sq->cached_sq_head and cq->cached_cq_tail are both unsigned int. If
cached_sq_head overflows before cached_cq_tail, then we may miss a
barrier req. As cached_cq_tail always follows cached_sq_head, the NQ
should be enough.
Cc: stable@vger.kernel.org
Fixes: de0617e467 ("io_uring: add support for marking commands as draining")
Signed-off-by: Zhengyuan Liu <liuzhengyuan@kylinos.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull percpu updates from Dennis Zhou:
"This includes changes to let percpu_ref release the backing percpu
memory earlier after it has been switched to atomic in cases where the
percpu ref is not revived.
This will help recycle percpu memory earlier in cases where the
refcounts are pinned for prolonged periods of time"
* 'for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu_ref: release percpu memory early without PERCPU_REF_ALLOW_REINIT
md: initialize percpu refcounters using PERCU_REF_ALLOW_REINIT
io_uring: initialize percpu refcounters using PERCU_REF_ALLOW_REINIT
percpu_ref: introduce PERCPU_REF_ALLOW_REINIT flag
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl0nUl4QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgplCaEACa7c7ybRgV6CZpS9PXXVqBJqYILRLBXsnn
MXomrSdjKMs0Y928RAQHFNWh3HaHHtdvSmFvwOpfF5lyrYXVfc9MQ7brqarDp1t2
f4jvkL63BVG2Zs/VL8QVAz+CwtCF39hduzUR/Y9j/4+rJNhSBMNJLY0nlB5weCTy
MJetnLoQ9ETA2+xu49vAM/PFJgBynNUAyUer918y8QysJRj90/VnhieQmrVb4tpG
Q4yZFKq4YPDs0tLEX4Nj6eJERcyW/4MC2oZ0aPXU4g2Dc3SVWaSNOo5WpkP+crGt
0dbyLmhomteE6+Kaco1hAWIkG/RuvgiMzDizryi0enXP51edV3Vnwyg3MQSUhcnf
Pn7vrDkajKBE9rFGlLy8V4gkKdS8XJQy2xA1MWm3aWgGl4v0j64EXIe0IhIK30vU
25A9jLDcdgr74+Lw+vWLLd+oeGD0iFf6wiEp+3jzEdtfVNE/lD6yilTzbdz2V0UK
8T1sRLMEkaG7CbxOVc1UAfcvObjuqQihEI0fQvl4yxV178h8mtWB87YmV2S2EhzP
v6FSxiC1yZ7J+rwb/Mff7+1GoOgzrpS/zESk2WMTgcwVdiwFfv5eIC26ZNWObJ/x
IY+4xRgTf2dEsjBeumOuBzxTfzrZb+pTO4GCa4O+t0UDQRIwl0y20pTXKtxU3y/U
gKPXEjgXrQ==
=jDiB
-----END PGP SIGNATURE-----
Merge tag 'for-5.3/io_uring-20190711' of git://git.kernel.dk/linux-block
Pull io_uring updates from Jens Axboe:
"This contains:
- Support for recvmsg/sendmsg as first class opcodes.
I don't envision going much further down this path, as there are
plans in progress to support potentially any system call in an
async fashion through io_uring. But I think it does make sense to
have certain core ops available directly, especially those that can
support a "try this non-blocking" flag/mode. (me)
- Handle generic short reads automatically.
This can happen fairly easily if parts of the buffered read is
cached. Since the application needs to issue another request for
the remainder, just do this internally and save kernel/user
roundtrip while providing a nicer more robust API. (me)
- Support for linked SQEs.
This allows SQEs to depend on each other, enabling an application
to eg queue a read-from-this-file,write-to-that-file pair. (me)
- Fix race in stopping SQ thread (Jackie)"
* tag 'for-5.3/io_uring-20190711' of git://git.kernel.dk/linux-block:
io_uring: fix io_sq_thread_stop running in front of io_sq_thread
io_uring: add support for recvmsg()
io_uring: add support for sendmsg()
io_uring: add support for sqe links
io_uring: punt short reads to async context
uio: make import_iovec()/compat_import_iovec() return bytes on success
This is done through IORING_OP_RECVMSG. This opcode uses the same
sqe->msg_flags that IORING_OP_SENDMSG added, and we pass in the
msghdr struct in the sqe->addr field as well.
We use MSG_DONTWAIT to force an inline fast path if recvmsg() doesn't
block, and punt to async execution if it would have.
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is done through IORING_OP_SENDMSG. There's a new sqe->msg_flags
for the flags argument, and the msghdr struct is passed in the
sqe->addr field.
We use MSG_DONTWAIT to force an inline fast path if sendmsg() doesn't
block, and punt to async execution if it would have.
