parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Doing a splice read (generic/249) generates a lockdep splat because
we recursively lock the inode iolock in this path:
SyS_sendfile64
do_sendfile
do_splice_direct
splice_direct_to_actor
do_splice_to
xfs_file_splice_read <<<<<< lock here
default_file_splice_read
vfs_readv
do_readv_writev
do_iter_readv_writev
xfs_file_read_iter <<<<<< then here
The issue here is that for DAX inodes we need to avoid the page
cache path and hence simply push it into the normal read path.
Unfortunately, we can't tell down at xfs_file_read_iter() whether we
are being called from the splice path and hence we cannot avoid the
locking at this layer. Hence we simply have to drop the inode
locking at the higher splice layer for DAX.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update contains:
o per-mount operational statistics in sysfs
o fixes for concurrent aio append write submission
o various logging fixes
o detection of zeroed logs and invalid log sequence numbers on v5 filesystems
o memory allocation failure message improvements
o a bunch of xattr/ACL fixes
o fdatasync optimisation
o miscellaneous other fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJWQ7GzAAoJEK3oKUf0dfodJakP/3s3N5ngqRWa+PQwBQPdTO0r
MBQppSKXWdT7YLhiFt1ZRlvXiMQOIZPNx0yBS9mzQghL9sTGvcPdxjbQnNh6LUnE
fGC2Yzi/J8lM2M80ezk3JoFqdqAQ/U78ARA/VpZct4imrps/h+s2Klkx87xPJsiK
/wY56FXFtoUS1ADYhL8qCeiAGOFpyIttiDNOVW3O2ZXn4iJUsa2nLCoiFwF/yFvU
S85iUJWAsvVSW5WgfUufmodC4u+WOT+9isNRxEmBjpxYYAFrFb5+8DYY3Coh6z0V
HqYPhpzBOG9gXbAue5v+ccsp2w60atXIFUQkR2HFBblvxsDMkvsgycJWJgDNmJiw
RYDMBJ26epxUdTScUxijKiGfnnbZW5b+uzp6FvVsE4KPdP62ol7YNqxj8/FFIjQN
JBl2ooiczOgvhCdvdWmWNEGWHccBcJ8UJ2RzJ0owVIIJZZYwjkZNzeSieWzYc7tr
b9wBC4wnaYAK/V7aEGLJxMXVjkanrqAnaXf5ymICSFv8me/qAfZ2sLcY2P6SHuhO
Fmkj6R5Thh1SYxk3thgGFZg7LGuxJW9cmypvFGpKhIvEaNGIM6ScdIwO7kCHYWv7
3EkP42mmJLIYxKz/q2nHqt7R246YFraIRowLWptJUl32uyzO7SrdKbc8+o5WD4Wl
2byjE9TjXOa1jGuPa3kN
=zu+5
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is nothing really major here - the only significant addition is
the per-mount operation statistics infrastructure. Otherwises there's
various ACL, xattr, DAX, AIO and logging fixes, and a smattering of
small cleanups and fixes elsewhere.
Summary:
- per-mount operational statistics in sysfs
- fixes for concurrent aio append write submission
- various logging fixes
- detection of zeroed logs and invalid log sequence numbers on v5 filesystems
- memory allocation failure message improvements
- a bunch of xattr/ACL fixes
- fdatasync optimisation
- miscellaneous other fixes and cleanups"
* tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: give all workqueues rescuer threads
xfs: fix log recovery op header validation assert
xfs: Fix error path in xfs_get_acl
xfs: optimise away log forces on timestamp updates for fdatasync
xfs: don't leak uuid table on rmmod
xfs: invalidate cached acl if set via ioctl
xfs: Plug memory leak in xfs_attrmulti_attr_set
xfs: Validate the length of on-disk ACLs
xfs: invalidate cached acl if set directly via xattr
xfs: xfs_filemap_pmd_fault treats read faults as write faults
xfs: add ->pfn_mkwrite support for DAX
xfs: DAX does not use IO completion callbacks
xfs: Don't use unwritten extents for DAX
xfs: introduce BMAPI_ZERO for allocating zeroed extents
xfs: fix inode size update overflow in xfs_map_direct()
xfs: clear PF_NOFREEZE for xfsaild kthread
xfs: fix an error code in xfs_fs_fill_super()
xfs: stats are no longer dependent on CONFIG_PROC_FS
xfs: simplify /proc teardown & error handling
xfs: per-filesystem stats counter implementation
...
The function currently called "__block_page_mkwrite()" used to be called
"block_page_mkwrite()" until a wrapper for this function was added by:
commit 24da4fab5a ("vfs: Create __block_page_mkwrite() helper passing
error values back")
This wrapper, the current "block_page_mkwrite()", is currently unused.
__block_page_mkwrite() is used directly by ext4, nilfs2 and xfs.
Remove the unused wrapper, rename __block_page_mkwrite() back to
block_page_mkwrite() and update the comment above block_page_mkwrite().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Cc: Jan Kara <jack@suse.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
xfs: timestamp updates cause excessive fdatasync log traffic
Sage Weil reported that a ceph test workload was writing to the
log on every fdatasync during an overwrite workload. Event tracing
showed that the only metadata modification being made was the
timestamp updates during the write(2) syscall, but fdatasync(2)
is supposed to ignore them. The key observation was that the
transactions in the log all looked like this:
INODE: #regs: 4 ino: 0x8b flags: 0x45 dsize: 32
And contained a flags field of 0x45 or 0x85, and had data and
attribute forks following the inode core. This means that the
timestamp updates were triggering dirty relogging of previously
logged parts of the inode that hadn't yet been flushed back to
disk.
There are two parts to this problem. The first is that XFS relogs
dirty regions in subsequent transactions, so it carries around the
fields that have been dirtied since the last time the inode was
written back to disk, not since the last time the inode was forced
into the log.
The second part is that on v5 filesystems, the inode change count
update during inode dirtying also sets the XFS_ILOG_CORE flag, so
on v5 filesystems this makes a timestamp update dirty the entire
inode.
As a result when fdatasync is run, it looks at the dirty fields in
the inode, and sees more than just the timestamp flag, even though
the only metadata change since the last fdatasync was just the
timestamps. Hence we force the log on every subsequent fdatasync
even though it is not needed.
To fix this, add a new field to the inode log item that tracks
changes since the last time fsync/fdatasync forced the log to flush
the changes to the journal. This flag is updated when we dirty the
inode, but we do it before updating the change count so it does not
carry the "core dirty" flag from timestamp updates. The fields are
zeroed when the inode is marked clean (due to writeback/freeing) or
when an fsync/datasync forces the log. Hence if we only dirty the
timestamps on the inode between fsync/fdatasync calls, the fdatasync
will not trigger another log force.
