEd80NauSabkiESfLYbAtpk944dnoFAlqdcgQACgkQbAtpk944
dno/1BAAvaiRcKcNxMrYkxG+Wn4r68odu7+E1dy99AaUnvPFT42R5XLMOv4BCu/Y
bhMQ14lMJ9ZBKdYg9E97ulTV0YFhCBHuEWDyDnk/G3CVAEvdPuAQ6ktHDZxRQBFK
JoTUKky53OZbWU9KhLeWpFg4F4E64FBm1kyAkqhs8pPM/LwmrxwIG2sxdTTqkhkc
b+6ABf2NKtmQwHXWmKWCB8rmXMzulYth2ePC/r9MVj92xGKxADsiFArZk4kmoIUb
H5eZ8FkemtUEfZp600dsGR/ffaTBwZJ3SULSkAklUnrcvdIRM+Fu8osG8O8yQKTd
H7xnmtTJ2kCnhhuUMxt6v8WrDbKB8JdFxFOpXW93YKpKAkiGMvoUEZjlwPYIqWxL
xtnDb9Rv+uZ4RpqZf9AtE4Td8lHTH7OZ78RDs9eMo6n1ZIr5CwcLaM2k5skAeyPr
yt1lXePhXFqSS+OpOV6hn95ROqlkuZgvPfkcdNpCJPfM4SpfRLlUjIVqiVK0LDRk
FAkk0VIfzjjNuyV9yr2XXuw90DerhFUgUl6ZYggkgf6umOHhZQdDTFr8gsfvaLm1
1k1banUEF1tpDcUeShylDvqNmVSZZC6siTQMA7T0zjbjYJD25hJWLpFEcPkx/Anp
4oGQNNoe4WgJIrJAoTJTiBVwC/xLDeZV6b5t2pOXBlH+v2eKgMg=
=zDIl
-----END PGP SIGNATURE-----
Merge tag 'metag_remove_2' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/jhogan/metag into asm-generic
Remove metag architecture
These patches remove the metag architecture and tightly dependent
drivers from the kernel. With the 4.16 kernel the ancient gcc 4.2.4
based metag toolchain we have been using is hitting compiler bugs, so
now seems a good time to drop it altogether.
* tag 'metag_remove_2' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/jhogan/metag:
i2c: img-scb: Drop METAG dependency
media: img-ir: Drop METAG dependency
watchdog: imgpdc: Drop METAG dependency
MAINTAINERS/CREDITS: Drop METAG ARCHITECTURE
tty: Remove metag DA TTY and console driver
clocksource: Remove metag generic timer driver
irqchip: Remove metag irqchip drivers
Drop a bunch of metag references
docs: Remove remaining references to metag
docs: Remove metag docs
metag: Remove arch/metag/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
When a large BPF percpu map is destroyed, I have seen
pcpu_balance_workfn() holding cpu for hundreds of milliseconds.
On KASAN config and 112 hyperthreads, average time to destroy a chunk
is ~4 ms.
[ 2489.841376] destroy chunk 1 in 4148689 ns
...
[ 2490.093428] destroy chunk 32 in 4072718 ns
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that arch/metag/ has been removed, drop a bunch of metag references
in various codes across the whole tree:
- VM_GROWSUP and __VM_ARCH_SPECIFIC_1.
- MT_METAG_* ELF note types.
- METAG Kconfig dependencies (FRAME_POINTER) and ranges
(MAX_STACK_SIZE_MB).
- metag cases in tools (checkstack.pl, recordmcount.c, perf).
Signed-off-by: James Hogan <jhogan@kernel.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: linux-mm@kvack.org
Cc: linux-metag@vger.kernel.org
Commit f7f99100d8 ("mm: stop zeroing memory during allocation in
vmemmap") broke Xen pv domains in some configurations, as the "Pinned"
information in struct page of early page tables could get lost.
This will lead to the kernel trying to write directly into the page
tables instead of asking the hypervisor to do so. The result is a crash
like the following:
BUG: unable to handle kernel paging request at ffff8801ead19008
IP: xen_set_pud+0x4e/0xd0
PGD 1c0a067 P4D 1c0a067 PUD 23a0067 PMD 1e9de0067 PTE 80100001ead19065
Oops: 0003 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.14.0-default+ #271
Hardware name: Dell Inc. Latitude E6440/0159N7, BIOS A07 06/26/2014
task: ffffffff81c10480 task.stack: ffffffff81c00000
RIP: e030:xen_set_pud+0x4e/0xd0
Call Trace:
__pmd_alloc+0x128/0x140
ioremap_page_range+0x3f4/0x410
__ioremap_caller+0x1c3/0x2e0
acpi_os_map_iomem+0x175/0x1b0
acpi_tb_acquire_table+0x39/0x66
acpi_tb_validate_table+0x44/0x7c
acpi_tb_verify_temp_table+0x45/0x304
acpi_reallocate_root_table+0x12d/0x141
acpi_early_init+0x4d/0x10a
start_kernel+0x3eb/0x4a1
xen_start_kernel+0x528/0x532
Code: 48 01 e8 48 0f 42 15 a2 fd be 00 48 01 d0 48 ba 00 00 00 00 00 ea ff ff 48 c1 e8 0c 48 c1 e0 06 48 01 d0 48 8b 00 f6 c4 02 75 5d <4c> 89 65 00 5b 5d 41 5c c3 65 8b 05 52 9f fe 7e 89 c0 48 0f a3
RIP: xen_set_pud+0x4e/0xd0 RSP: ffffffff81c03cd8
CR2: ffff8801ead19008
---[ end trace 38eca2e56f1b642e ]---
Avoid this problem by not deferring struct page initialization when
running as Xen pv guest.
Pavel said:
: This is unique for Xen, so this particular issue won't effect other
: configurations. I am going to investigate if there is a way to
: re-enable deferred page initialization on xen guests.
[akpm@linux-foundation.org: explicitly include xen.h]
Link: http://lkml.kernel.org/r/20180216154101.22865-1-jgross@suse.com
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org> [4.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kai Heng Feng has noticed that BUG_ON(PageHighMem(pg)) triggers in
drivers/media/common/saa7146/saa7146_core.c since 19809c2da2 ("mm,
vmalloc: use __GFP_HIGHMEM implicitly").
saa7146_vmalloc_build_pgtable uses vmalloc_32 and it is reasonable to
expect that the resulting page is not in highmem. The above commit
aimed to add __GFP_HIGHMEM only for those requests which do not specify
any zone modifier gfp flag. vmalloc_32 relies on GFP_VMALLOC32 which
should do the right thing. Except it has been missed that GFP_VMALLOC32
is an alias for GFP_KERNEL on 32b architectures. Thanks to Matthew to
notice this.
Fix the problem by unconditionally setting GFP_DMA32 in GFP_VMALLOC32
for !64b arches (as a bailout). This should do the right thing and use
ZONE_NORMAL which should be always below 4G on 32b systems.
Debugged by Matthew Wilcox.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20180212095019.GX21609@dhcp22.suse.cz
Fixes: 19809c2da2 ("mm, vmalloc: use __GFP_HIGHMEM implicitly”)
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Kai Heng Feng <kai.heng.feng@canonical.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was a conflict between the commit e02a9f048e ("mm/swap.c: make
functions and their kernel-doc agree") and the commit f144c390f9 ("mm:
docs: fix parameter names mismatch") that both tried to fix mismatch
betweeen pagevec_lookup_entries() parameter names and their description.
Since nr_entries is a better name for the parameter, fix the description
again.