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl0jrIMQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgptlFD/9CNsBX+Aap2lO6wKNr6QISwNAK76GMzEay
s4LSY2kGkXvzv8i89mCuY+8UVNI8WH2/22WnU+8CBAJOjWyFQMsIwH/mrq0oZWRD
J6STJE8rTr6Fc2MvJUWryp/xdBh3+eDIsAdIZVHVAkIzqYPBnpIAwEIeIw8t0xsm
v9ngpQ3WD6ep8tOj9pnG1DGKFg1CmukZCC/Y4CQV1vZtmm2I935zUwNV/TB+Egfx
G8JSC0cSV02LMK88HCnA6MnC/XSUC0qgfXbnmP+TpKlgjVX+P/fuB3oIYcZEu2Rk
3YBpIkhsQytKYbF42KRLsmBH72u6oB9G+tNZTgB1STUDrZqdtD9xwX1rjDlY0ZzP
EUDnk48jl/cxbs+VZrHoE2TcNonLiymV7Kb92juHXdIYmKFQStprGcQUbMaTkMfB
6BYrYLifWx0leu1JJ1i7qhNmug94BYCSCxcRmH0p6kPazPcY9LXNmDWMfMuBPZT7
z79VLZnHF2wNXJyT1cBluwRYYJRT4osWZ3XUaBWFKDgf1qyvXJfrN/4zmgkEIyW7
ivXC+KLlGkhntDlWo2pLKbbyOIKY1HmU6aROaI11k5Zyh0ixKB7tHKavK39l+NOo
YB41+4l6VEpQEyxyRk8tO0sbHpKaKB+evVIK3tTwbY+Q0qTExErxjfWUtOgRWhjx
iXJssPRo4w==
=VSYT
-----END PGP SIGNATURE-----
Merge tag 'for-5.3/block-20190708' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"This is the main block updates for 5.3. Nothing earth shattering or
major in here, just fixes, additions, and improvements all over the
map. This contains:
- Series of documentation fixes (Bart)
- Optimization of the blk-mq ctx get/put (Bart)
- null_blk removal race condition fix (Bob)
- req/bio_op() cleanups (Chaitanya)
- Series cleaning up the segment accounting, and request/bio mapping
(Christoph)
- Series cleaning up the page getting/putting for bios (Christoph)
- block cgroup cleanups and moving it to where it is used (Christoph)
- block cgroup fixes (Tejun)
- Series of fixes and improvements to bcache, most notably a write
deadlock fix (Coly)
- blk-iolatency STS_AGAIN and accounting fixes (Dennis)
- Series of improvements and fixes to BFQ (Douglas, Paolo)
- debugfs_create() return value check removal for drbd (Greg)
- Use struct_size(), where appropriate (Gustavo)
- Two lighnvm fixes (Heiner, Geert)
- MD fixes, including a read balance and corruption fix (Guoqing,
Marcos, Xiao, Yufen)
- block opal shadow mbr additions (Jonas, Revanth)
- sbitmap compare-and-exhange improvemnts (Pavel)
- Fix for potential bio->bi_size overflow (Ming)
- NVMe pull requests:
- improved PCIe suspent support (Keith Busch)
- error injection support for the admin queue (Akinobu Mita)
- Fibre Channel discovery improvements (James Smart)
- tracing improvements including nvmetc tracing support (Minwoo Im)
- misc fixes and cleanups (Anton Eidelman, Minwoo Im, Chaitanya
Kulkarni)"
- Various little fixes and improvements to drivers and core"
* tag 'for-5.3/block-20190708' of git://git.kernel.dk/linux-block: (153 commits)
blk-iolatency: fix STS_AGAIN handling
block: nr_phys_segments needs to be zero for REQ_OP_WRITE_ZEROES
blk-mq: simplify blk_mq_make_request()
blk-mq: remove blk_mq_put_ctx()
sbitmap: Replace cmpxchg with xchg
block: fix .bi_size overflow
block: sed-opal: check size of shadow mbr
block: sed-opal: ioctl for writing to shadow mbr
block: sed-opal: add ioctl for done-mark of shadow mbr
block: never take page references for ITER_BVEC
direct-io: use bio_release_pages in dio_bio_complete
block_dev: use bio_release_pages in bio_unmap_user
block_dev: use bio_release_pages in blkdev_bio_end_io
iomap: use bio_release_pages in iomap_dio_bio_end_io
block: use bio_release_pages in bio_map_user_iov
block: use bio_release_pages in bio_unmap_user
block: optionally mark pages dirty in bio_release_pages
block: move the BIO_NO_PAGE_REF check into bio_release_pages
block: skd_main.c: Remove call to memset after dma_alloc_coherent
block: mtip32xx: Remove call to memset after dma_alloc_coherent
...
If we pass pages through an iov_iter we always already have a reference
in the caller. Thus remove the ITER_BVEC_FLAG_NO_REF and don't take
reference to pages by default for bvec backed iov_iters.
Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge misc fixes from Andrew Morton:
"15 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
linux/kernel.h: fix overflow for DIV_ROUND_UP_ULL
mm, swap: fix THP swap out
fork,memcg: alloc_thread_stack_node needs to set tsk->stack
MAINTAINERS: add CLANG/LLVM BUILD SUPPORT info
mm/vmalloc.c: avoid bogus -Wmaybe-uninitialized warning
mm/page_idle.c: fix oops because end_pfn is larger than max_pfn
initramfs: fix populate_initrd_image() section mismatch
mm/oom_kill.c: fix uninitialized oc->constraint
mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
mm: soft-offline: return -EBUSY if set_hwpoison_free_buddy_page() fails
signal: remove the wrong signal_pending() check in restore_user_sigmask()
fs/binfmt_flat.c: make load_flat_shared_library() work
mm/mempolicy.c: fix an incorrect rebind node in mpol_rebind_nodemask
fs/proc/array.c: allow reporting eip/esp for all coredumping threads
mm/dev_pfn: exclude MEMORY_DEVICE_PRIVATE while computing virtual address
This is the minimal fix for stable, I'll send cleanups later.
Commit 854a6ed568 ("signal: Add restore_user_sigmask()") introduced
the visible change which breaks user-space: a signal temporary unblocked
by set_user_sigmask() can be delivered even if the caller returns
success or timeout.
Change restore_user_sigmask() to accept the additional "interrupted"
argument which should be used instead of signal_pending() check, and
update the callers.
Eric said:
: For clarity. I don't think this is required by posix, or fundamentally to
: remove the races in select. It is what linux has always done and we have
: applications who care so I agree this fix is needed.
:
: Further in any case where the semantic change that this patch rolls back
: (aka where allowing a signal to be delivered and the select like call to
: complete) would be advantage we can do as well if not better by using
: signalfd.
:
: Michael is there any chance we can get this guarantee of the linux
: implementation of pselect and friends clearly documented. The guarantee
: that if the system call completes successfully we are guaranteed that no
: signal that is unblocked by using sigmask will be delivered?
Link: http://lkml.kernel.org/r/20190604134117.GA29963@redhat.com
Fixes: 854a6ed568 ("signal: Add restore_user_sigmask()")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Eric Wong <e@80x24.org>
Tested-by: Eric Wong <e@80x24.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: <stable@vger.kernel.org> [5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With SQE links, we can create chains of dependent SQEs. One example
would be queueing an SQE that's a read from one file descriptor, with
the linked SQE being a write to another with the same set of buffers.
An SQE link will not stall the pipeline, it'll just ensure that
dependent SQEs aren't issued before the previous link has completed.
Any error at submission or completion time will break the chain of SQEs.
For completions, this also includes short reads or writes, as the next
SQE could depend on the previous one being fully completed.
Any SQE in a chain that gets canceled due to any of the above errors,
will get an CQE fill with -ECANCELED as the error value.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Stephen reports:
I hit the following General Protection Fault when testing io_uring via
the io_uring engine in fio. This was on a VM running 5.2-rc5 and the
latest version of fio. The issue occurs for both null_blk and fake NVMe
drives. I have not tested bare metal or real NVMe SSDs. The fio script
used is given below.
[io_uring]
time_based=1
runtime=60
filename=/dev/nvme2n1 (note /dev/nullb0 also fails)
ioengine=io_uring
bs=4k
rw=readwrite
direct=1
fixedbufs=1
sqthread_poll=1
sqthread_poll_cpu=0
general protection fault: 0000 [#1] SMP PTI
CPU: 0 PID: 872 Comm: io_uring-sq Not tainted 5.2.0-rc5-cpacket-io-uring #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
RIP: 0010:fput_many+0x7/0x90
Code: 01 48 85 ff 74 17 55 48 89 e5 53 48 8b 1f e8 a0 f9 ff ff 48 85 db 48 89 df 75 f0 5b 5d f3 c3 0f 1f 40 00 0f 1f 44 00 00 89 f6 <f0> 48 29 77 38 74 01 c3 55 48 89 e5 53 48 89 fb 65 48 \
RSP: 0018:ffffadeb817ebc50 EFLAGS: 00010246
RAX: 0000000000000004 RBX: ffff8f46ad477480 RCX: 0000000000001805
RDX: 0000000000000000 RSI: 0000000000000001 RDI: f18b51b9a39552b5
RBP: ffffadeb817ebc58 R08: ffff8f46b7a318c0 R09: 000000000000015d
R10: ffffadeb817ebce8 R11: 0000000000000020 R12: ffff8f46ad4cd000
R13: 00000000fffffff7 R14: ffffadeb817ebe30 R15: 0000000000000004
FS: 0000000000000000(0000) GS:ffff8f46b7a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055828f0bbbf0 CR3: 0000000232176004 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? fput+0x13/0x20
io_free_req+0x20/0x40
io_put_req+0x1b/0x20
io_submit_sqe+0x40a/0x680
? __switch_to_asm+0x34/0x70
? __switch_to_asm+0x40/0x70
io_submit_sqes+0xb9/0x160
? io_submit_sqes+0xb9/0x160
? __switch_to_asm+0x40/0x70
? __switch_to_asm+0x34/0x70
? __schedule+0x3f2/0x6a0
? __switch_to_asm+0x34/0x70
io_sq_thread+0x1af/0x470
? __switch_to_asm+0x34/0x70
? wait_woken+0x80/0x80
? __switch_to+0x85/0x410
? __switch_to_asm+0x40/0x70
? __switch_to_asm+0x34/0x70
? __schedule+0x3f2/0x6a0
kthread+0x105/0x140
? io_submit_sqes+0x160/0x160
? kthread+0x105/0x140
? io_submit_sqes+0x160/0x160
? kthread_destroy_worker+0x50/0x50
ret_from_fork+0x35/0x40
which occurs because using a kernel side submission thread isn't valid
without using fixed files (registered through io_uring_register()). This
causes io_uring to put the request after logging an error, but before
the file field is set in the request. If it happens to be non-zero, we
attempt to fput() garbage.