Over 100 runs of the test program:
Ext4 baseline:
runtime: 1.63s +/- 0.24s
avg lat: 1.59ms +/- 0.24ms
iops: ~2000
XFS, vanilla kernel:
runtime: 2.45s +/- 0.18s
avg lat: 2.39ms +/- 0.18ms
log forces: ~400/s
iops: ~1000
XFS, patched kernel:
runtime: 1.49s +/- 0.26s
avg lat: 1.46ms +/- 0.25ms
log forces: ~30/s
iops: ~1500
Reported-by: Sage Weil <sage@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The code initially committed didn't have the same checks for write
faults as the dax_pmd_fault code and hence treats all faults as
write faults. We can get read faults through this path because they
is no pmd_mkwrite path for write faults similar to the normal page
fault path. Hence we need to ensure that we only do c/mtime updates
on write faults, and freeze protection is unnecessary for read
faults.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
->pfn_mkwrite support is needed so that when a page with allocated
backing store takes a write fault we can check that the fault has
not raced with a truncate and is pointing to a region beyond the
current end of file.
This also allows us to update the timestamp on the inode, too, which
fixes a generic/080 failure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For DAX, we are now doing block zeroing during allocation. This
means we no longer need a special DAX fault IO completion callback
to do unwritten extent conversion. Because mmap never extends the
file size (it SEGVs the process) we don't need a callback to update
the file size, either. Hence we can remove the completion callbacks
from the __dax_fault and __dax_mkwrite calls.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Both direct IO and DAX pass an offset and count into get_blocks that
will overflow a s64 variable when an IO goes into the last supported
block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen
from the tracing:
xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096
0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that
overflows the s64 offset and we fail to detect the need for a
filesize update and an ioend is not allocated.
This is *mostly* avoided for direct IO because such extending IOs
occur with full block allocation, and so the "IS_UNWRITTEN()" check
still evaluates as true and we get an ioend that way. However, doing
single sector extending IOs to this last block will expose the fact
that file size updates will not occur after the first allocating
direct IO as the overflow will then be exposed.
There is one further complexity: the DAX page fault path also
exposes the same issue in block allocation. However, page faults
cannot extend the file size, so in this case we want to allocate the
block but do not want to allocate an ioend to enable file size
update at IO completion. Hence we now need to distinguish between
the direct IO patch allocation and dax fault path allocation to
avoid leaking ioend structures.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch modifies the stats counting macros and the callers
to those macros to properly increment, decrement, and add-to
the xfs stats counts. The counts for global and per-fs stats
are correctly advanced, and cleared by writing a "1" to the
corresponding clear file.
global counts: /sys/fs/xfs/stats/stats
per-fs counts: /sys/fs/xfs/sda*/stats/stats
global clear: /sys/fs/xfs/stats/stats_clear
per-fs clear: /sys/fs/xfs/sda*/stats/stats_clear
[dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around
stats structures and macros. ]
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a tracepoint in xfs_zero_eof() to facilitate tracking and debugging
EOF zeroing events. This has proven useful in the context of other
direct I/O tracepoints to ensure EOF zeroing occurs within appropriate
file ranges.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS supports and typically allows concurrent asynchronous direct I/O
submission to a single file. One exception to the rule is that file
extending dio writes that start beyond the current EOF (e.g.,
potentially create a hole at EOF) require exclusive I/O access to the
file. This is because such writes must zero any pre-existing blocks
beyond EOF that are exposed by virtue of now residing within EOF as a
result of the write about to be submitted.
Before EOF zeroing can occur, the current file i_size must be stabilized
to avoid data corruption. In this scenario, XFS upgrades the iolock to
exclude any further I/O submission, waits on in-flight I/O to complete
to ensure i_size is up to date (i_size is updated on dio write
completion) and restarts the various checks against the state of the
file. The problem is that this protection sequence is triggered only
when the iolock is currently held shared. While this is true for async
dio in most cases, the caller may upgrade the lock in advance based on
arbitrary circumstances with respect to EOF zeroing. For example, the
iolock is always acquired exclusively if the start offset is not block
aligned. This means that even though the iolock is already held
exclusive for such I/Os, pending I/O is not drained and thus EOF zeroing
can occur based on an unstable i_size.
This problem has been reproduced as guest data corruption in virtual
machines with file-backed qcow2 virtual disks hosted on an XFS
filesystem. The virtual disks must be configured with aio=native mode
and the must not be truncated out to the maximum file size (as some virt
managers will do).
Update xfs_file_aio_write_checks() to unconditionally drain in-flight
dio before EOF zeroing can occur. Rather than trigger the wait based on
iolock state, use a new flag and upgrade the iolock when necessary. Note
that this results in a full restart of the inode checks even when the
iolock was already held exclusive when technically it is only required
to recheck i_size. This should be a rare enough occurrence that it is
preferable to keep the code simple rather than create an alternate
restart jump target.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use DAX to provide support for huge pages.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filesystems are responsible to manage file coherency between the page
cache and direct I/O. The generic dio code flushes dirty pages over the
range of a dio to ensure that the dio read or a future buffered read
returns the correct data. XFS has generally followed this pattern,
though traditionally has flushed and invalidated the range from the
start of the I/O all the way to the end of the file. This changed after
the following commit:
7d4ea3ce xfs: use ranged writeback and invalidation for direct IO
... as the full file flush was no longer necessary to deal with the
strange post-eof delalloc issues that were since fixed. Unfortunately,
we have since received complaints about performance degradation due to
the increased exclusive iolock cycles (which locks out parallel dio
submission) that occur when a file has cached pages. This does not occur
on filesystems that use the generic code as it also does not incorporate
locking.
The exclusive iolock is acquired any time the inode mapping has cached
pages, regardless of whether they reside in the range of the I/O or not.
If not, the flush/inval calls do no work and the lock was cycled for no
reason.
Under consideration of the cost of the exclusive iolock, update the dio
read and write handlers to flush and invalidate the entire mapping when
cached pages exist. In most cases, this increases the cost of the
initial flush sequence but eliminates the need for further lock cycles
and flushes so long as the workload does not actively mix direct and
buffered I/O. This also more closely matches historical behavior and
performance characteristics that users have come to expect.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When modifying the patch series to handle the XFS MMAP_LOCK nesting
of page faults, I botched the conversion of the read page fault
path, and so it is only every calling through the page cache. Re-add
the necessary __dax_fault() call for such files.