Link: http://lkml.kernel.org/r/1518116946-20947-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was reported by Sergey Senozhatsky that if THP (Transparent Huge
Page) and frontswap (via zswap) are both enabled, when memory goes low
so that swap is triggered, segfault and memory corruption will occur in
random user space applications as follow,
kernel: urxvt[338]: segfault at 20 ip 00007fc08889ae0d sp 00007ffc73a7fc40 error 6 in libc-2.26.so[7fc08881a000+1ae000]
#0 0x00007fc08889ae0d _int_malloc (libc.so.6)
#1 0x00007fc08889c2f3 malloc (libc.so.6)
#2 0x0000560e6004bff7 _Z14rxvt_wcstoutf8PKwi (urxvt)
#3 0x0000560e6005e75c n/a (urxvt)
#4 0x0000560e6007d9f1 _ZN16rxvt_perl_interp6invokeEP9rxvt_term9hook_typez (urxvt)
#5 0x0000560e6003d988 _ZN9rxvt_term9cmd_parseEv (urxvt)
#6 0x0000560e60042804 _ZN9rxvt_term6pty_cbERN2ev2ioEi (urxvt)
#7 0x0000560e6005c10f _Z17ev_invoke_pendingv (urxvt)
#8 0x0000560e6005cb55 ev_run (urxvt)
#9 0x0000560e6003b9b9 main (urxvt)
#10 0x00007fc08883af4a __libc_start_main (libc.so.6)
#11 0x0000560e6003f9da _start (urxvt)
After bisection, it was found the first bad commit is bd4c82c22c ("mm,
THP, swap: delay splitting THP after swapped out").
The root cause is as follows:
When the pages are written to swap device during swapping out in
swap_writepage(), zswap (fontswap) is tried to compress the pages to
improve performance. But zswap (frontswap) will treat THP as a normal
page, so only the head page is saved. After swapping in, tail pages
will not be restored to their original contents, causing memory
corruption in the applications.
This is fixed by refusing to save page in the frontswap store functions
if the page is a THP. So that the THP will be swapped out to swap
device.
Another choice is to split THP if frontswap is enabled. But it is found
that the frontswap enabling isn't flexible. For example, if
CONFIG_ZSWAP=y (cannot be module), frontswap will be enabled even if
zswap itself isn't enabled.
Frontswap has multiple backends, to make it easy for one backend to
enable THP support, the THP checking is put in backend frontswap store
functions instead of the general interfaces.
Link: http://lkml.kernel.org/r/20180209084947.22749-1-ying.huang@intel.com
Fixes: bd4c82c22c ("mm, THP, swap: delay splitting THP after swapped out")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org> [put THP checking in backend]
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Shaohua Li <shli@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: <stable@vger.kernel.org> [4.14]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a thread mlocks an address space backed either by file pages which
are currently not present in memory or swapped out anon pages (not in
swapcache), a new page is allocated and added to the local pagevec
(lru_add_pvec), I/O is triggered and the thread then sleeps on the page.
On I/O completion, the thread can wake on a different CPU, the mlock
syscall will then sets the PageMlocked() bit of the page but will not be
able to put that page in unevictable LRU as the page is on the pagevec
of a different CPU. Even on drain, that page will go to evictable LRU
because the PageMlocked() bit is not checked on pagevec drain.
The page will eventually go to right LRU on reclaim but the LRU stats
will remain skewed for a long time.
This patch puts all the pages, even unevictable, to the pagevecs and on
the drain, the pages will be added on their LRUs correctly by checking
their evictability. This resolves the mlocked pages on pagevec of other
CPUs issue because when those pagevecs will be drained, the mlocked file
pages will go to unevictable LRU. Also this makes the race with munlock
easier to resolve because the pagevec drains happen in LRU lock.
However there is still one place which makes a page evictable and does
PageLRU check on that page without LRU lock and needs special attention.
TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock().
#0: __pagevec_lru_add_fn #1: clear_page_mlock
SetPageLRU() if (!TestClearPageMlocked())
return
smp_mb() // <--required
// inside does PageLRU
if (!PageMlocked()) if (isolate_lru_page())
move to evictable LRU putback_lru_page()
else
move to unevictable LRU
In '#1', TestClearPageMlocked() provides full memory barrier semantics
and thus the PageLRU check (inside isolate_lru_page) can not be
reordered before it.
In '#0', without explicit memory barrier, the PageMlocked() check can be
reordered before SetPageLRU(). If that happens, '#0' can put a page in
unevictable LRU and '#1' might have just cleared the Mlocked bit of that
page but fails to isolate as PageLRU fails as '#0' still hasn't set
PageLRU bit of that page. That page will be stranded on the unevictable
LRU.
There is one (good) side effect though. Without this patch, the pages
allocated for System V shared memory segment are added to evictable LRUs
even after shmctl(SHM_LOCK) on that segment. This patch will correctly
put such pages to unevictable LRU.
Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The prior patch added support for passing gfp flags through to the
underlying allocators. This patch allows users to pass along gfp flags
(currently only __GFP_NORETRY and __GFP_NOWARN) to the underlying
allocators. This should allow users to decide if they are ok with
failing allocations recovering in a more graceful way.
Additionally, gfp passing was done as additional flags in the previous
patch. Instead, change this to caller passed semantics. GFP_KERNEL is
also removed as the default flag. It continues to be used for internally
caused underlying percpu allocations.
V2:
Removed gfp_percpu_mask in favor of doing it inline.
Removed GFP_KERNEL as a default flag for __alloc_percpu_gfp.
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Percpu memory using the vmalloc area based chunk allocator lazily
populates chunks by first requesting the full virtual address space
required for the chunk and subsequently adding pages as allocations come
through. To ensure atomic allocations can succeed, a workqueue item is
used to maintain a minimum number of empty pages. In certain scenarios,
such as reported in [1], it is possible that physical memory becomes
quite scarce which can result in either a rather long time spent trying
to find free pages or worse, a kernel panic.
This patch adds support for __GFP_NORETRY and __GFP_NOWARN passing them
through to the underlying allocators. This should prevent any
unnecessary panics potentially caused by the workqueue item. The passing
of gfp around is as additional flags rather than a full set of flags.
The next patch will change these to caller passed semantics.
V2:
Added const modifier to gfp flags in the balance path.
Removed an extra whitespace.
[1] https://lkml.org/lkml/2018/2/12/551
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Reported-by: syzbot+adb03f3f0bb57ce3acda@syzkaller.appspotmail.com
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
At some point the function declaration parameters got out of sync with
the function definitions in percpu-vm.c and percpu-km.c. This patch
makes them match again.
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We get a warning about some slow configurations in randconfig kernels:
mm/memory.c:83:2: error: #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. [-Werror=cpp]
The warning is reasonable by itself, but gets in the way of randconfig
build testing, so I'm hiding it whenever CONFIG_COMPILE_TEST is set.
The warning was added in 2013 in commit 75980e97da ("mm: fold
page->_last_nid into page->flags where possible").
Cc: stable@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Ingo Molnar:
"Misc fixes all across the map:
- /proc/kcore vsyscall related fixes
- LTO fix
- build warning fix
- CPU hotplug fix
- Kconfig NR_CPUS cleanups
- cpu_has() cleanups/robustification
- .gitignore fix
- memory-failure unmapping fix
- UV platform fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
x86/error_inject: Make just_return_func() globally visible
x86/platform/UV: Fix GAM Range Table entries less than 1GB
x86/build: Add arch/x86/tools/insn_decoder_test to .gitignore
x86/smpboot: Fix uncore_pci_remove() indexing bug when hot-removing a physical CPU
x86/mm/kcore: Add vsyscall page to /proc/kcore conditionally
vfs/proc/kcore, x86/mm/kcore: Fix SMAP fault when dumping vsyscall user page
x86/Kconfig: Further simplify the NR_CPUS config
x86/Kconfig: Simplify NR_CPUS config
x86/MCE: Fix build warning introduced by "x86: do not use print_symbol()"
x86/cpufeature: Update _static_cpu_has() to use all named variables
x86/cpufeature: Reindent _static_cpu_has()
For boot-time switching between 4- and 5-level paging we need to be able
to fold p4d page table level at runtime. It requires variable
PGDIR_SHIFT and PTRS_PER_P4D.