Fix this by ensuring that req->file is initialized when the request is
allocated.
Cc: stable@vger.kernel.org # 5.1+
Reported-by: Stephen Bates <sbates@raithlin.com>
Tested-by: Stephen Bates <sbates@raithlin.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Opening and closing an io_uring instance leaks a UNIX domain socket
inode. This is because the ->file of the io_uring instance's internal
UNIX domain socket is set to point to the io_uring file, but then
sock_release() sees the non-NULL ->file and assumes the inode reference
is held by the file so doesn't call iput(). That's not the case here,
since the reference is still meant to be held by the socket; the actual
inode of the io_uring file is different.
Fix this leak by NULL-ing out ->file before releasing the socket.
Reported-by: syzbot+111cb28d9f583693aefa@syzkaller.appspotmail.com
Fixes: 2b188cc1bb ("Add io_uring IO interface")
Cc: <stable@vger.kernel.org> # v5.1+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We can encounter a short read when we're doing buffered reads and the
data is partially cached. Right now we just return the short read, but
that forces the application to read that CQE, then issue another SQE
to finish the read. That read will not be cached, and hence will result
in an async punt.
It's more efficient to do that async punt from within the kernel, as
that will the not need two round trips more to the kernel.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently these functions return < 0 on error, and 0 for success.
Change that so that we return < 0 on error, but number of bytes
for success.
Some callers already treat the return value that way, others need a
slight tweak.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If io_copy_iov() fails, it will break the loop and report success,
albeit partially completed operation.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The previous patch has ensured that io_cqring_events contain
smp_rmb memory barriers, Now we can use wait_event_interruptible
to keep the code simple.
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Whenever smp_rmb is required to use io_cqring_events,
keep smp_rmb inside the function io_cqring_events.
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This fixes couple of races which lead to infinite wait of park completion
with the following backtraces:
[20801.303319] Call Trace:
[20801.303321] ? __schedule+0x284/0x650
[20801.303323] schedule+0x33/0xc0
[20801.303324] schedule_timeout+0x1bc/0x210
[20801.303326] ? schedule+0x3d/0xc0
[20801.303327] ? schedule_timeout+0x1bc/0x210
[20801.303329] ? preempt_count_add+0x79/0xb0
[20801.303330] wait_for_completion+0xa5/0x120
[20801.303331] ? wake_up_q+0x70/0x70
[20801.303333] kthread_park+0x48/0x80
[20801.303335] io_finish_async+0x2c/0x70
[20801.303336] io_ring_ctx_wait_and_kill+0x95/0x180
[20801.303338] io_uring_release+0x1c/0x20
[20801.303339] __fput+0xad/0x210
[20801.303341] task_work_run+0x8f/0xb0
[20801.303342] exit_to_usermode_loop+0xa0/0xb0
[20801.303343] do_syscall_64+0xe0/0x100
[20801.303349] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[20801.303380] Call Trace:
[20801.303383] ? __schedule+0x284/0x650
[20801.303384] schedule+0x33/0xc0
[20801.303386] io_sq_thread+0x38a/0x410
[20801.303388] ? __switch_to_asm+0x40/0x70
[20801.303390] ? wait_woken+0x80/0x80
[20801.303392] ? _raw_spin_lock_irqsave+0x17/0x40
[20801.303394] ? io_submit_sqes+0x120/0x120
[20801.303395] kthread+0x112/0x130
[20801.303396] ? kthread_create_on_node+0x60/0x60
[20801.303398] ret_from_fork+0x35/0x40
o kthread_park() waits for park completion, so io_sq_thread() loop
should check kthread_should_park() along with khread_should_stop(),
otherwise if kthread_park() is called before prepare_to_wait()
the following schedule() never returns:
CPU#0 CPU#1
io_sq_thread_stop(): io_sq_thread():
while(!kthread_should_stop() && !ctx->sqo_stop) {
ctx->sqo_stop = 1;
kthread_park()
prepare_to_wait();
if (kthread_should_stop() {
}
schedule(); <<< nobody checks park flag,
<<< so schedule and never return
o if the flag ctx->sqo_stop is observed by the io_sq_thread() loop
it is quite possible, that kthread_should_park() check and the
following kthread_parkme() is never called, because kthread_park()
has not been yet called, but few moments later is is called and
waits there for park completion, which never happens, because
kthread has already exited:
CPU#0 CPU#1
io_sq_thread_stop(): io_sq_thread():
ctx->sqo_stop = 1;
while(!kthread_should_stop() && !ctx->sqo_stop) {
<<< observe sqo_stop and exit the loop
}
if (kthread_should_park())
kthread_parkme(); <<< never called, since was
<<< never parked
kthread_park() <<< waits forever for park completion
In the current patch we quit the loop by only kthread_should_park()
check (kthread_park() is synchronous, so kthread_should_stop() is
never observed), and we abandon ->sqo_stop flag, since it is racy.
