Commit Graph

15 Commits

Author SHA1 Message Date
Will Deacon 28c6fbc3b4 arm64: tlb: remove redundant barrier from __flush_tlb_pgtable
__flush_tlb_pgtable is used to invalidate intermediate page table
entries after they have been cleared and are about to be freed. Since
pXd_clear imply memory barriers, we don't need the extra one here.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:56:33 +01:00
Will Deacon f3e002c24e arm64: tlbflush: remove redundant ASID casts to (unsigned long)
The ASID macro returns a 64-bit (long long) value, so there is no need
to cast to (unsigned long) before shifting prior to a TLBI operation.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:56:06 +01:00
Will Deacon 8e63d38876 arm64: flush: use local TLB and I-cache invalidation
There are a number of places where a single CPU is running with a
private page-table and we need to perform maintenance on the TLB and
I-cache in order to ensure correctness, but do not require the operation
to be broadcast to other CPUs.

This patch adds local variants of tlb_flush_all and __flush_icache_all
to support these use-cases and updates the callers respectively.
__local_flush_icache_all also implies an isb, since it is intended to be
used synchronously.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:45:27 +01:00
Catalin Marinas 4150e50bf5 arm64: Use last level TLBI for user pte changes
The flush_tlb_page() function is used on user address ranges when PTEs
(or PMDs/PUDs for huge pages) were changed (attributes or clearing). For
such cases, it is more efficient to invalidate only the last level of
the TLB with the "tlbi vale1is" instruction.

In the TLB shoot-down case, the TLB caching of the intermediate page
table levels (pmd, pud, pgd) is handled by __flush_tlb_pgtable() via the
__(pte|pmd|pud)_free_tlb() functions and it is not deferred to
tlb_finish_mmu() (as of commit 285994a62c - "arm64: Invalidate the TLB
corresponding to intermediate page table levels"). The tlb_flush()
function only needs to invalidate the TLB for the last level of page
tables; the __flush_tlb_range() function gains a fourth argument for
last level TLBI.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-28 11:44:01 +01:00
Catalin Marinas da4e73303e arm64: Clean up __flush_tlb(_kernel)_range functions
This patch moves the MAX_TLB_RANGE check into the
flush_tlb(_kernel)_range functions directly to avoid the
undescore-prefixed definitions (and for consistency with a subsequent
patch).

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-28 11:43:15 +01:00
Will Deacon cba3574fd5 arm64: move update_mmu_cache() into asm/pgtable.h
Mark Brown reported an allnoconfig build failure in -next:

  Today's linux-next fails to build an arm64 allnoconfig due to "mm:
  make GUP handle pfn mapping unless FOLL_GET is requested" which
  causes:

  >       arm64-allnoconfig
  > ../mm/gup.c:51:4: error: implicit declaration of function
    'update_mmu_cache' [-Werror=implicit-function-declaration]

Fix the error by moving the function to asm/pgtable.h, as is the case
for most other architectures.

Reported-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27 11:08:39 +01:00
Vladimir Murzin c7d6b573fe arm64: mm: remove reference to tlb.S from comment block
tlb.S has been removed since fa48e6f "arm64: mm: Optimise tlb flush logic
where we have >4K granule", so align comment with that.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-06-12 15:36:52 +01:00
Catalin Marinas 285994a62c arm64: Invalidate the TLB corresponding to intermediate page table levels
The ARM architecture allows the caching of intermediate page table
levels and page table freeing requires a sequence like:

	pmd_clear()
	TLB invalidation
	pte page freeing

With commit 5e5f6dc105 (arm64: mm: enable HAVE_RCU_TABLE_FREE logic),
the page table freeing batching was moved from tlb_remove_page() to
tlb_remove_table(). The former takes care of TLB invalidation as this is
also shared with pte clearing and page cache page freeing. The latter,
however, does not invalidate the TLBs for intermediate page table levels
as it probably relies on the architecture code to do it if required.
When the mm->mm_users < 2, tlb_remove_table() does not do any batching
and page table pages are freed before tlb_finish_mmu() which performs
the actual TLB invalidation.