Because the get_blocks callback on read faults may not set up the
mapping buffer correctly to allow unwritten extent completion to be
run, we need to allow callers of __dax_fault() to pass a null
complete_unwritten() callback. The DAX code always zeros the
unwritten page when it is read faulted so there are no stale data
exposure issues with not doing the conversion. The only downside
will be the potential for increased CPU overhead on repeated read
faults of the same page. If this proves to be a problem, then the
filesystem needs to fix it's get_block callback and provide a
convert_unwritten() callback to the read fault path.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
This update contains:
o A new sparse on-disk inode record format to allow small extents to
be used for inode allocation when free space is fragmented.
o DAX support. This includes minor changes to the DAX core code to
fix problems with lock ordering and bufferhead mapping abuse.
o transaction commit interface cleanup
o removal of various unnecessary XFS specific type definitions
o cleanup and optimisation of freelist preparation before allocation
o various minor cleanups
o bug fixes for
- transaction reservation leaks
- incorrect inode logging in unwritten extent conversion
- mmap lock vs freeze ordering
- remote symlink mishandling
- attribute fork removal issues.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJVkhI0AAoJEK3oKUf0dfod45MQAJCOEkNduBdlfPvTCMPjj/7z
vzcfDdzgKwhpPTMXSDRvw4zDPt3C2FLMBJqxtPpC4sKGKG/8G0kFvw8bDtBag1m9
ru5nI5LaQ6LC5RcU40zxBx1s/L8qYvyfUlxeoOT5lSwN9c6ENGOCQ3bUk4pSKaee
pWDplag9LbfQomW2GHtxd8agMUZEYx0R1vgfv88V8xgPka8CvQo81XUgkb4PcDZV
ugR+wDUsvwMS01aLYBmRFkMXuExNuCJVwtvdTJS+ZWGHzyTpulFoANUW6QT24gAM
eP4yRXN4bv9vXrXpg8JkF25DHsfw4HBwNEL17ZvoB8t3oJp1/NYaH8ce1jS0+I8i
NCtaO+qUqDSTGQZKgmeDPwCciQp54ra9LEdmIJFxpZxiBof9g/tIYEFgRklyFLwR
GZU6Io6VpBa1oTGlC4D1cmG6bdcnhMB9MGVVCbqnB5mRRDKCmVgCyJwusd1pi7Re
G4O6KkFt21O7+fP13VsjP57KoaJzsIgZ/+H3Ff/fJOJ33AKYTRCmwi8+IMi2n5JI
zz+V0AIBQZAx9dlVyENnxufh9eJYcnwta0lUSLCCo91fZKxbo3ktK1kVHNZP5EGs
IMFM1Ka6hibY20rWlR3GH0dfyP5/yNcvNgTMYPKjj9SVjTar1aSfF2rGpkqYXYyH
D4FICbtDgtOc2ClfpI2k
=3x+W
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pul xfs updates from Dave Chinner:
"There's a couple of small API changes to the core DAX code which
required small changes to the ext2 and ext4 code bases, but otherwise
everything is within the XFS codebase.
This update contains:
- A new sparse on-disk inode record format to allow small extents to
be used for inode allocation when free space is fragmented.
- DAX support. This includes minor changes to the DAX core code to
fix problems with lock ordering and bufferhead mapping abuse.
- transaction commit interface cleanup
- removal of various unnecessary XFS specific type definitions
- cleanup and optimisation of freelist preparation before allocation
- various minor cleanups
- bug fixes for
- transaction reservation leaks
- incorrect inode logging in unwritten extent conversion
- mmap lock vs freeze ordering
- remote symlink mishandling
- attribute fork removal issues"
* tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits)
xfs: don't truncate attribute extents if no extents exist
xfs: clean up XFS_MIN_FREELIST macros
xfs: sanitise error handling in xfs_alloc_fix_freelist
xfs: factor out free space extent length check
xfs: xfs_alloc_fix_freelist() can use incore perag structures
xfs: remove xfs_caddr_t
xfs: use void pointers in log validation helpers
xfs: return a void pointer from xfs_buf_offset
xfs: remove inst_t
xfs: remove __psint_t and __psunsigned_t
xfs: fix remote symlinks on V5/CRC filesystems
xfs: fix xfs_log_done interface
xfs: saner xfs_trans_commit interface
xfs: remove the flags argument to xfs_trans_cancel
xfs: pass a boolean flag to xfs_trans_free_items
xfs: switch remaining xfs_trans_dup users to xfs_trans_roll
xfs: check min blks for random debug mode sparse allocations
xfs: fix sparse inodes 32-bit compile failure
xfs: add initial DAX support
xfs: add DAX IO path support
...
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
Currently XFS calls file_remove_privs() without holding i_mutex. This is
wrong because that function can end up messing with file permissions and
file capabilities stored in xattrs for which we need i_mutex held.
Fix the problem by grabbing iolock exclusively when we will need to
change anything in permissions / xattrs.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
file_remove_suid() is a misnomer since it removes also file capabilities
stored in xattrs and sets S_NOSEC flag. Also should_remove_suid() tells
something else than whether file_remove_suid() call is necessary which
leads to bugs.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The flags argument to xfs_trans_commit is not useful for most callers, as
a commit of a transaction without a permanent log reservation must pass
0 here, and all callers for a transaction with a permanent log reservation
except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove
the flags argument from the public xfs_trans_commit interfaces, and
introduce low-level __xfs_trans_commit variant just for xfs_trans_roll
that regrants a log reservation instead of releasing it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and
XFS_TRANS_ABORT. Both of them are a direct product of the transaction
state, and can be deducted:
- any dirty transaction needs XFS_TRANS_ABORT to be properly canceled,
and XFS_TRANS_ABORT is a noop for a transaction that is not dirty.
- any transaction with a permanent log reservation needs
XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing
XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent
log reservation is invalid.
So just remove the flags argument and do the right thing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add initial support for DAX block zeroing operations to XFS. DAX
cannot use buffered IO through the page cache for zeroing, nor do we
need to issue IO for uncached block zeroing. In both cases, we can
simply call out to the dax block zeroing function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add the initial support for DAX file operations to XFS. This
includes the necessary block allocation and mmap page fault hooks
for DAX to function.
Note that there are changes to the splice interfaces to ensure that
for DAX splice avoids direct page cache manipulations and instead
takes the DAX IO paths for read/write operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Lock ordering for the new mmap lock needs to be:
mmap_sem
sb_start_pagefault
i_mmap_lock
page lock
<fault processsing>
Right now xfs_vm_page_mkwrite gets this the wrong way around,
While technically it cannot deadlock due to the current freeze
ordering, it's still a landmine that might explode if we change
anything in future. Hence we need to nest the locks correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
With the planned cgroup writeback support, backing-dev related
declarations will be more widely used across block and cgroup;
unfortunately, including backing-dev.h from include/linux/blkdev.h
makes cyclic include dependency quite likely.
This patch separates out backing-dev-defs.h which only has the
essential definitions and updates blkdev.h to include it. c files
which need access to more backing-dev details now include
backing-dev.h directly. This takes backing-dev.h off the common
include dependency chain making it a lot easier to use it across block
and cgroup.
v2: fs/fat build failure fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
It was missed when we converted everything in XFs to use negative error
numbers, so fix it now. Bug introduced in 3.17 by commit 2451337 ("xfs: global
error sign conversion"), and should go back to stable kernels.