At the end of the io_sq_thread() we unconditionally call parmke(),
since we've exited the loop by the park flag.
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We always pass in 0 for the cqe flags argument, since the support for
"this read hit page cache" hint was dropped.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The test case we have is rightfully failing with the current kernel:
io_uring_setup(1, 0x7ffe2cafebe0), flags: IORING_SETUP_SQPOLL|IORING_SETUP_SQ_AFF, resv: 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000, sq_thread_cpu: 4
expected -1, got 3
This is in a vm, and CPU3 is the last valid one, hence asking for 4
should fail the setup with -EINVAL, not succeed. The problem is that
we're using array_index_nospec() with nr_cpu_ids as the index, hence we
wrap and end up using CPU0 instead of CPU4. This makes the setup
succeed where it should be failing.
We don't need to use array_index_nospec() as we're not indexing any
array with this. Instead just compare with nr_cpu_ids directly. This
is fine as we're checking with cpu_online() afterwards.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pach series "Add FOLL_LONGTERM to GUP fast and use it".
HFI1, qib, and mthca, use get_user_pages_fast() due to its performance
advantages. These pages can be held for a significant time. But
get_user_pages_fast() does not protect against mapping FS DAX pages.
Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which
retains the performance while also adding the FS DAX checks. XDP has also
shown interest in using this functionality.[1]
In addition we change get_user_pages() to use the new FOLL_LONGTERM flag
and remove the specialized get_user_pages_longterm call.
[1] https://lkml.org/lkml/2019/3/19/939
"longterm" is a relative thing and at this point is probably a misnomer.
This is really flagging a pin which is going to be given to hardware and
can't move. I've thought of a couple of alternative names but I think we
have to settle on if we are going to use FL_LAYOUT or something else to
solve the "longterm" problem. Then I think we can change the flag to a
better name.
Secondly, it depends on how often you are registering memory. I have
spoken with some RDMA users who consider MR in the performance path...
For the overall application performance. I don't have the numbers as the
tests for HFI1 were done a long time ago. But there was a significant
advantage. Some of which is probably due to the fact that you don't have
to hold mmap_sem.
Finally, architecturally I think it would be good for everyone to use
*_fast. There are patches submitted to the RDMA list which would allow
the use of *_fast (they reworking the use of mmap_sem) and as soon as they
are accepted I'll submit a patch to convert the RDMA core as well. Also
to this point others are looking to use *_fast.
As an aside, Jasons pointed out in my previous submission that *_fast and
*_unlocked look very much the same. I agree and I think further cleanup
will be coming. But I'm focused on getting the final solution for DAX at
the moment.
This patch (of 7):
This patch starts a series which aims to support FOLL_LONGTERM in
get_user_pages_fast(). Some callers who would like to do a longterm (user
controlled pin) of pages with the fast variant of GUP for performance
purposes.
Rather than have a separate get_user_pages_longterm() call, introduce
FOLL_LONGTERM and change the longterm callers to use it.
This patch does not change any functionality. In the short term
"longterm" or user controlled pins are unsafe for Filesystems and FS DAX
in particular has been blocked. However, callers of get_user_pages_fast()
were not "protected".
FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it
requires vmas to determine if DAX is in use.
NOTE: In merging with the CMA changes we opt to change the
get_user_pages() call in check_and_migrate_cma_pages() to a call of
__get_user_pages_locked() on the newly migrated pages. This makes the
code read better in that we are calling __get_user_pages_locked() on the
pages before and after a potential migration.
As a side affect some of the interfaces are cleaned up but this is not the
primary purpose of the series.
In review[1] it was asked:
<quote>
> This I don't get - if you do lock down long term mappings performance
> of the actual get_user_pages call shouldn't matter to start with.
>
> What do I miss?
A couple of points.
First "longterm" is a relative thing and at this point is probably a
misnomer. This is really flagging a pin which is going to be given to
hardware and can't move. I've thought of a couple of alternative names
but I think we have to settle on if we are going to use FL_LAYOUT or
something else to solve the "longterm" problem. Then I think we can
change the flag to a better name.
Second, It depends on how often you are registering memory. I have spoken
with some RDMA users who consider MR in the performance path... For the
overall application performance. I don't have the numbers as the tests
for HFI1 were done a long time ago. But there was a significant
advantage. Some of which is probably due to the fact that you don't have
to hold mmap_sem.
Finally, architecturally I think it would be good for everyone to use
*_fast. There are patches submitted to the RDMA list which would allow
the use of *_fast (they reworking the use of mmap_sem) and as soon as they
are accepted I'll submit a patch to convert the RDMA core as well. Also
to this point others are looking to use *_fast.