The change doesn't affect the kernel image size much:
text data bss dec hex filename
8628091 4734304 1368064 14730459 e0c4db vmlinux.before
8628393 4734340 1368064 14730797 e0c62d vmlinux.after
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214111656.88514-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With boot-time switching between paging mode we will have variable
MAX_PHYSMEM_BITS.
Let's use the maximum variable possible for CONFIG_X86_5LEVEL=y
configuration to define zsmalloc data structures.
The patch introduces MAX_POSSIBLE_PHYSMEM_BITS to cover such case.
It also suits well to handle PAE special case.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Nitin Gupta <ngupta@vflare.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214111656.88514-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the following commit:
ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")
... we added code to memory_failure() to unmap the page from the
kernel 1:1 virtual address space to avoid speculative access to the
page logging additional errors.
But memory_failure() may not always succeed in taking the page offline,
especially if the page belongs to the kernel. This can happen if
there are too many corrected errors on a page and either mcelog(8)
or drivers/ras/cec.c asks to take a page offline.
Since we remove the 1:1 mapping early in memory_failure(), we can
end up with the page unmapped, but still in use. On the next access
the kernel crashes :-(
There are also various debug paths that call memory_failure() to simulate
occurrence of an error. Since there is no actual error in memory, we
don't need to map out the page for those cases.
Revert most of the previous attempt and keep the solution local to
arch/x86/kernel/cpu/mcheck/mce.c. Unmap the page only when:
1) there is a real error
2) memory_failure() succeeds.
All of this only applies to 64-bit systems. 32-bit kernel doesn't map
all of memory into kernel space. It isn't worth adding the code to unmap
the piece that is mapped because nobody would run a 32-bit kernel on a
machine that has recoverable machine checks.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert (Persistent Memory) <elliott@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org #v4.14
Fixes: ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several places where parameter descriptions do no match the
actual code. Fix it.
Link: http://lkml.kernel.org/r/1516700871-22279-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
so that kernel-doc will properly recognize the parameter and function
descriptions.
Link: http://lkml.kernel.org/r/1516700871-22279-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make memblock_is_map/region_memory return bool due to these two
functions only using either true or false as its return value.
No functional change.
Link: http://lkml.kernel.org/r/1513266622-15860-2-git-send-email-baiyaowei@cmss.chinamobile.com
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The file was converted from print_symbol() to %pSR a while ago in commit
071361d347 ("mm: Convert print_symbol to %pSR"). kallsyms does not
seem to be needed anymore.
Link: http://lkml.kernel.org/r/20171208025616.16267-3-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These duplicate includes have been found with scripts/checkincludes.pl but
they have been removed manually to avoid removing false positives.
Link: http://lkml.kernel.org/r/1512580957-6071-1-git-send-email-pravin.shedge4linux@gmail.com
Signed-off-by: Pravin Shedge <pravin.shedge4linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several functions that do find_task_by_vpid() followed by
get_task_struct(). We can use a helper function instead.
Link: http://lkml.kernel.org/r/1509602027-11337-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both of these functions deal with freeing of slab objects.
However, kasan_poison_kfree() mishandles SLAB_TYPESAFE_BY_RCU
(must also not poison such objects) and does not detect double-frees.
Unify code between these functions.
This solves both of the problems and allows to add more common code
(e.g. detection of invalid frees).
Link: http://lkml.kernel.org/r/385493d863acf60408be219a021c3c8e27daa96f.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Detect frees of pointers into middle of mempool objects.
I did a one-off test, but it turned out to be very tricky, so I reverted
it. First, mempool does not call kasan_poison_kfree() unless allocation
function fails. I stubbed an allocation function to fail on second and
subsequent allocations. But then mempool stopped to call
kasan_poison_kfree() at all, because it does it only when allocation
function is mempool_kmalloc(). We could support this special failing
test allocation function in mempool, but it also can't live with kasan
tests, because these are in a module.
Link: http://lkml.kernel.org/r/bf7a7d035d7a5ed62d2dd0e3d2e8a4fcdf456aa7.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__builtin_return_address(1) is unreliable without frame pointers.
With defconfig on kmalloc_pagealloc_invalid_free test I am getting:
BUG: KASAN: double-free or invalid-free in (null)
Pass caller PC from callers explicitly.
Link: http://lkml.kernel.org/r/9b01bc2d237a4df74ff8472a3bf6b7635908de01.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: detect invalid frees".
KASAN detects double-frees, but does not detect invalid-frees (when a
pointer into a middle of heap object is passed to free). We recently had
a very unpleasant case in crypto code which freed an inner object inside
of a heap allocation. This left unnoticed during free, but totally
corrupted heap and later lead to a bunch of random crashes all over kernel
code.
Detect invalid frees.
This patch (of 5):
Detect frees of pointers into middle of large heap objects.
I dropped const from kasan_kfree_large() because it starts propagating
through a bunch of functions in kasan_report.c, slab/slub nearest_obj(),
all of their local variables, fixup_red_left(), etc.
Link: http://lkml.kernel.org/r/1b45b4fe1d20fc0de1329aab674c1dd973fee723.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a code-size optimization, LLVM builds since r279383 may bulk-manipulate
the shadow region when (un)poisoning large memory blocks. This requires
new callbacks that simply do an uninstrumented memset().
This fixes linking the Clang-built kernel when using KASAN.
[arnd@arndb.de: add declarations for internal functions]
Link: http://lkml.kernel.org/r/20180105094112.2690475-1-arnd@arndb.de
[fengguang.wu@intel.com: __asan_set_shadow_00 can be static]
Link: http://lkml.kernel.org/r/20171223125943.GA74341@lkp-ib03
[ghackmann@google.com: fix memset() parameters, and tweak commit message to describe new callbacks]
Link: http://lkml.kernel.org/r/20171204191735.132544-6-paullawrence@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Paul Lawrence <paullawrence@google.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clang's AddressSanitizer implementation adds redzones on either side of
alloca()ed buffers. These redzones are 32-byte aligned and at least 32
bytes long.
__asan_alloca_poison() is passed the size and address of the allocated
buffer, *excluding* the redzones on either side. The left redzone will
always be to the immediate left of this buffer; but AddressSanitizer may
need to add padding between the end of the buffer and the right redzone.
If there are any 8-byte chunks inside this padding, we should poison
those too.
__asan_allocas_unpoison() is just passed the top and bottom of the dynamic
stack area, so unpoisoning is simpler.
Link: http://lkml.kernel.org/r/20171204191735.132544-4-paullawrence@google.com
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Paul Lawrence <paullawrence@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Require struct page by default for filesystem DAX to remove a number of
surprising failure cases. This includes failures with direct I/O, gdb and
fork(2).
* Add support for the new Platform Capabilities Structure added to the NFIT in
ACPI 6.2a. This new table tells us whether the platform supports flushing
of CPU and memory controller caches on unexpected power loss events.
* Revamp vmem_altmap and dev_pagemap handling to clean up code and better
support future future PCI P2P uses.
* Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
families, NVDIMM_FAMILY_{HPE,MSFT}.
* Enhance nfit_test so we can test some of the new things added in version 1.6
of the DSM specification. This includes testing firmware download and
simulating the Last Shutdown State (LSS) status.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
sie+u2rTod8/gQWSfHpJ
=MIMX
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Ross Zwisler:
- Require struct page by default for filesystem DAX to remove a number
of surprising failure cases. This includes failures with direct I/O,
gdb and fork(2).
- Add support for the new Platform Capabilities Structure added to the
NFIT in ACPI 6.2a. This new table tells us whether the platform
supports flushing of CPU and memory controller caches on unexpected
power loss events.
- Revamp vmem_altmap and dev_pagemap handling to clean up code and
better support future future PCI P2P uses.
- Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
spec, and instead rely on the generic ND_CMD_CALL approach used by
the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.
- Enhance nfit_test so we can test some of the new things added in
version 1.6 of the DSM specification. This includes testing firmware
download and simulating the Last Shutdown State (LSS) status.
* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
acpi, nfit: fix register dimm error handling
libnvdimm, namespace: make min namespace size 4K
tools/testing/nvdimm: force nfit_test to depend on instrumented modules
libnvdimm/nfit_test: adding support for unit testing enable LSS status
libnvdimm/nfit_test: add firmware download emulation
nfit-test: Add platform cap support from ACPI 6.2a to test
libnvdimm: expose platform persistence attribute for nd_region
acpi: nfit: add persistent memory control flag for nd_region
acpi: nfit: Add support for detect platform CPU cache flush on power loss
device-dax: Fix trailing semicolon
libnvdimm, btt: fix uninitialized err_lock
dax: require 'struct page' by default for filesystem dax
ext2: auto disable dax instead of failing mount
ext4: auto disable dax instead of failing mount
mm, dax: introduce pfn_t_special()
mm: Fix devm_memremap_pages() collision handling
mm: Fix memory size alignment in devm_memremap_pages_release()
memremap: merge find_dev_pagemap into get_dev_pagemap
memremap: change devm_memremap_pages interface to use struct dev_pagemap
...
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass all
hardened usercopy checks since these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over the
next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
JgOmUnQNJWCTwUUw5AS1
=tzmJ
-----END PGP SIGNATURE-----
Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy whitelisting from Kees Cook:
"Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs.
To further restrict what memory is available for copying, this creates
a way to whitelist specific areas of a given slab cache object for
copying to/from userspace, allowing much finer granularity of access
control.
Slab caches that are never exposed to userspace can declare no
whitelist for their objects, thereby keeping them unavailable to
userspace via dynamic copy operations. (Note, an implicit form of
whitelisting is the use of constant sizes in usercopy operations and
get_user()/put_user(); these bypass all hardened usercopy checks since
these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over
the next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage"
* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
lkdtm: Update usercopy tests for whitelisting
usercopy: Restrict non-usercopy caches to size 0
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
kvm: whitelist struct kvm_vcpu_arch
arm: Implement thread_struct whitelist for hardened usercopy
arm64: Implement thread_struct whitelist for hardened usercopy
x86: Implement thread_struct whitelist for hardened usercopy
fork: Provide usercopy whitelisting for task_struct
fork: Define usercopy region in thread_stack slab caches
fork: Define usercopy region in mm_struct slab caches
net: Restrict unwhitelisted proto caches to size 0
sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
sctp: Define usercopy region in SCTP proto slab cache
caif: Define usercopy region in caif proto slab cache
ip: Define usercopy region in IP proto slab cache
net: Define usercopy region in struct proto slab cache
scsi: Define usercopy region in scsi_sense_cache slab cache
cifs: Define usercopy region in cifs_request slab cache
vxfs: Define usercopy region in vxfs_inode slab cache
ufs: Define usercopy region in ufs_inode_cache slab cache
...
This patch effectively reverts commit 9f1c2674b3 ("net: memcontrol:
defer call to mem_cgroup_sk_alloc()").
Moving mem_cgroup_sk_alloc() to the inet_csk_accept() completely breaks
memcg socket memory accounting, as packets received before memcg
pointer initialization are not accounted and are causing refcounting
underflow on socket release.
Actually the free-after-use problem was fixed by
commit c0576e3975 ("net: call cgroup_sk_alloc() earlier in
sk_clone_lock()") for the cgroup pointer.
So, let's revert it and call mem_cgroup_sk_alloc() just before
cgroup_sk_alloc(). This is safe, as we hold a reference to the socket
we're cloning, and it holds a reference to the memcg.
Also, let's drop BUG_ON(mem_cgroup_is_root()) check from
mem_cgroup_sk_alloc(). I see no reasons why bumping the root
memcg counter is a good reason to panic, and there are no realistic
ways to hit it.
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix some basic kernel-doc notation in mm/swap.c:
- for function lru_cache_add_anon(), make its kernel-doc function name
match its function name and change colon to hyphen following the
function name
- for function pagevec_lookup_entries(), change the function parameter
name from nr_pages to nr_entries since that is more descriptive of
what the parameter actually is and then it matches the kernel-doc
comments also
Fix function kernel-doc to match the change in commit 67fd707f4681:
- drop the kernel-doc notation for @nr_pages from
pagevec_lookup_range() and correct the function description for that
change
Link: http://lkml.kernel.org/r/3b42ee3e-04a9-a6ca-6be4-f00752a114fe@infradead.org
Fixes: 67fd707f46 ("mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bharata has noticed that onlining a newly added memory doesn't increase
the total memory, pointing to commit f7f99100d8 ("mm: stop zeroing
memory during allocation in vmemmap") as a culprit. This commit has
changed the way how the memory for memmaps is initialized and moves it
from the allocation time to the initialization time. This works
properly for the early memmap init path.
It doesn't work for the memory hotplug though because we need to mark
page as reserved when the sparsemem section is created and later
initialize it completely during onlining. memmap_init_zone is called in
the early stage of onlining. With the current code it calls
__init_single_page and as such it clears up the whole stage and
therefore online_pages_range skips those pages.
Fix this by skipping mm_zero_struct_page in __init_single_page for
memory hotplug path. This is quite uggly but unifying both early init
and memory hotplug init paths is a large project. Make sure we plug the
regression at least.
Link: http://lkml.kernel.org/r/20180130101141.GW21609@dhcp22.suse.cz
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are multiple comments surrounding do_fault_around that memtion
fault_around_pages() and fault_around_mask(), two routines that do not
exist. These comments should be reworded to reference
fault_around_bytes, the value which is used to determine how much
do_fault_around() will attempt to read when processing a fault.
These comments should have been updated when fault_around_pages() and
fault_around_mask() were removed in commit aecd6f4426 ("mm: close race
between do_fault_around() and fault_around_bytes_set()").
Fixes: aecd6f4426 ("mm: close race between do_fault_around() and fault_around_bytes_set()")
Link: http://lkml.kernel.org/r/302D0B14-C7E9-44C6-8BED-033F9ACBD030@oracle.com
Signed-off-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Larry Bassel <larry.bassel@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workloads consisting of a large number of processes running the same
program with a very large shared data segment may experience performance
problems when numa balancing attempts to migrate the shared cow pages.
This manifests itself with many processes or tasks in
TASK_UNINTERRUPTIBLE state waiting for the shared pages to be migrated.
The program listed below simulates the conditions with these results
when run with 288 processes on a 144 core/8 socket machine.
Average throughput Average throughput Average throughput
with numa_balancing=0 with numa_balancing=1 with numa_balancing=1
without the patch with the patch
--------------------- --------------------- ---------------------
2118782 2021534 2107979
Complex production environments show less variability and fewer poorly
performing outliers accompanied with a smaller number of processes
waiting on NUMA page migration with this patch applied. In some cases,
%iowait drops from 16%-26% to 0.
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/time.h>
#include <stdio.h>
#include <wait.h>
#include <sys/mman.h>
int a[1000000] = {13};
int main(int argc, const char **argv)
{
int n = 0;
int i;
pid_t pid;
int stat;
int *count_array;
int cpu_count = 288;
long total = 0;
struct timeval t1, t2 = {(argc > 1 ? atoi(argv[1]) : 10), 0};
if (argc > 2)
cpu_count = atoi(argv[2]);
count_array = mmap(NULL, cpu_count * sizeof(int),
(PROT_READ|PROT_WRITE),
(MAP_SHARED|MAP_ANONYMOUS), 0, 0);
if (count_array == MAP_FAILED) {
perror("mmap:");
return 0;
}
for (i = 0; i < cpu_count; ++i) {
pid = fork();
if (pid <= 0)
break;
if ((i & 0xf) == 0)
usleep(2);
}
if (pid != 0) {
if (i == 0) {
perror("fork:");
return 0;
}
for (;;) {
pid = wait(&stat);
if (pid < 0)
break;
}
for (i = 0; i < cpu_count; ++i)
total += count_array[i];
printf("Total %ld\n", total);
munmap(count_array, cpu_count * sizeof(int));
return 0;
}
gettimeofday(&t1, 0);
timeradd(&t1, &t2, &t1);
while (timercmp(&t2, &t1, <)) {
int b = 0;
int j;
for (j = 0; j < 1000000; j++)
b += a[j];
gettimeofday(&t2, 0);
n++;
}
count_array[i] = n;
return 0;
}
This patch changes change_pte_range() to skip shared copy-on-write pages
when called from change_prot_numa().