Thanks to Brian Foster for noticing it.
cc: <stable@vger.kernel.org> # 3.17, 3.18, 3.19, 4.0
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update contains:
o RENAME_WHITEOUT support
o conversion of per-cpu superblock accounting to use generic counters
o new inode mmap lock so that we can lock page faults out of truncate, hole
punch and other direct extent manipulation functions to avoid racing mmap
writes from causing data corruption
o rework of direct IO submission and completion to solve data corruption issue
when running concurrent extending DIO writes. Also solves problem of running
IO completion transactions in interrupt context during size extending AIO
writes.
o FALLOC_FL_INSERT_RANGE support for inserting holes into a file via direct
extent manipulation to avoid needing to copy data within the file
o attribute block header field overflow fix for 64k block size filesystems
o Lots of changes to log messaging to be more informative and concise when
errors occur. Also prevent a lot of unnecessary log spamming due to cascading
failures in error conditions.
o lots of cleanups and bug fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJVOE8oAAoJEK3oKUf0dfodx1kQAIIH8CwqcBrIslOntfHlFPHz
P9aQl5uiI6JcnFqMiHG6mfnjWGpn+Z6XMDGIBwrSTzHj8IEnHTeXqYiS6SDPAnrH
+VmlJEvW01ucAv7vcXKPrfutcc8dxLpy4fs63HOWmXh4rmrTcpel5S+0JSQxyGd6
OriLg1nfD4Sid7R9CFEXAKLghJFK+gbao2CmT0wo6ZrTwiZl2p62Y187ou+d+u3k
BRol99pI/Sp9bKpWZpUv3q2RnfD1v/k4oDP/JG4Ohdt2dx+nDqCjLvL8B5hJu74B
ZI+R+N28sAkMmbtR61kk06F7MS9RZqzBNIZalugaSuspKoenDZzmURZX+i77ogPQ
Ii3XLUMUzdwmi55/tBhpI7VkpFxahaEbWzTT1sMBh/Ka3GXO56BMIYTPvntjoN4w
ElcbFAMAZl8O56ruGBnc/k72CfFbq8qp93KkOfBGIKwwiPN+eCK8bQYL4G3sIZzx
f6k/WLbbShyViX9qoWLiX7qUfvh0NU/EcmGcJBsTmn0NFNOP4WmuojAq6SrvTgEz
No6zYJtnJvEPDa/v5A0dZyYfLqz2cTkEyTM9uwSixcCa1qAS+8IBcCGgTKfQOYkV
hCUWugiHwj4OQ/6WgP6oYLtIYdw6gqXgUKZy1Iy+ThDRwLbg9emYWixQTi4GAuRO
2SEBbFGSk7KIpoPENDUC
=WE6f
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs update from Dave Chinner:
"This update contains:
- RENAME_WHITEOUT support
- conversion of per-cpu superblock accounting to use generic counters
- new inode mmap lock so that we can lock page faults out of
truncate, hole punch and other direct extent manipulation functions
to avoid racing mmap writes from causing data corruption
- rework of direct IO submission and completion to solve data
corruption issue when running concurrent extending DIO writes.
Also solves problem of running IO completion transactions in
interrupt context during size extending AIO writes.
- FALLOC_FL_INSERT_RANGE support for inserting holes into a file via
direct extent manipulation to avoid needing to copy data within the
file
- attribute block header field overflow fix for 64k block size
filesystems
- Lots of changes to log messaging to be more informative and concise
when errors occur. Also prevent a lot of unnecessary log spamming
due to cascading failures in error conditions.
- lots of cleanups and bug fixes
One thing of note is the direct IO fixes that we merged last week
after the window opened. Even though a little late, they fix a user
reported data corruption and have been pretty well tested. I figured
there was not much point waiting another 2 weeks for -rc1 to be
released just so I could send them to you..."
* tag 'xfs-for-linus-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits)
xfs: using generic_file_direct_write() is unnecessary
xfs: direct IO EOF zeroing needs to drain AIO
xfs: DIO write completion size updates race
xfs: DIO writes within EOF don't need an ioend
xfs: handle DIO overwrite EOF update completion correctly
xfs: DIO needs an ioend for writes
xfs: move DIO mapping size calculation
xfs: factor DIO write mapping from get_blocks
xfs: unlock i_mutex in xfs_break_layouts
xfs: kill unnecessary firstused overflow check on attr3 leaf removal
xfs: use larger in-core attr firstused field and detect overflow
xfs: pass attr geometry to attr leaf header conversion functions
xfs: disallow ro->rw remount on norecovery mount
xfs: xfs_shift_file_space can be static
xfs: Add support FALLOC_FL_INSERT_RANGE for fallocate
fs: Add support FALLOC_FL_INSERT_RANGE for fallocate
xfs: Fix incorrect positive ENOMEM return
xfs: xfs_mru_cache_insert() should use GFP_NOFS
xfs: %pF is only for function pointers
xfs: fix shadow warning in xfs_da3_root_split()
...
generic_file_direct_write() does all sorts of things to make DIO
work "sorta ok" with mixed buffered IO workloads. We already do
most of this work in xfs_file_aio_dio_write() because of the locking
requirements, so there's only a couple of things it does for us.
The first thing is that it does a page cache invalidation after the
->direct_IO callout. This can easily be added to the XFS code.
The second thing it does is that if data was written, it updates the
iov_iter structure to reflect the data written, and then does EOF
size updates if necessary. For XFS, these EOF size updates are now
not necessary, as we do them safely and race-free in IO completion
context. That leaves just the iov_iter update, and that's also moved
to the XFS code.
Therefore we don't need to call generic_file_direct_write() and in
doing so remove redundant buffered writeback and page cache
invalidation calls from the DIO submission path. We also remove a
racy EOF size update, and make the DIO submission code in XFS much
easier to follow. Wins all round, really.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we are doing AIO DIO writes, the IOLOCK only provides an IO
submission barrier. When we need to do EOF zeroing, we need to ensure
that no other IO is in progress and all pending in-core EOF updates
have been completed. This requires us to wait for all outstanding
AIO DIO writes to the inode to complete and, if necessary, run their
EOF updates.
Once all the EOF updates are complete, we can then restart
xfs_file_aio_write_checks() while holding the IOLOCK_EXCL, knowing
that EOF is up to date and we have exclusive IO access to the file
so we can run EOF block zeroing if we need to without interference.
This gives EOF zeroing the same exclusivity against other IO as we
provide truncate operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_end_io_direct_write() can race with other IO completions when
updating the in-core inode size. The IO completion processing is not
serialised for direct IO - they are done either under the
IOLOCK_SHARED for non-AIO DIO, and without any IOLOCK held at all
during AIO DIO completion. Hence the non-atomic test-and-set update
of the in-core inode size is racy and can result in the in-core
inode size going backwards if the race if hit just right.
If the inode size goes backwards, this can trigger the EOF zeroing
code to run incorrectly on the next IO, which then will zero data
that has successfully been written to disk by a previous DIO.
To fix this bug, we need to serialise the test/set updates of the
in-core inode size. This first patch introduces locking around the
relevant updates and checks in the DIO path. Because we now have an
ioend in xfs_end_io_direct_write(), we know exactly then we are
doing an IO that requires an in-core EOF update, and we know that
they are not running in interrupt context. As such, we do not need to
use irqsave() spinlock variants to protect against interrupts while
the lock is held.
Hence we can use an existing spinlock in the inode to do this
serialisation and so not need to grow the struct xfs_inode just to
work around this problem.