As an asside, Jasons pointed out in my previous submission that *_fast and
*_unlocked look very much the same. I agree and I think further cleanup
will be coming. But I'm focused on getting the final solution for DAX at
the moment.
</quote>
[1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965
[ira.weiny@intel.com: v3]
Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When punting to workers the SQE gets copied after the initial try.
There is a race condition between reading SQE data for the initial try
and copying it for punting it to the workers.
For example io_rw_done calls kiocb->ki_complete even if it was prepared
for IORING_OP_FSYNC (and would be NULL).
The easiest solution for now is to alway prepare again in the worker.
req->file is safe to prepare though as long as it is checked before use.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Percpu reference counters should now be initialized with the
PERCPU_REF_ALLOW_REINIT in order to allow switching them to the
percpu mode from the atomic mode. This is exactly what
percpu_ref_reinit() called from __io_uring_register() is supposed to
do. So let's initialize percpu refcounters with the
PERCU_REF_ALLOW_REINIT flag.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
This issue is found by running liburing/test/io_uring_setup test.
When test run, the testcase "attempt to bind to invalid cpu" would not
pass with messages like:
io_uring_setup(1, 0xbfc2f7c8), \
flags: IORING_SETUP_SQPOLL|IORING_SETUP_SQ_AFF, \
resv: 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000, \
sq_thread_cpu: 2
expected -1, got 3
FAIL
On my system, there is:
CPU(s) possible : 0-3
CPU(s) online : 0-1
CPU(s) offline : 2-3
CPU(s) present : 0-1
The sq_thread_cpu 2 is offline on my system, so the bind should fail.
But cpu_possible() will pass the check. We shouldn't be able to bind
to an offline cpu. Use cpu_online() to do the check.
After the change, the testcase run as expected: EINVAL will be returned
for cpu offlined.
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently variable ret is declared in a while-loop code block that
shadows another variable ret. When an error occurs in the while-loop
the error return in ret is not being set in the outer code block and
so the error check on ret is always going to be checking on the wrong
ret variable resulting in check that is always going to be true and
a premature return occurs.
Fix this by removing the declaration of the inner while-loop variable
ret so that shadowing does not occur.
Addresses-Coverity: ("'Constant' variable guards dead code")
Fixes: 6b06314c47 ("io_uring: add file set registration")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
No need to set it in io_poll_add; io_poll_complete doesn't use it to set
the result in the CQE.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Allow registration of an eventfd, which will trigger an event every
time a completion event happens for this io_uring instance.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are no ordering constraints between the submission and completion
side of io_uring. But sometimes that would be useful to have. One common
example is doing an fsync, for instance, and have it ordered with
previous writes. Without support for that, the application must do this
tracking itself.
This adds a general SQE flag, IOSQE_IO_DRAIN. If a command is marked
with this flag, then it will not be issued before previous commands have
completed, and subsequent commands submitted after the drain will not be
issued before the drain is started.. If there are no pending commands,
setting this flag will not change the behavior of the issue of the
command.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In io_sqe_buffer_register() we allocate a number of arrays based on the
iov_len from the user-provided iov. While we limit iov_len to SZ_1G,
we can still attempt to allocate arrays exceeding MAX_ORDER.
On a 64-bit system with 4KiB pages, for an iov where iov_base = 0x10 and
iov_len = SZ_1G, we'll calculate that nr_pages = 262145. When we try to
allocate a corresponding array of (16-byte) bio_vecs, requiring 4194320
bytes, which is greater than 4MiB. This results in SLUB warning that
we're trying to allocate greater than MAX_ORDER, and failing the
allocation.
Avoid this by using kvmalloc() for allocations dependent on the
user-provided iov_len. At the same time, fix a leak of imu->bvec when
registration fails.
Full splat from before this patch:
WARNING: CPU: 1 PID: 2314 at mm/page_alloc.c:4595 __alloc_pages_nodemask+0x7ac/0x2938 mm/page_alloc.c:4595
Kernel panic - not syncing: panic_on_warn set ...