NOTE: change_prot_numa() is nominally called from task_numa_work() and
queue_pages_test_walk(). task_numa_work() is the auto NUMA balancing
path, and queue_pages_test_walk() is part of explicit NUMA policy
management. However, queue_pages_test_walk() only calls
change_prot_numa() when MPOL_MF_LAZY is specified and currently that is
not allowed, so change_prot_numa() is only called from auto NUMA
balancing.
In the case of explicit NUMA policy management, shared pages are not
migrated unless MPOL_MF_MOVE_ALL is specified, and MPOL_MF_MOVE_ALL
depends on CAP_SYS_NICE. Currently, there is no way to pass information
about MPOL_MF_MOVE_ALL to change_pte_range. This will have to be fixed
if MPOL_MF_LAZY is enabled and MPOL_MF_MOVE_ALL is to be honored in lazy
migration mode.
task_numa_work() skips the read-only VMAs of programs and shared
libraries.
Link: http://lkml.kernel.org/r/1516751617-7369-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Reviewed-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Steve Sistare <steven.sistare@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter has noticed that mbind migration callback (new_page) can
get a NULL vma pointer and choke on it inside alloc_huge_page_vma which
relies on the VMA to get the hstate. We used to BUG_ON this case but
the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the
mbind hugetlb migration".
The proper way to handle this is to get the hstate from the migrated
page and rely on huge_node (resp. get_vma_policy) do the right thing
with null VMA. We are currently falling back to the default mempolicy
in that case which is in line what THP path is doing here.
Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb
pages. alloc_huge_page_noerr uses alloc_huge_page which is a highlevel
allocation function which has to take care of reserves, overcommit or
hugetlb cgroup accounting. None of that is really required for the page
migration because the new page is only temporal and either will replace
the original page or it will be dropped. This is essentially as for
other migration call paths and there shouldn't be any reason to handle
mbind in a special way.
The current implementation is even suboptimal because the migration
might fail just because the hugetlb cgroup limit is reached, or the
overcommit is saturated.
Fix this by making mbind like other hugetlb migration paths. Add a new
migration helper alloc_huge_page_vma as a wrapper around
alloc_huge_page_nodemask with additional mempolicy handling.
alloc_huge_page_noerr has no more users and it can go.
Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugetlb allocator has several layer of allocation functions depending
and the purpose of the allocation. There are two allocators depending
on whether the page can be allocated from the page allocator or we need
a contiguous allocator. This is currently opencoded in
alloc_fresh_huge_page which is the only path that might allocate giga
pages which require the later allocator. Create alloc_fresh_huge_page
which hides this implementation detail and use it in all callers which
hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page).
This shouldn't introduce any funtional change because both migration and
surplus allocators exlude giga pages explicitly.
While we are at it let's do some renaming. The current scheme is not
consistent and overly painfull to read and understand. Get rid of
prefix underscores from most functions. There is no real reason to make
names longer.
* alloc_fresh_huge_page is the new layer to abstract underlying
allocator
* __hugetlb_alloc_buddy_huge_page becomes shorter and neater
alloc_buddy_huge_page.
* Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put
the new page directly to the pool
* alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code
as it uses alloc_fresh_huge_page now
* others lose their excessive prefix underscores to make names shorter
[dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()]
Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda
Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_surplus_huge_page increases the pool size and the number of
surplus pages opportunistically to prevent from races with the pool size
change. See commit d1c3fb1f8f ("hugetlb: introduce
nr_overcommit_hugepages sysctl") for more details.
The resulting code is unnecessarily hairy, cause code duplication and
doesn't allow to share the allocation paths. Moreover pool size changes
tend to be very seldom so optimizing for them is not really reasonable.
Simplify the code and allow to allocate a fresh surplus page as long as
we are under the overcommit limit and then recheck the condition after
the allocation and drop the new page if the situation has changed. This
should provide a reasonable guarantee that an abrupt allocation requests
will not go way off the limit.
If we consider races with the pool shrinking and enlarging then we
should be reasonably safe as well. In the first case we are off by one
in the worst case and the second case should work OK because the page is
not yet visible. We can waste CPU cycles for the allocation but that
should be acceptable for a relatively rare condition.
Link: http://lkml.kernel.org/r/20180103093213.26329-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugepage migration relies on __alloc_buddy_huge_page to get a new page.
This has 2 main disadvantages.
1) it doesn't allow to migrate any huge page if the pool is used
completely which is not an exceptional case as the pool is static and
unused memory is just wasted.
2) it leads to a weird semantic when migration between two numa nodes
might increase the pool size of the destination NUMA node while the
page is in use. The issue is caused by per NUMA node surplus pages
tracking (see free_huge_page).
Address both issues by changing the way how we allocate and account
pages allocated for migration. Those should temporal by definition. So
we mark them that way (we will abuse page flags in the 3rd page) and
update free_huge_page to free such pages to the page allocator. Page
migration path then just transfers the temporal status from the new page
to the old one which will be freed on the last reference. The global
surplus count will never change during this path but we still have to be
careful when migrating a per-node suprlus page. This is now handled in
move_hugetlb_state which is called from the migration path and it copies
the hugetlb specific page state and fixes up the accounting when needed
Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better
reflect its purpose. The new allocation routine for the migration path
is __alloc_migrate_huge_page.
The user visible effect of this patch is that migrated pages are really
temporal and they travel between NUMA nodes as per the migration
request:
Before migration
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0
After
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0
with the previous implementation, both nodes would have nr_hugepages:1
until the page is freed.
Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien
specie with a lot of special casing. The allocation path is not an
exception. Unnecessarily so to be honest. It is true that the
underlying allocator is different but that is an implementation detail.
This patch unifies the hugetlb allocation path that a prepares fresh
pool pages. alloc_fresh_gigantic_page basically copies
alloc_fresh_huge_page logic so we can move everything there. This will
simplify set_max_huge_pages which doesn't have to care about what kind
of huge page we allocate.
Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, hugetlb: allocation API and migration improvements"
Motivation:
this is a follow up for [3] for the allocation API and [4] for the
hugetlb migration. It wasn't really easy to split those into two
separate patch series as they share some code.
My primary motivation to touch this code is to make the gigantic pages
migration working. The giga pages allocation code is just too fragile
and hacked into the hugetlb code now. This series tries to move giga
pages closer to the first class citizen. We are not there yet but
having 5 patches is quite a lot already and it will already make the
code much easier to follow. I will come with other changes on top after
this sees some review.
The first two patches should be trivial to review. The third patch
changes the way how we migrate huge pages. Newly allocated pages are a
subject of the overcommit check and they participate surplus accounting
which is quite unfortunate as the changelog explains. This patch
doesn't change anything wrt. giga pages.
Patch #4 removes the surplus accounting hack from
__alloc_surplus_huge_page. I hope I didn't miss anything there and a
deeper review is really due there.
Patch #5 finally unifies allocation paths and giga pages shouldn't be
any special anymore. There is also some renaming going on as well.
This patch (of 6):
hugetlb allocator has two entry points to the page allocator
- alloc_fresh_huge_page_node
- __hugetlb_alloc_buddy_huge_page
The two differ very subtly in two aspects. The first one doesn't care
about HTLB_BUDDY_* stats and it doesn't initialize the huge page.
prep_new_huge_page is not used because it not only initializes hugetlb
specific stuff but because it also put_page and releases the page to the
hugetlb pool which is not what is required in some contexts. This makes
things more complicated than necessary.