This patch does not address the test/set EOF update in
generic_file_write_direct() for various reasons - that will be done
as a followup with separate explanation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We want to drop all I/O path locks when recalling layouts, and that includes
i_mutex for the write path. Without this we get stuck processe when recalls
take too long.
[dchinner: fix build with !CONFIG_PNFS]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
... returning -E... upon error and amount of data left in iter after
(possible) truncation upon success. Note, that normal case gives
a non-zero (positive) return value, so any tests for != 0 _must_ be
updated.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Conflicts:
fs/ext4/file.c
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch implements fallocate's FALLOC_FL_INSERT_RANGE for XFS.
1) Make sure that both offset and len are block size aligned.
2) Update the i_size of inode by len bytes.
3) Compute the file's logical block number against offset. If the computed
block number is not the starting block of the extent, split the extent
such that the block number is the starting block of the extent.
4) Shift all the extents which are lying bewteen [offset, last allocated extent]
towards right by len bytes. This step will make a hole of len bytes
at offset.
Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
A new fsync vs power fail test in xfstests indicated that XFS can
have unreliable data consistency when doing extending truncates that
require block zeroing. The blocks beyond EOF get zeroed in memory,
but we never force those changes to disk before we run the
transaction that extends the file size and exposes those blocks to
userspace. This can result in the blocks not being correctly zeroed
after a crash.
Because in-memory behaviour is correct, tools like fsx don't pick up
any coherency problems - it's not until the filesystem is shutdown
or the system crashes after writing the truncate transaction to the
journal but before the zeroed data in the page cache is flushed that
the issue is exposed.
Fix this by also flushing the dirty data in memory region between
the old size and new size when we've found blocks that need zeroing
in the truncate process.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now we have the i_mmap_lock being held across the page fault IO
path, we now add extent manipulation operation exclusion by adding
the lock to the paths that directly modify extent maps. This
includes truncate, hole punching and other fallocate based
operations. The operations will now take both the i_iolock and the
i_mmaplock in exclusive mode, thereby ensuring that all IO and page
faults block without holding any page locks while the extent
manipulation is in progress.
This gives us the lock order during truncate of i_iolock ->
i_mmaplock -> page_lock -> i_lock, hence providing the same
lock order as the iolock provides the normal IO path without
involving the mmap_sem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Take the i_mmaplock over write page faults. These come through the
->page_mkwrite callout, so we need to wrap that calls with the
i_mmaplock.
This gives us a lock order of mmap_sem -> i_mmaplock -> page_lock
-> i_lock.
Also, move the page_mkwrite wrapper to the same region of xfs_file.c
as the read fault wrappers and add a tracepoint.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Take the i_mmaplock over read page faults. These come through the
->fault callout, so we need to wrap the generic implementation
with the i_mmaplock. While there, add tracepoints for the read
fault as it passes through XFS.
This gives us a lock order of mmap_sem -> i_mmaplock -> page_lock
-> i_lock.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update contains the implementation of the PNFS server export
methods that enable use of XFS filesystems as a block layout target.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJU58orAAoJEK3oKUf0dfodFyAQAKqC+Iez1rEMr0aW5WzEFjTO
gHoBxQgfz/b2gMntPGbcmMnhRV4LL5/anjRMqU3R4uqTPigskI0+ylQakUKoKgZq
yV1MnOeZvv4TIqK45uoesO3ractDdcL84HM7vLF/tlgvNMqDLpLiZlHl+1gEWig6
fMXAcpsp7J7XhGsI5dRDtt5sEuWUUeqSvtiZlzponvLJz//J2JfOe/Z0UzkNddQr
Ea7BA/ZQuiN2m3GgXykTljt1i7GuA2HCK0oLzgXpsIblrHoYyP67Clf8TnlG4RN3
a4GsdlHd/0FRa0M28eHh5HND89giMiCDcJbESaR5lAiornwzFYaBF/2cj3M8Jbvr
Rr9rhMrD2WRL1Z7Kgv8MDiOd9YpTS12VjSv7n5p4Y1H90USJQutaPYuYdAA2/SHn
L4iXVJ5szgPKF6QLFAWubVYn/8NeSRU9VDVXrUb/pQsbbF/sfDtVzwQhouwJmQ2z
II9nyNwuqev3Os0ODv22YQAGqRkpWN1u/S266AOr7xForCA9ZO31lAYbQ4YS1Gwe
Wbvhw3NXRBqfI3ytm7faGnX9D6NaW/2xvkW2odoBH3AiS7mAYN+hzXi4QZgwuPej
bbkEJsG4hcyEmUqmy/Bes+jNhiI6h48G9vKxBaurV07vV7kwoDzrYcZAt383sjtg
k7kxPPdtQphr+7Ckudtg
=ujZQ
-----END PGP SIGNATURE-----
Merge tag 'xfs-pnfs-for-linus-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs pnfs block layout support from Dave Chinner:
"This contains the changes to XFS needed to support the PNFS block
layout server that you pulled in through Bruce's NFS server tree
merge.
I originally thought that I'd need to merge changes into the NFS
server side, but Bruce had already picked them up and so this is
purely changes to the fs/xfs/ codebase.
Summary:
This update contains the implementation of the PNFS server export
methods that enable use of XFS filesystems as a block layout target"
* tag 'xfs-pnfs-for-linus-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: recall pNFS layouts on conflicting access
xfs: implement pNFS export operations
Recall all outstanding pNFS layouts and truncates, writes and similar extent
list modifying operations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull backing device changes from Jens Axboe:
"This contains a cleanup of how the backing device is handled, in
preparation for a rework of the life time rules. In this part, the
most important change is to split the unrelated nommu mmap flags from
it, but also removing a backing_dev_info pointer from the
address_space (and inode), and a cleanup of other various minor bits.
Christoph did all the work here, I just fixed an oops with pages that
have a swap backing. Arnd fixed a missing export, and Oleg killed the
lustre backing_dev_info from staging. Last patch was from Al,
unexporting parts that are now no longer needed outside"
* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
Make super_blocks and sb_lock static
mtd: export new mtd_mmap_capabilities
fs: make inode_to_bdi() handle NULL inode
staging/lustre/llite: get rid of backing_dev_info
fs: remove default_backing_dev_info
fs: don't reassign dirty inodes to default_backing_dev_info
nfs: don't call bdi_unregister
ceph: remove call to bdi_unregister
fs: remove mapping->backing_dev_info
fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
nilfs2: set up s_bdi like the generic mount_bdev code
block_dev: get bdev inode bdi directly from the block device
block_dev: only write bdev inode on close
fs: introduce f_op->mmap_capabilities for nommu mmap support
fs: kill BDI_CAP_SWAP_BACKED
fs: deduplicate noop_backing_dev_info
Merge misc updates from Andrew Morton:
"Bite-sized chunks this time, to avoid the MTA ratelimiting woes.
- fs/notify updates
- ocfs2
- some of MM"
That laconic "some MM" is mainly the removal of remap_file_pages(),
which is a big simplification of the VM, and which gets rid of a *lot*
of random cruft and special cases because we no longer support the
non-linear mappings that it used.