CPU: 1 PID: 2314 Comm: syz-executor326 Not tainted 5.1.0-rc7-dirty #4
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2f0 include/linux/compiler.h:193
show_stack+0x20/0x30 arch/arm64/kernel/traps.c:158
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x110/0x190 lib/dump_stack.c:113
panic+0x384/0x68c kernel/panic.c:214
__warn+0x2bc/0x2c0 kernel/panic.c:571
report_bug+0x228/0x2d8 lib/bug.c:186
bug_handler+0xa0/0x1a0 arch/arm64/kernel/traps.c:956
call_break_hook arch/arm64/kernel/debug-monitors.c:301 [inline]
brk_handler+0x1d4/0x388 arch/arm64/kernel/debug-monitors.c:316
do_debug_exception+0x1a0/0x468 arch/arm64/mm/fault.c:831
el1_dbg+0x18/0x8c
__alloc_pages_nodemask+0x7ac/0x2938 mm/page_alloc.c:4595
alloc_pages_current+0x164/0x278 mm/mempolicy.c:2132
alloc_pages include/linux/gfp.h:509 [inline]
kmalloc_order+0x20/0x50 mm/slab_common.c:1231
kmalloc_order_trace+0x30/0x2b0 mm/slab_common.c:1243
kmalloc_large include/linux/slab.h:480 [inline]
__kmalloc+0x3dc/0x4f0 mm/slub.c:3791
kmalloc_array include/linux/slab.h:670 [inline]
io_sqe_buffer_register fs/io_uring.c:2472 [inline]
__io_uring_register fs/io_uring.c:2962 [inline]
__do_sys_io_uring_register fs/io_uring.c:3008 [inline]
__se_sys_io_uring_register fs/io_uring.c:2990 [inline]
__arm64_sys_io_uring_register+0x9e0/0x1bc8 fs/io_uring.c:2990
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:47 [inline]
el0_svc_common.constprop.0+0x148/0x2e0 arch/arm64/kernel/syscall.c:83
el0_svc_handler+0xdc/0x100 arch/arm64/kernel/syscall.c:129
el0_svc+0x8/0xc arch/arm64/kernel/entry.S:948
SMP: stopping secondary CPUs
Dumping ftrace buffer:
(ftrace buffer empty)
Kernel Offset: disabled
CPU features: 0x002,23000438
Memory Limit: none
Rebooting in 1 seconds..
Fixes: edafccee56 ("io_uring: add support for pre-mapped user IO buffers")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-block@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If we don't end up actually calling submit in io_sq_wq_submit_work(),
we still need to drop the submit reference to the request. If we
don't, then we can leak the request. This can happen if we race
with ring shutdown while flushing the workqueue for requests that
require use of the mm_struct.
Fixes: e65ef56db4 ("io_uring: use regular request ref counts")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In io_sq_offload_start(), we call cpu_possible() on an unbounded cpu
value from userspace. On v5.1-rc7 on arm64 with
CONFIG_DEBUG_PER_CPU_MAPS, this results in a splat:
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 cpu_max_bits_warn include/linux/cpumask.h:121 [inline]
There was an attempt to fix this in commit:
917257daa0 ("io_uring: only test SQPOLL cpu after we've verified it")
... by adding a check after the cpu value had been limited to NR_CPU_IDS
using array_index_nospec(). However, this left an unbound check at the
start of the function, for which the warning still fires.
Let's fix this correctly by checking that the cpu value is bound by
nr_cpu_ids before passing it to cpu_possible(). Note that only
nr_cpu_ids of a cpumask are guaranteed to exist at runtime, and
nr_cpu_ids can be significantly smaller than NR_CPUs. For example, an
arm64 defconfig has NR_CPUS=256, while my test VM has 4 vCPUs.
Following the intent from the commit message for 917257daa0, the
check is moved under the SQ_AFF branch, which is the only branch where
the cpu values is consumed. The check is performed before bounding the
value with array_index_nospec() so that we don't silently accept bogus
cpu values from userspace, where array_index_nospec() would force these
values to 0.
I suspect we can remove the array_index_nospec() call entirely, but I've
conservatively left that in place, updated to use nr_cpu_ids to match
the prior check.
Tested on arm64 with the Syzkaller reproducer:
https://syzkaller.appspot.com/bug?extid=cd714a07c6de2bc34293https://syzkaller.appspot.com/x/repro.syz?x=15d8b397200000
Full splat from before this patch:
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 cpu_max_bits_warn include/linux/cpumask.h:121 [inline]
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 cpumask_check include/linux/cpumask.h:128 [inline]
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 cpumask_test_cpu include/linux/cpumask.h:344 [inline]
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 io_sq_offload_start fs/io_uring.c:2244 [inline]
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 io_uring_create fs/io_uring.c:2864 [inline]
WARNING: CPU: 1 PID: 27601 at include/linux/cpumask.h:121 io_uring_setup+0x1108/0x15a0 fs/io_uring.c:2916
Kernel panic - not syncing: panic_on_warn set ...
CPU: 1 PID: 27601 Comm: syz-executor.0 Not tainted 5.1.0-rc7 #3
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2f0 include/linux/compiler.h:193
show_stack+0x20/0x30 arch/arm64/kernel/traps.c:158
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x110/0x190 lib/dump_stack.c:113
panic+0x384/0x68c kernel/panic.c:214
__warn+0x2bc/0x2c0 kernel/panic.c:571
report_bug+0x228/0x2d8 lib/bug.c:186
bug_handler+0xa0/0x1a0 arch/arm64/kernel/traps.c:956
call_break_hook arch/arm64/kernel/debug-monitors.c:301 [inline]
brk_handler+0x1d4/0x388 arch/arm64/kernel/debug-monitors.c:316
do_debug_exception+0x1a0/0x468 arch/arm64/mm/fault.c:831
el1_dbg+0x18/0x8c
cpu_max_bits_warn include/linux/cpumask.h:121 [inline]
cpumask_check include/linux/cpumask.h:128 [inline]
cpumask_test_cpu include/linux/cpumask.h:344 [inline]
io_sq_offload_start fs/io_uring.c:2244 [inline]
io_uring_create fs/io_uring.c:2864 [inline]
io_uring_setup+0x1108/0x15a0 fs/io_uring.c:2916
__do_sys_io_uring_setup fs/io_uring.c:2929 [inline]
__se_sys_io_uring_setup fs/io_uring.c:2926 [inline]
__arm64_sys_io_uring_setup+0x50/0x70 fs/io_uring.c:2926
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:47 [inline]
el0_svc_common.constprop.0+0x148/0x2e0 arch/arm64/kernel/syscall.c:83
el0_svc_handler+0xdc/0x100 arch/arm64/kernel/syscall.c:129
el0_svc+0x8/0xc arch/arm64/kernel/entry.S:948
SMP: stopping secondary CPUs
Dumping ftrace buffer:
(ftrace buffer empty)
Kernel Offset: disabled
CPU features: 0x002,23000438
Memory Limit: none
Rebooting in 1 seconds..