Simplify things by a) removing the page allocator entry point duplicity
and only keep __hugetlb_alloc_buddy_huge_page and b) make
prep_new_huge_page more reusable by removing the put_page which moves
the page to the allocator pool. All current callers are updated to call
put_page explicitly. Later patches will add new callers which won't
need it.
This patch shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_resize_[memsw]_limit() tries to free only 32
(SWAP_CLUSTER_MAX) pages on each iteration. This makes it practically
impossible to decrease limit of memory cgroup. Tasks could easily
allocate back 32 pages, so we can't reduce memory usage, and once
retry_count reaches zero we return -EBUSY.
Easy to reproduce the problem by running the following commands:
mkdir /sys/fs/cgroup/memory/test
echo $$ >> /sys/fs/cgroup/memory/test/tasks
cat big_file > /dev/null &
sleep 1 && echo $((100*1024*1024)) > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
-bash: echo: write error: Device or resource busy
Instead of relying on retry_count, keep retrying the reclaim until the
desired limit is reached or fail if the reclaim doesn't make any
progress or a signal is pending.
Link: http://lkml.kernel.org/r/20180119132544.19569-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following sparse warning:
mm/memcontrol.c:1097:14: warning: symbol 'memcg1_stats' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180118193327.14200-1-chrisadr@gentoo.org
Signed-off-by: Christopher Díaz Riveros <chrisadr@gentoo.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable 'entry' is used before being initialized in
hmm_vma_walk_pmd().
No bad effect (beside performance hit) so !non_swap_entry(0) evaluate to
true which trigger a fault as if CPU was trying to access migrated
memory and migrate memory back from device memory to regular memory.
This function (hmm_vma_walk_pmd()) is called when a device driver tries
to populate its own page table. For migrated memory it should not
happen as the device driver should already have populated its page table
correctly during the migration.
Only case I can think of is multi-GPU where a second GPU triggers
migration back to regular memory. Again this would just result in a
performance hit, nothing bad would happen.
Link: http://lkml.kernel.org/r/20180122185759.26286-1-jglisse@redhat.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment is confusing. On the one hand, it refers to 32-bit
alignment (struct page alignment on 32-bit platforms), but this would
only guarantee that the 2 lowest bits must be zero. On the other hand,
it claims that at least 3 bits are available, and 3 bits are actually
used.
This is not broken, because there is a stronger alignment guarantee,
just less obvious. Let's fix the comment to make it clear how many bits
are available and why.
Although memmap arrays are allocated in various places, the resulting
pointer is encoded eventually, so I am adding a BUG_ON() here to enforce
at runtime that all expected bits are indeed available.
I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is
sufficient, because this part of the calculation can be easily checked
at build time.
[ptesarik@suse.com: v2]
Link: http://lkml.kernel.org/r/20180125100516.589ea6af@ezekiel.suse.cz
Link: http://lkml.kernel.org/r/20180119080908.3a662e6f@ezekiel.suse.cz
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mode" argument is not used by try_to_compact_pages() and sub functions
anymore, it has been replaced by "prio". Fix the comment to explain the
use of "prio" argument.
Link: http://lkml.kernel.org/r/1515801336-20611-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
static struct page_ext_operations *page_ext_ops[] always contains debug_guardpage_ops,
static struct page_ext_operations *page_ext_ops[] = {
&debug_guardpage_ops,
#ifdef CONFIG_PAGE_OWNER
&page_owner_ops,
#endif
...
}
but for it to work, CONFIG_DEBUG_PAGEALLOC must be enabled first. If
someone has CONFIG_PAGE_EXTENSION, but has none of its users, eg:
(CONFIG_PAGE_OWNER, CONFIG_DEBUG_PAGEALLOC, CONFIG_IDLE_PAGE_TRACKING),
we can shrink page_ext_init() to a simple retq.
$ size vmlinux (before patch)
text data bss dec hex filename
14356698 5681582 1687748 21726028 14b834c vmlinux
$ size vmlinux (after patch)
text data bss dec hex filename
14356008 5681538 1687748 21725294 14b806e vmlinux
On the other hand, it might does not even make sense, since if someone
enables CONFIG_PAGE_EXTENSION, I would expect him to enable also at
least one of its users.
Link: http://lkml.kernel.org/r/20180105130235.GA21241@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_resize_limit() and mem_cgroup_resize_memsw_limit() have
identical logics. Refactor code so we don't need to keep two pieces of
code that does same thing.
Link: http://lkml.kernel.org/r/20180108224238.14583-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We waste sizeof(swp_entry_t) for zswap header when using zsmalloc as
zpool driver because zsmalloc doesn't support eviction.
Add zpool_evictable() to detect if zpool is potentially evictable, and
use it in zswap to avoid waste memory for zswap header.
[yuzhao@google.com: The zpool->" prefix is a result of copy & paste]
Link: http://lkml.kernel.org/r/20180110225626.110330-1-yuzhao@google.com
Link: http://lkml.kernel.org/r/20180110224741.83751-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During our recent testing with fadvise(FADV_DONTNEED), we find that if
given offset/length is not page-aligned, the last page will not be
discarded. The tool we use is vmtouch (https://hoytech.com/vmtouch/),
we map a 10KB-sized file into memory and then try to run this tool to
evict the whole file mapping, but the last single page always remains
staying in the memory:
$./vmtouch -e test_10K
Files: 1
Directories: 0
Evicted Pages: 3 (12K)
Elapsed: 2.1e-05 seconds
$./vmtouch test_10K
Files: 1
Directories: 0
Resident Pages: 1/3 4K/12K 33.3%
Elapsed: 5.5e-05 seconds
However when we test with an older kernel, say 3.10, this problem is
gone. So we wonder if this is a regression:
$./vmtouch -e test_10K
Files: 1
Directories: 0
Evicted Pages: 3 (12K)
Elapsed: 8.2e-05 seconds
$./vmtouch test_10K
Files: 1
Directories: 0
Resident Pages: 0/3 0/12K 0% <-- partial page also discarded
Elapsed: 5e-05 seconds
After digging a little bit into this problem, we find it seems not a
regression. Not discarding partial page is likely to be on purpose
according to commit 441c228f81 ("mm: fadvise: document the
fadvise(FADV_DONTNEED) behaviour for partial pages") written by Mel
Gorman. He explained why partial pages should be preserved instead of
being discarded when using fadvise(FADV_DONTNEED).
However, the interesting part is that the actual code did NOT work as
the same as it was described, the partial page was still discarded
anyway, due to a calculation mistake of `end_index' passed to
invalidate_mapping_pages(). This mistake has not been fixed until
recently, that's why we fail to reproduce our problem in old kernels.
The fix is done in commit 18aba41cbf ("mm/fadvise.c: do not discard
partial pages with POSIX_FADV_DONTNEED") by Oleg Drokin.
Back to the original testing, our problem becomes that there is a
special case that, if the page-unaligned `endbyte' is also the end of
file, it is not necessary at all to preserve the last partial page, as
we all know no one else will use the rest of it. It should be safe
enough if we just discard the whole page. So we add an EOF check in
this patch.
We also find a poosbile real world issue in mainline kernel. Assume
such scenario: A userspace backup application want to backup a huge
amount of small files (<4k) at once, the developer might (I guess) want
to use fadvise(FADV_DONTNEED) to save memory. However, FADV_DONTNEED
won't really happen since the only page mapped is a partial page, and
kernel will preserve it. Our patch also fixes this problem, since we
know the endbyte is EOF, so we discard it.