This patch introduces __tlb_flush_pgtable() for arm64 and calls it from
the {pte,pmd,pud}_free_tlb() directly without relying on deferred page
table freeing.

Fixes: 5e5f6dc105 arm64: mm: enable HAVE_RCU_TABLE_FREE logic
Reported-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-03-14 10:48:30 +00:00
Yingjoe Chen 06ff87bae8 arm64: mm: remove unused functions and variable protoypes
The functions __cpu_flush_user_tlb_range and __cpu_flush_kern_tlb_range
were removed in commit fa48e6f780 'arm64: mm: Optimise tlb flush logic
where we have >4K granule'. Global variable cpu_tlb was never used in
arm64.

Remove them.

Signed-off-by: Yingjoe Chen <yingjoe.chen@mediatek.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-02-26 18:25:38 +00:00
Mark Salter 05ac653054 arm64: fix soft lockup due to large tlb flush range
Under certain loads, this soft lockup has been observed:

   BUG: soft lockup - CPU#2 stuck for 22s! [ip6tables:1016]
   Modules linked in: ip6t_rpfilter ip6t_REJECT cfg80211 rfkill xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw vfat fat efivarfs xfs libcrc32c

   CPU: 2 PID: 1016 Comm: ip6tables Not tainted 3.13.0-0.rc7.30.sa2.aarch64 #1
   task: fffffe03e81d1400 ti: fffffe03f01f8000 task.ti: fffffe03f01f8000
   PC is at __cpu_flush_kern_tlb_range+0xc/0x40
   LR is at __purge_vmap_area_lazy+0x28c/0x3ac
   pc : [<fffffe000009c5cc>] lr : [<fffffe0000182710>] pstate: 80000145
   sp : fffffe03f01fbb70
   x29: fffffe03f01fbb70 x28: fffffe03f01f8000
   x27: fffffe0000b19000 x26: 00000000000000d0
   x25: 000000000000001c x24: fffffe03f01fbc50
   x23: fffffe03f01fbc58 x22: fffffe03f01fbc10
   x21: fffffe0000b2a3f8 x20: 0000000000000802
   x19: fffffe0000b2a3c8 x18: 000003fffdf52710
   x17: 000003ff9d8bb910 x16: fffffe000050fbfc
   x15: 0000000000005735 x14: 000003ff9d7e1a5c
   x13: 0000000000000000 x12: 000003ff9d7e1a5c
   x11: 0000000000000007 x10: fffffe0000c09af0
   x9 : fffffe0000ad1000 x8 : 000000000000005c
   x7 : fffffe03e8624000 x6 : 0000000000000000
   x5 : 0000000000000000 x4 : 0000000000000000
   x3 : fffffe0000c09cc8 x2 : 0000000000000000
   x1 : 000fffffdfffca80 x0 : 000fffffcd742150

The __cpu_flush_kern_tlb_range() function looks like:

  ENTRY(__cpu_flush_kern_tlb_range)
	dsb	sy
	lsr	x0, x0, #12
	lsr	x1, x1, #12
  1:	tlbi	vaae1is, x0
	add	x0, x0, #1
	cmp	x0, x1
	b.lo	1b
	dsb	sy
	isb
	ret
  ENDPROC(__cpu_flush_kern_tlb_range)

The above soft lockup shows the PC at tlbi insn with:

  x0 = 0x000fffffcd742150
  x1 = 0x000fffffdfffca80

So __cpu_flush_kern_tlb_range has 0x128ba930 tlbi flushes left
after it has already been looping for 23 seconds!.