Fixes: 917257daa0 ("io_uring: only test SQPOLL cpu after we've verified it")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-block@vger.kernel.org
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Simplied the logic
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently we only post a cqe if we get an error OUTSIDE of submission.
For submission, we return the error directly through io_uring_enter().
This is a bit awkward for applications, and it makes more sense to
always post a cqe with an error, if the error happens on behalf of an
sqe.
This changes submission behavior a bit. io_uring_enter() returns -ERROR
for an error, and > 0 for number of sqes submitted. Before this change,
if you wanted to submit 8 entries and had an error on the 5th entry,
io_uring_enter() would return 4 (for number of entries successfully
submitted) and rewind the sqring. The application would then have to
peek at the sqring and figure out what was wrong with the head sqe, and
then skip it itself. With this change, we'll return 5 since we did
consume 5 sqes, and the last sqe (with the error) will result in a cqe
being posted with the error.
This makes the logic easier to handle in the application, and it cleans
up the submission part.
Suggested-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is no operation to order with afterwards, and removing the flag is
not critical in any way.
There will always be a "race condition" where the application will
trigger IORING_ENTER_SQ_WAKEUP when it isn't actually needed.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
smp_store_release in io_commit_sqring already orders the store to
dropped before the update to SQ head.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The memory operations before reading cq head are unrelated and we
don't care about their order.
Document that the control dependency in combination with READ_ONCE and
WRITE_ONCE forms a barrier we need.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
wq_has_sleeper has a full barrier internally. The smp_rmb barrier in
io_uring_poll synchronizes with it.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The application reading the CQ ring needs a barrier to pair with the
smp_store_release in io_commit_cqring, not the barrier after it.
Also a write barrier *after* writing something (but not *before*
writing anything interesting) doesn't order anything, so an smp_wmb()
after writing SQ tail is not needed.
Additionally consider reading SQ head and writing CQ tail in the notes.
Also add some clarifications how the various other fields in the ring
buffers are used.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Not all request types set REQ_F_FORCE_NONBLOCK when they needed async
punting; reverse logic instead and set REQ_F_NOWAIT if request mustn't
be punted.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Merged with my previous patch for this.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since commit 09bb839434 we don't use the state argument for any sort
of on-stack caching in the io read and write path. Remove the stale
and unused argument from them, and bubble it up to __io_submit_sqe()
and down to io_prep_rw().
Signed-off-by: Jens Axboe <axboe@kernel.dk>
io_uring_poll shouldn't signal EPOLLOUT | EPOLLWRNORM if the queue is
full; the old check would always signal EPOLLOUT | EPOLLWRNORM (unless
there were U32_MAX - 1 entries in the SQ queue).
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reading the SQ tail needs to come after setting IORING_SQ_NEED_WAKEUP in
flags; there is no cheap barrier for ordering a store before a load, a
full memory barrier is required.
Userspace needs a full memory barrier between updating SQ tail and
checking for the IORING_SQ_NEED_WAKEUP too.
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A read memory barrier is required between reading SQ tail and reading
the actual data belonging to the SQ entry.
Userspace needs a matching write barrier between writing SQ entries and
updating SQ tail (using smp_store_release to update tail will do).
Signed-off-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If we have multiple threads doing io_uring_register(2) on an io_uring
fd, then we can potentially try and kill the percpu reference while
someone else has already killed it.
Prevent this race by failing io_uring_register(2) if the ref is marked
dying. This is safe since we're inside the io_uring mutex.
Fixes: b19062a567 ("io_uring: fix possible deadlock between io_uring_{enter,register}")
Reported-by: syzbot <syzbot+10d25e23199614b7721f@syzkaller.appspotmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is a leftover from when the rings initially were not free flowing,
and hence a test for tail + 1 == head would indicate full. Since we now
let them wrap instead of mask them with the size, we need to check if
they drift more than the ring size from each other.
This fixes a case where we'd overwrite CQ ring entries, if the user
failed to reap completions. Both cases would ultimately result in lost
completions as the application violated the depth it asked for. The only
difference is that before this fix we'd return invalid entries for the
overflowed completions, instead of properly flagging it in the
cq_ring->overflow variable.
Reported-by: Stefan Bühler <source@stbuehler.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>