Here is a simple reproducer to reproduce and verify each scenario we
described above:
test_fadvise.c
==============================
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
int main(int argc, char **argv)
{
int i, fd, ret, len;
struct stat buf;
void *addr;
unsigned char *vec;
char *strbuf;
ssize_t pagesize = getpagesize();
ssize_t filesize;
fd = open(argv[1], O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
if (fd < 0)
return -1;
filesize = strtoul(argv[2], NULL, 10);
strbuf = malloc(filesize);
memset(strbuf, 42, filesize);
write(fd, strbuf, filesize);
free(strbuf);
fsync(fd);
len = (filesize + pagesize - 1) / pagesize;
printf("length of pages: %d\n", len);
addr = mmap(NULL, filesize, PROT_READ, MAP_SHARED, fd, 0);
if (addr == MAP_FAILED)
return -1;
ret = posix_fadvise(fd, 0, filesize, POSIX_FADV_DONTNEED);
if (ret < 0)
return -1;
vec = malloc(len);
ret = mincore(addr, filesize, (void *)vec);
if (ret < 0)
return -1;
for (i = 0; i < len; i++)
printf("pages[%d]: %x\n", i, vec[i] & 0x1);
free(vec);
close(fd);
return 0;
}
==============================
Test 1: running on kernel with commit 18aba41cbf reverted:
[root@caspar ~]# uname -r
4.15.0-rc6.revert+
[root@caspar ~]# ./test_fadvise file1 1024
length of pages: 1
pages[0]: 0 # <-- partial page discarded
[root@caspar ~]# ./test_fadvise file2 8192
length of pages: 2
pages[0]: 0
pages[1]: 0
[root@caspar ~]# ./test_fadvise file3 10240
length of pages: 3
pages[0]: 0
pages[1]: 0
pages[2]: 0 # <-- partial page discarded
Test 2: running on mainline kernel:
[root@caspar ~]# uname -r
4.15.0-rc6+
[root@caspar ~]# ./test_fadvise test1 1024
length of pages: 1
pages[0]: 1 # <-- partial and the only page not discarded
[root@caspar ~]# ./test_fadvise test2 8192
length of pages: 2
pages[0]: 0
pages[1]: 0
[root@caspar ~]# ./test_fadvise test3 10240
length of pages: 3
pages[0]: 0
pages[1]: 0
pages[2]: 1 # <-- partial page not discarded
Test 3: running on kernel with this patch:
[root@caspar ~]# uname -r
4.15.0-rc6.patched+
[root@caspar ~]# ./test_fadvise test1 1024
length of pages: 1
pages[0]: 0 # <-- partial page and EOF, discarded
[root@caspar ~]# ./test_fadvise test2 8192
length of pages: 2
pages[0]: 0
pages[1]: 0
[root@caspar ~]# ./test_fadvise test3 10240
length of pages: 3
pages[0]: 0
pages[1]: 0
pages[2]: 0 # <-- partial page and EOF, discarded
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/5222da9ee20e1695eaabb69f631f200d6e6b8876.1515132470.git.jinli.zjl@alibaba-inc.com
Signed-off-by: shidao.ytt <shidao.ytt@alibaba-inc.com>
Signed-off-by: Caspar Zhang <jinli.zjl@alibaba-inc.com>
Reviewed-by: Oliver Yang <zhiche.yy@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minchan Kim asked the following question -- what locks protects
address_space destroying when race happens between inode trauncation and
__isolate_lru_page? Jan Kara clarified by describing the race as follows
CPU1 CPU2
truncate(inode) __isolate_lru_page()
...
truncate_inode_page(mapping, page);
delete_from_page_cache(page)
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(page, NULL)
page_cache_tree_delete(..)
... mapping = page_mapping(page);
page->mapping = NULL;
...
spin_unlock_irqrestore(&mapping->tree_lock, flags);
page_cache_free_page(mapping, page)
put_page(page)
if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space
if (mapping && !mapping->a_ops->migratepage)
- we've dereferenced mapping which is potentially already free.
The race is theoretically possible but unlikely. Before the
delete_from_page_cache, truncate_cleanup_page is called so the page is
likely to be !PageDirty or PageWriteback which gets skipped by the only
caller that checks the mappping in __isolate_lru_page. Even if the race
occurs, a substantial amount of work has to happen during a tiny window
with no preemption but it could potentially be done using a virtual
machine to artifically slow one CPU or halt it during the critical
window.
This patch should eliminate the race with truncation by try-locking the
page before derefencing mapping and aborting if the lock was not
acquired. There was a suggestion from Huang Ying to use RCU as a
side-effect to prevent mapping being freed. However, I do not like the
solution as it's an unconventional means of preserving a mapping and
it's not a context where rcu_read_lock is obviously protecting rcu data.
Link: http://lkml.kernel.org/r/20180104102512.2qos3h5vqzeisrek@techsingularity.net
Fixes: c824493528 ("mm: compaction: make isolate_lru_page() filter-aware again")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adapt add_seals()/get_seals() to work with hugetbfs-backed memory.
Teach memfd_create() to allow sealing operations on MFD_HUGETLB.
Link: http://lkml.kernel.org/r/20171107122800.25517-6-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Those functions are called for memfd files, backed by shmem or hugetlb
(the next patches will handle hugetlb).
Link: http://lkml.kernel.org/r/20171107122800.25517-3-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memfd: add sealing to hugetlb-backed memory", v3.
Recently, Mike Kravetz added hugetlbfs support to memfd. However, he
didn't add sealing support. One of the reasons to use memfd is to have
shared memory sealing when doing IPC or sharing memory with another
process with some extra safety. qemu uses shared memory & hugetables
with vhost-user (used by dpdk), so it is reasonable to use memfd now
instead for convenience and security reasons.
This patch (of 9):
The functions are called through shmem_fcntl() only. And no danger in
removing the EXPORTs as the routines only work with shmem file structs.
Link: http://lkml.kernel.org/r/20171107122800.25517-2-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Structure zs_pool has special flag to indicate success of shrinker
initialization. unregister_shrinker() has improved and can detect by
itself whether actual deinitialization should be performed or not, so
extra flag becomes redundant.
[akpm@linux-foundation.org: update comment (Aliaksei), remove unneeded cast]
Link: http://lkml.kernel.org/r/1513680552-9798-1-git-send-email-akaraliou.dev@gmail.com
Signed-off-by: Aliaksei Karaliou <akaraliou.dev@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This uses the new annotation to determine if an mm has mmu notifiers
with blockable invalidate range callbacks to avoid oom reaping.
Otherwise, the callbacks are used around unmap_page_range().
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141330120.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 4d4bbd8526 ("mm, oom_reaper: skip mm structs with mmu
notifiers") prevented the oom reaper from unmapping private anonymous
memory with the oom reaper when the oom victim mm had mmu notifiers
registered.
The rationale is that doing mmu_notifier_invalidate_range_{start,end}()
around the unmap_page_range(), which is needed, can block and the oom
killer will stall forever waiting for the victim to exit, which may not
be possible without reaping.
That concern is real, but only true for mmu notifiers that have
blockable invalidate_range_{start,end}() callbacks. This patch adds a
"flags" field to mmu notifier ops that can set a bit to indicate that
these callbacks do not block.
The implementation is steered toward an expensive slowpath, such as
after the oom reaper has grabbed mm->mmap_sem of a still alive oom
victim.
[rientjes@google.com: mmu_notifier_invalidate_range_end() can also call the invalidate_range() must not block, fix comment]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1801091339570.240101@chino.kir.corp.google.com
[akpm@linux-foundation.org: make mm_has_blockable_invalidate_notifiers() return bool, use rwsem_is_locked()]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141329500.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current design, khugepaged needs to acquire mmap_sem before
scanning an mm. But in some corner cases, khugepaged may scan a process
which is modifying its memory mapping, so khugepaged blocks in
uninterruptible state. But the process might hold the mmap_sem for a
long time when modifying a huge memory space and it may trigger the
below khugepaged hung issue:
INFO: task khugepaged:270 blocked for more than 120 seconds.