Looking up one frame at __purge_vmap_area_lazy(), there is:

	...
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
		if (va->flags & VM_LAZY_FREE) {
			if (va->va_start < *start)
				*start = va->va_start;
			if (va->va_end > *end)
				*end = va->va_end;
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
			list_add_tail(&va->purge_list, &valist);
			va->flags |= VM_LAZY_FREEING;
			va->flags &= ~VM_LAZY_FREE;
		}
	}
	...
	if (nr || force_flush)
		flush_tlb_kernel_range(*start, *end);

So if two areas are being freed, the range passed to
flush_tlb_kernel_range() may be as large as the vmalloc
space. For arm64, this is ~240GB for 4k pagesize and ~2TB
for 64kpage size.

This patch works around this problem by adding a loop limit.
If the range is larger than the limit, use flush_tlb_all()
rather than flushing based on individual pages. The limit
chosen is arbitrary as the TLB size is implementation
specific and not accessible in an architected way. The aim
of the arbitrary limit is to avoid soft lockup.

Signed-off-by: Mark Salter <msalter@redhat.com>
[catalin.marinas@arm.com: commit log update]
[catalin.marinas@arm.com: marginal optimisation]
[catalin.marinas@arm.com: changed to MAX_TLB_RANGE and added comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-07-24 18:41:13 +01:00
Catalin Marinas 7f0b1bf045 arm64: Fix barriers used for page table modifications
The architecture specification states that both DSB and ISB are required
between page table modifications and subsequent memory accesses using the
corresponding virtual address. When TLB invalidation takes place, the
tlb_flush_* functions already have the necessary barriers. However, there are
other functions like create_mapping() for which this is not the case.

The patch adds the DSB+ISB instructions in the set_pte() function for
valid kernel mappings. The invalid pte case is handled by tlb_flush_*
and the user mappings in general have a corresponding update_mmu_cache()
call containing a DSB. Even when update_mmu_cache() isn't called, the
kernel can still cope with an unlikely spurious page fault by
re-executing the instruction.

In addition, the set_pmd, set_pud() functions gain an ISB for
architecture compliance when block mappings are created.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Steve Capper <steve.capper@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
2014-07-24 10:25:42 +01:00
Will Deacon 98f7685ee6 arm64: barriers: make use of barrier options with explicit barriers
When calling our low-level barrier macros directly, we can often suffice
with more relaxed behaviour than the default "all accesses, full system"
option.

This patch updates the users of dsb() to specify the option which they
actually require.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-09 17:03:15 +01:00
Steve Capper fa48e6f780 arm64: mm: Optimise tlb flush logic where we have >4K granule
The tlb maintainence functions: __cpu_flush_user_tlb_range and
__cpu_flush_kern_tlb_range do not take into consideration the page
granule when looping through the address range, and repeatedly flush
tlb entries for the same page when operating with 64K pages.

This patch re-works the logic s.t. we instead advance the loop by
 1 << (PAGE_SHIFT - 12), so avoid repeating ourselves.

Also the routines have been converted from assembler to static inline
functions to aid with legibility and potential compiler optimisations.

The isb() has been removed from flush_tlb_kernel_range(.) as it is
only needed when changing the execute permission of a mapping. If one
needs to set an area of the kernel as execute/non-execute an isb()
must be inserted after the call to flush_tlb_kernel_range.

Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-09 17:00:48 +01:00
Steve Capper af07484863 ARM64: mm: THP support.
Bring Transparent HugePage support to ARM. The size of a
transparent huge page depends on the normal page size. A
transparent huge page is always represented as a pmd.

If PAGE_SIZE is 4KB, THPs are 2MB.
If PAGE_SIZE is 64KB, THPs are 512MB.

Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2013-06-14 09:52:41 +01:00
Catalin Marinas 58d0ba578b arm64: TLB maintenance functionality
This patch adds the TLB maintenance functions. There is no distinction
made between the I and D TLBs. TLB maintenance operations are
automatically broadcast between CPUs in hardware. The inner-shareable
operations are always present, even on UP systems.

NOTE: Large part of this patch to be dropped once Peter Z's generic
mmu_gather patches are merged.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-09-17 13:42:01 +01:00