From a user interface perspective, nothing has changed, because the
remap_file_pages() syscall still exists, it's just done by emulating the
old behavior by creating a lot of individual small mappings instead of
one non-linear one.
The emulation is slower than the old "native" non-linear mappings, but
nobody really uses or cares about remap_file_pages(), and simplifying
the VM is a big advantage.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (78 commits)
memcg: zap memcg_slab_caches and memcg_slab_mutex
memcg: zap memcg_name argument of memcg_create_kmem_cache
memcg: zap __memcg_{charge,uncharge}_slab
mm/page_alloc.c: place zone_id check before VM_BUG_ON_PAGE check
mm: hugetlb: fix type of hugetlb_treat_as_movable variable
mm, hugetlb: remove unnecessary lower bound on sysctl handlers"?
mm: memory: merge shared-writable dirtying branches in do_wp_page()
mm: memory: remove ->vm_file check on shared writable vmas
xtensa: drop _PAGE_FILE and pte_file()-related helpers
x86: drop _PAGE_FILE and pte_file()-related helpers
unicore32: drop pte_file()-related helpers
um: drop _PAGE_FILE and pte_file()-related helpers
tile: drop pte_file()-related helpers
sparc: drop pte_file()-related helpers
sh: drop _PAGE_FILE and pte_file()-related helpers
score: drop _PAGE_FILE and pte_file()-related helpers
s390: drop pte_file()-related helpers
parisc: drop _PAGE_FILE and pte_file()-related helpers
openrisc: drop _PAGE_FILE and pte_file()-related helpers
nios2: drop _PAGE_FILE and pte_file()-related helpers
...
This logic is duplicated in xfs_file_fallocate and xfs_ioc_space, and
we'll need another copy of it for pNFS block support.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that we got rid of the bdi abuse on character devices we can always use
sb->s_bdi to get at the backing_dev_info for a file, except for the block
device special case. Export inode_to_bdi and replace uses of
mapping->backing_dev_info with it to prepare for the removal of
mapping->backing_dev_info.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
fs/xfs/xfs_file.c:919:1-6: WARNING: end returns can be simpified and declaration on line 902 can be dropped
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More consolidatation for the on-disk format defintions. Note that the
XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related
to the on disk format, but depends on a CONFIG_ option.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For some reason, the older commit:
965c8e5 lseek: the "whence" argument is called "whence"
lseek: the "whence" argument is called "whence"
But the kernel decided to call it "origin" instead.
Fix most of the sites.
left out xfs. So fix xfs.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_seek_hole & xfs_seek_data are remarkably similar;
so much so that they can be combined, saving a fair
bit of semi-complex code duplication.
The following patch passes generic/285 and generic/286,
which specifically test seek behavior.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now we are not doing silly things with dirtying buffers beyond EOF
and using invalidation correctly, we can finally reduce the ranges of
writeback and invalidation used by direct IO to match that of the IO
being issued.
Bring the writeback and invalidation ranges back to match the
generic direct IO code - this will greatly reduce the perturbation
of cached data when direct IO and buffered IO are mixed, but still
provide the same buffered vs direct IO coherency behaviour we
currently have.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Similar to direct IO reads, direct IO writes are using
truncate_pagecache_range to invalidate the page cache. This is
incorrect due to the sub-block zeroing in the page cache that
truncate_pagecache_range() triggers.
This patch fixes things by using invalidate_inode_pages2_range
instead. It preserves the page cache invalidation, but won't zero
any pages.
cc: stable@vger.kernel.org
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs is using truncate_pagecache_range to invalidate the page cache
during DIO reads. This is different from the other filesystems who
only invalidate pages during DIO writes.
truncate_pagecache_range is meant to be used when we are freeing the
underlying data structs from disk, so it will zero any partial
ranges in the page. This means a DIO read can zero out part of the
page cache page, and it is possible the page will stay in cache.
buffered reads will find an up to date page with zeros instead of
the data actually on disk.
This patch fixes things by using invalidate_inode_pages2_range
instead. It preserves the page cache invalidation, but won't zero
any pages.
[dchinner: catch error and warn if it fails. Comment.]
cc: stable@vger.kernel.org
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the IO flag definitions to xfs_inode.h and kill the header file
as it is now empty.
Removing the xfs_vnode.h file showed up an implicit header include
path:
xfs_linux.h -> xfs_vnode.h -> xfs_fs.h
And so every xfs header file has been inplicitly been including
xfs_fs.h where it is needed or not. Hence the removal of xfs_vnode.h
causes all sorts of build issues because BBTOB() and friends are no
longer automatically included in the build. This also gets fixed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
From: Brian Foster <bfoster@redhat.com>
Speculative preallocation and and the associated throttling metrics
assume we're working with large files on large filesystems. Users have
reported inefficiencies in these mechanisms when we happen to be dealing
with large files on smaller filesystems. This can occur because while
prealloc throttling is aggressive under low free space conditions, it is
not active until we reach 5% free space or less.
For example, a 40GB filesystem has enough space for several files large
enough to have multi-GB preallocations at any given time. If those files
are slow growing, they might reserve preallocation for long periods of
time as well as avoid the background scanner due to frequent
modification. If a new file is written under these conditions, said file
has no access to this already reserved space and premature ENOSPC is
imminent.
To handle this scenario, modify the buffered write ENOSPC handling and
retry sequence to invoke an eofblocks scan. In the smaller filesystem
scenario, the eofblocks scan resets the usage of preallocation such that
when the 5% free space threshold is met, throttling effectively takes
over to provide fair and efficient preallocation until legitimate
ENOSPC.
The eofblocks scan is selective based on the nature of the failure. For
example, an EDQUOT failure in a particular quota will use a filtered
scan for that quota. Because we don't know which quota might have caused
an allocation failure at any given time, we include each applicable
quota determined to be under low free space conditions in the scan.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.
Errors for conversion (and comparison) found via searches like:
$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs
Negation points found via searches like:
$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs
[ with some bits I missed from Brian Foster ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS_ERROR was designed long ago to trap return values, but it's not
runtime configurable, it's not consistently used, and we can do
similar error trapping with ftrace scripts and triggers from
userspace.
Just nuke XFS_ERROR and associated bits.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull vfs updates from Al Viro:
"This the bunch that sat in -next + lock_parent() fix. This is the
minimal set; there's more pending stuff.