Tainted: G E 4.9.65-006.ali3000.alios7.x86_64 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
khugepaged D 0 270 2 0x00000000
ffff883f3deae4c0 0000000000000000 ffff883f610596c0 ffff883f7d359440
ffff883f63818000 ffffc90019adfc78 ffffffff817079a5 d67e5aa8c1860a64
0000000000000246 ffff883f7d359440 ffffc90019adfc88 ffff883f610596c0
Call Trace:
schedule+0x36/0x80
rwsem_down_read_failed+0xf0/0x150
call_rwsem_down_read_failed+0x18/0x30
down_read+0x20/0x40
khugepaged+0x476/0x11d0
kthread+0xe6/0x100
ret_from_fork+0x25/0x30
So it sounds pointless to just block khugepaged waiting for the
semaphore so replace down_read() with down_read_trylock() to move to
scan the next mm quickly instead of just blocking on the semaphore so
that other processes can get more chances to install THP. Then
khugepaged can come back to scan the skipped mm when it has finished the
current round full_scan.
And it appears that the change can improve khugepaged efficiency a
little bit.
Below is the test result when running LTP on a 24 cores 4GB memory 2
nodes NUMA VM:
pristine w/ trylock
full_scan 197 187
pages_collapsed 21 26
thp_fault_alloc 40818 44466
thp_fault_fallback 18413 16679
thp_collapse_alloc 21 150
thp_collapse_alloc_failed 14 16
thp_file_alloc 369 369
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: tweak comment]
[arnd@arndb.de: avoid uninitialized variable use]
Link: http://lkml.kernel.org/r/20171215125129.2948634-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/1513281203-54878-1-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of marking the pmd ready for split, invalidate the pmd. This
should take care of powerpc requirement. Only side effect is that we
mark the pmd invalid early. This can result in us blocking access to
the page a bit longer if we race against a thp split.
[kirill.shutemov@linux.intel.com: rebased, dirty THP once]
Link: http://lkml.kernel.org/r/20171213105756.69879-13-kirill.shutemov@linux.intel.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the modifed pmdp_invalidate() that returns the previous value of pmd
to transfer dirty and accessed bits.
Link: http://lkml.kernel.org/r/20171213105756.69879-12-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil noted that pmdp_invalidate() is not atomic and we can lose
dirty and access bits if CPU sets them after pmdp dereference, but
before set_pmd_at().
The patch change pmdp_invalidate() to make the entry non-present
atomically and return previous value of the entry. This value can be
used to check if CPU set dirty/accessed bits under us.
The race window is very small and I haven't seen any reports that can be
attributed to the bug. For this reason, I don't think backporting to
stable trees needed.
Link: http://lkml.kernel.org/r/20171213105756.69879-11-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several users of unmap_mapping_range() would prefer to express their
range in pages rather than bytes. Unfortuately, on a 32-bit kernel, you
have to remember to cast your page number to a 64-bit type before
shifting it, and four places in the current tree didn't remember to do
that. That's a sign of a bad interface.
Conveniently, unmap_mapping_range() actually converts from bytes into
pages, so hoist the guts of unmap_mapping_range() into a new function
unmap_mapping_pages() and convert the callers which want to use pages.
Link: http://lkml.kernel.org/r/20171206142627.GD32044@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reported-by: "zhangyi (F)" <yi.zhang@huawei.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pmd_trans_splitting() was removed after THP refcounting redesign,
therefore related comment should be updated.
Link: http://lkml.kernel.org/r/1512625745-59451-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In register_page_bootmem_info_section() we call __nr_to_section() in
order to get the mem_section struct at the beginning of the function.
Since we already got it, there is no need for a second call to
__nr_to_section().
Link: http://lkml.kernel.org/r/20171207102914.GA12396@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment describes @fullmm argument, but the function has no such
parameter.
Update the comment to match the code and convert it to kernel-doc
markup.
Link: http://lkml.kernel.org/r/1512394531-2264-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we call register_page_bootmem_info_section() having
CONFIG_SPARSEMEM_VMEMMAP enabled, we check if the pfn is valid.
This check is redundant as we already checked this in
register_page_bootmem_info_node() before calling
register_page_bootmem_info_section(), so let's get rid of it.
Link: http://lkml.kernel.org/r/20171205143422.GA31458@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugepages_treat_as_movable has been introduced by 396faf0303 ("Allow
huge page allocations to use GFP_HIGH_MOVABLE") to allow hugetlb
allocations from ZONE_MOVABLE even when hugetlb pages were not
migrateable. The purpose of the movable zone was different at the time.
It aimed at reducing memory fragmentation and hugetlb pages being long
lived and large werre not contributing to the fragmentation so it was
acceptable to use the zone back then.
Things have changed though and the primary purpose of the zone became
migratability guarantee. If we allow non migrateable hugetlb pages to
be in ZONE_MOVABLE memory hotplug might fail to offline the memory.
Remove the knob and only rely on hugepage_migration_supported to allow
movable zones.
Mel said:
: Primarily it was aimed at allowing the hugetlb pool to safely shrink with
: the ability to grow it again. The use case was for batched jobs, some of
: which needed huge pages and others that did not but didn't want the memory
: useless pinned in the huge pages pool.
:
: I suspect that more users rely on THP than hugetlbfs for flexible use of
: huge pages with fallback options so I think that removing the option
: should be ok.
Link: http://lkml.kernel.org/r/20171003072619.8654-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Alexandru Moise <00moses.alexander00@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove unused function pgdat_reclaimable_pages() and
node_page_state_snapshot() which becomes unused as well.
Link: http://lkml.kernel.org/r/20171122094416.26019-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shakeel Butt reported he has observed in production systems that the job
loader gets stuck for 10s of seconds while doing a mount operation. It
turns out that it was stuck in register_shrinker() because some
unrelated job was under memory pressure and was spending time in
shrink_slab(). Machines have a lot of shrinkers registered and jobs
under memory pressure have to traverse all of those memcg-aware
shrinkers and affect unrelated jobs which want to register their own
shrinkers.
To solve the issue, this patch simply bails out slab shrinking if it is
found that someone wants to register a shrinker in parallel. A downside
is it could cause unfair shrinking between shrinkers. However, it
should be rare and we can add compilcated logic if we find it's not
enough.
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/20171115005602.GB23810@bbox
Link: http://lkml.kernel.org/r/1511481899-20335-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_free_pages() will return a virtual address, but it is not just a
32-bit address, for example on a 64-bit system. And this comment really
confuses new readers of mm.
Link: http://lkml.kernel.org/r/1511780964-64864-1-git-send-email-chenjiankang1@huawei.com
Signed-off-by: Jiankang Chen <chenjiankang1@huawei.com>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've seen memory.stat reads in top-level cgroups take up to fourteen
seconds during a userspace bug that created tens of thousands of ghost
cgroups pinned by lingering page cache.
Even with a more reasonable number of cgroups, aggregating memory.stat
is unnecessarily heavy. The complexity is this:
nr_cgroups * nr_stat_items * nr_possible_cpus
where the stat items are ~70 at this point. With 128 cgroups and 128
CPUs - decent, not enormous setups - reading the top-level memory.stat
has to aggregate over a million per-cpu counters. This doesn't scale.
Instead of spreading the source of truth across all CPUs, use the
per-cpu counters merely to batch updates to shared atomic counters.
This is the same as the per-cpu stocks we use for charging memory to the
shared atomic page_counters, and also the way the global vmstat counters
are implemented.
Vmstat has elaborate spilling thresholds that depend on the number of
CPUs, amount of memory, and memory pressure - carefully balancing the
cost of counter updates with the amount of per-cpu error. That's
because the vmstat counters are system-wide, but also used for decisions
inside the kernel (e.g. NR_FREE_PAGES in the allocator). Neither is
true for the memory controller.
Use the same static batch size we already use for page_counter updates
during charging. The per-cpu error in the stats will be 128k, which is
an acceptable ratio of cores to memory accounting granularity.
[hannes@cmpxchg.org: fix warning in __this_cpu_xchg() calls]
Link: http://lkml.kernel.org/r/20171201135750.GB8097@cmpxchg.org
Link: http://lkml.kernel.org/r/20171103153336.24044-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>