In particular, I really hope to get acct.c fixes merged this cycle -
we need that to deal sanely with delayed-mntput stuff. In the next
pile, hopefully - that series is fairly short and localized
(kernel/acct.c, fs/super.c and fs/namespace.c). In this pile: more
iov_iter work. Most of prereqs for ->splice_write with sane locking
order are there and Kent's dio rewrite would also fit nicely on top of
this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (70 commits)
lock_parent: don't step on stale ->d_parent of all-but-freed one
kill generic_file_splice_write()
ceph: switch to iter_file_splice_write()
shmem: switch to iter_file_splice_write()
nfs: switch to iter_splice_write_file()
fs/splice.c: remove unneeded exports
ocfs2: switch to iter_file_splice_write()
->splice_write() via ->write_iter()
bio_vec-backed iov_iter
optimize copy_page_{to,from}_iter()
bury generic_file_aio_{read,write}
lustre: get rid of messing with iovecs
ceph: switch to ->write_iter()
ceph_sync_direct_write: stop poking into iov_iter guts
ceph_sync_read: stop poking into iov_iter guts
new helper: copy_page_from_iter()
fuse: switch to ->write_iter()
btrfs: switch to ->write_iter()
ocfs2: switch to ->write_iter()
xfs: switch to ->write_iter()
...
iter_file_splice_write() - a ->splice_write() instance that gathers the
pipe buffers, builds a bio_vec-based iov_iter covering those and feeds
it to ->write_iter(). A bunch of simple cases coverted to that...
[AV: fixed the braino spotted by Cyrill]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
And it should be negative.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
pos is redundant (it's iocb->ki_pos), and iov/nr_segs/count are taken
care of by lifting iov_iter into the caller.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now It Can Be Done(tm) - we don't need to do iov_shorten() in
generic_file_direct_write() anymore, now that all ->direct_IO()
instances are converted to proper iov_iter methods and honour
iter->count and iter->iov_offset properly.
Get rid of count/ocount arguments of generic_file_direct_write(),
while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment. Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all callers of ->aio_read() and ->aio_write() have iov/nr_segs already
checked - generic_segment_checks() done after that is just an odd way
to spell iov_length().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We had a number of new features in ext4 during this merge window
(ZERO_RANGE and COLLAPSE_RANGE fallocate modes, renameat, etc.) so
there were many more regression and bug fixes this time around. It
didn't help that xfstests hadn't been fully updated to fully stress
test COLLAPSE_RANGE until after -rc1.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTVIEUAAoJENNvdpvBGATwnKkQANlzQv6BhgzCa0b5Iu0SkHeD
OuLAtPFYE5OVEK22oWT0H76gBi71RHLboHwThd+ZfEeEPvyfs42wY0J/PV/R9dHx
kwhU+MaDDzugfVj3gg29DpYNLQkL/evq0vlNbrRk5je877c2I8JbXV/aAoTVFZoH
NGOsagwBqWCsgL5nSOk/nEZSRX2AzSCkgmOVxylLzFoyTUkX3vZx8G8XtS1zRgbH
b1yOWIK1Ifj7tmBZ4HLpNiK6/NpHAHeHRFiaCQxY0hkLjUeMyVNJfZzXS/Fzp8DP
p1/nm5z9PaFj4nyBC1Wvh9Z6Lj0zQ0ap73LV+w4fHM1SZub3XY+hvyXj/8qMNaSc
lLIGwa2AZFpurbKKn6MZTi5CubVLZs6PZKzDgYURnEcJCgeMujMOxbKekcL5sP9E
Gb6Hh9I/f08HagCRox5O0W7f0/TBY5bFryx5kQQZUtpcRmnY3m7cohSkn6WriwTZ
zYApOZMZkFX5spSeYsfyi8K8wHij/5mXvm7qeqQ0Rj4Ehycd+7jwltOCVXAYN29+
zSKaBaxH2+V7zuGHSxjDFbOOlPotTFNzGmFh08DPTF4Vgnc9uMlLo0Oz8ADFDcT2
JZ4pAFTEREnHOATNl5bAEi8wNrU/Ln9IGhlYCYI9X5BQXjf9oPXcYwQT/lKCb07s
ks8ujfry1R/gjQGuv+LH
=gi42
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 fixes from Ted Ts'o:
"These are regression and bug fixes for ext4.
We had a number of new features in ext4 during this merge window
(ZERO_RANGE and COLLAPSE_RANGE fallocate modes, renameat, etc.) so
there were many more regression and bug fixes this time around. It
didn't help that xfstests hadn't been fully updated to fully stress
test COLLAPSE_RANGE until after -rc1"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (31 commits)
ext4: disable COLLAPSE_RANGE for bigalloc
ext4: fix COLLAPSE_RANGE failure with 1KB block size
ext4: use EINVAL if not a regular file in ext4_collapse_range()
ext4: enforce we are operating on a regular file in ext4_zero_range()
ext4: fix extent merging in ext4_ext_shift_path_extents()
ext4: discard preallocations after removing space
ext4: no need to truncate pagecache twice in collapse range
ext4: fix removing status extents in ext4_collapse_range()
ext4: use filemap_write_and_wait_range() correctly in collapse range
ext4: use truncate_pagecache() in collapse range
ext4: remove temporary shim used to merge COLLAPSE_RANGE and ZERO_RANGE
ext4: fix ext4_count_free_clusters() with EXT4FS_DEBUG and bigalloc enabled
ext4: always check ext4_ext_find_extent result
ext4: fix error handling in ext4_ext_shift_extents
ext4: silence sparse check warning for function ext4_trim_extent
ext4: COLLAPSE_RANGE only works on extent-based files
ext4: fix byte order problems introduced by the COLLAPSE_RANGE patches
ext4: use i_size_read in ext4_unaligned_aio()
fs: disallow all fallocate operation on active swapfile
fs: move falloc collapse range check into the filesystem methods
...
We negate the error value being returned from a generic function
incorrectly. The code path that it is running in returned negative
errors, so there is no need to negate it to get the correct error
signs here.
This was uncovered by generic/019.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This one hits a few functions as we unravel the unused arg
up through the callers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
Currently in do_fallocate in collapse range case we're checking
whether offset + len is not bigger than i_size. However there is
nothing which would prevent i_size from changing so the check is
pointless. It should be done in the file system itself and the file
system needs to make sure that i_size is not going to change. The
i_size check for the other fallocate modes are also done in the
filesystems.
As it is now we can easily crash the kernel by having two processes
doing truncate and fallocate collapse range at the same time. This
can be reproduced on ext4 and it is theoretically possible on xfs even
though I was not able to trigger it with this simple test.
This commit removes the check from do_fallocate and adds it to the
file system.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The main changes in the XFS tree for 3.15-rc1 are:
- O_TMPFILE support
- allowing AIO+DIO writes beyond EOF
- FALLOC_FL_COLLAPSE_RANGE support for fallocate syscall and XFS
implementation
- FALLOC_FL_ZERO_RANGE support for fallocate syscall and XFS
implementation
- IO verifier cleanup and rework
- stack usage reduction changes
- vm_map_ram NOIO context fixes to remove lockdep warings
- various bug fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJTPykMAAoJEK3oKUf0dfod/KoP/jKQwzQPdtT8EtAu5vENh9AO
55zwCDXXFjCNIGIFPkrUBQbbARVAqhLZn3vuLUUhqtRRELdgJy/yFKZ37MPd8bhU
dKetivEB192Jcd6Sn74vsOsNLm1u9mJqbQ1aothz0TiOrkkWFZlz4Otu36MZRHN3
9WgZXWSxr6I/hYHGyCorJWZ5ISs0XD3vR5dYXYeZChbTpTxlCT4X/YgUtW4WH/Tq
y4gG0fKfwr9KK07/LXuQgUuZGU8vwVuNNsXPhqh+FZ39SLD2Ea83h46Hzf/+vVNI
kCIyYN1y40uBWczmwAptVEnUwhpGK8PzNrhKwTZICDtuct9sikf7c+o0aEE9lcqo
8IBt0Dy4l7BQVFSZOjYo5Jw5a8jAbkh47zru31HxogEVqafdz80iWB12JagOOnXM
v/McvDvZMyfgGckih32FM4G7ElvTYgGai5/3dLhfMuhc4/DdwcBOF1yHmFmnjhWO
QRsQxLdefUtP3MfMYKaJHM6v2wE1S2l0owgp+HdPluNiOUmH/fqFq1WpHxqqeRPz
nuHF8oYlxaZP5WAarz6Yf1/twIeZJ1rTD8np8uocvMqQJzMYJgrQyH+xJqjJaITR
iveQcEoRB8D7/fXMGDdcjZYE2fG4l4JE2kuh97k5NZw76e3v2YXSGh0kd9WqR1uN
t07joLRQKR2pJuSmuD5E
=uSkJ
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-3.15-rc1' of git://oss.sgi.com/xfs/xfs
Pull xfs update from Dave Chinner:
"There are a couple of new fallocate features in this request - it was
decided that it was easiest to push them through the XFS tree using
topic branches and have the ext4 support be based on those branches.
Hence you may see some overlap with the ext4 tree merge depending on
how they including those topic branches into their tree. Other than
that, there is O_TMPFILE support, some cleanups and bug fixes.
The main changes in the XFS tree for 3.15-rc1 are:
- O_TMPFILE support
- allowing AIO+DIO writes beyond EOF
- FALLOC_FL_COLLAPSE_RANGE support for fallocate syscall and XFS
implementation
- FALLOC_FL_ZERO_RANGE support for fallocate syscall and XFS
implementation
- IO verifier cleanup and rework
- stack usage reduction changes
- vm_map_ram NOIO context fixes to remove lockdep warings
- various bug fixes and cleanups"
* tag 'xfs-for-linus-3.15-rc1' of git://oss.sgi.com/xfs/xfs: (34 commits)
xfs: fix directory hash ordering bug
xfs: extra semi-colon breaks a condition
xfs: Add support for FALLOC_FL_ZERO_RANGE
fs: Introduce FALLOC_FL_ZERO_RANGE flag for fallocate
xfs: inode log reservations are still too small
xfs: xfs_check_page_type buffer checks need help
xfs: avoid AGI/AGF deadlock scenario for inode chunk allocation
xfs: use NOIO contexts for vm_map_ram
xfs: don't leak EFSBADCRC to userspace
xfs: fix directory inode iolock lockdep false positive
xfs: allocate xfs_da_args to reduce stack footprint
xfs: always do log forces via the workqueue
xfs: modify verifiers to differentiate CRC from other errors
xfs: print useful caller information in xfs_error_report
xfs: add xfs_verifier_error()
xfs: add helper for updating checksums on xfs_bufs
xfs: add helper for verifying checksums on xfs_bufs
xfs: Use defines for CRC offsets in all cases
xfs: skip pointless CRC updates after verifier failures
xfs: Add support FALLOC_FL_COLLAPSE_RANGE for fallocate
...
Introduce new FALLOC_FL_ZERO_RANGE flag for fallocate. This has the same
functionality as xfs ioctl XFS_IOC_ZERO_RANGE.
We can also preallocate blocks past EOF in the same was as with
fallocate. Flag FALLOC_FL_KEEP_SIZE will cause the inode size to remain
the same even if we preallocate blocks past EOF.
It uses the same code to zero range as it is used by the
XFS_IOC_ZERO_RANGE ioctl.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch implements fallocate's FALLOC_FL_COLLAPSE_RANGE for XFS.
The semantics of this flag are following:
1) It collapses the range lying between offset and length by removing any data
blocks which are present in this range and than updates all the logical
offsets of extents beyond "offset + len" to nullify the hole created by
removing blocks. In short, it does not leave a hole.
2) It should be used exclusively. No other fallocate flag in combination.
3) Offset and length supplied to fallocate should be fs block size aligned
in case of xfs and ext4.
4) Collaspe range does not work beyond i_size.
Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It actually goes back to 2004 ([PATCH] Concurrent O_SYNC write support)
when sync_page_range() had been introduced; generic_file_write{,v}() correctly
synced
pos_after_write - written .. pos_after_write - 1
but generic_file_aio_write() synced
pos_before_write .. pos_before_write + written - 1
instead. Which is not the same thing with O_APPEND, obviously.
A couple of years later correct variant had been killed off when
everything switched to use of generic_file_aio_write().
All users of generic_file_aio_write() are affected, and the same bug
has been copied into other instances of ->aio_write().
The fix is trivial; the only subtle point is that generic_write_sync()
ought to be inlined to avoid calculations useless for the majority of
calls.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some time ago, mkfs.xfs started picking the storage physical
sector size as the default filesystem "sector size" in order
to avoid RMW costs incurred by doing IOs at logical sector
size alignments.
However, this means that for a filesystem made with i.e.
a 4k sector size on an "advanced format" 4k/512 disk,
512-byte direct IOs are no longer allowed. This means
that XFS has essentially turned this AF drive into a hard
4K device, from the filesystem on up.
XFS's mkfs-specified "sector size" is really just controlling
the minimum size & alignment of filesystem metadata.
There is no real need to tightly couple XFS's minimal
metadata size to the minimum allowed direct IO size;
XFS can continue doing metadata in optimal sizes, but
still allow smaller DIOs for apps which issue them,
for whatever reason.
This patch adds a new field to the xfs_buftarg, so that
we now track 2 sizes:
1) The metadata sector size, which is the minimum unit and
alignment of IO which will be performed by metadata operations.
2) The device logical sector size
The first is used internally by the file system for metadata
alignment and IOs.
The second is used for the minimum allowed direct IO alignment.
This has passed xfstests on filesystems made with 4k sectors,
including when run under the patch I sent to ignore
XFS_IOC_DIOINFO, and issue 512 DIOs anyway. I also directly
tested end of block behavior on preallocated, sparse, and
existing files when we do a 512 IO into a 4k file on a
4k-sector filesystem, to be sure there were no unexpected
behaviors.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
In preparation for adding new members to the structure,
give these old ones more descriptive names:
bt_ssize -> bt_meta_sectorsize
bt_smask -> bt_meta_sectormask
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Make it clear that we're only locking against the extent map on the data
fork. Also clean the function up a little bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We can just use xfs_iunlock without any loss of clarity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.
Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.
The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The on-disk format definitions for the directory and attribute
structures are spread across 3 header files right now, only one of
which is dedicated to defining on-disk structures and their
manipulation (xfs_dir2_format.h). Pull all the format definitions
into a single header file - xfs_da_format.h - and switch all the
code over to point at that.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
All of the buffer operations structures are needed to be exported
for xfs_db, so move them all to a common location rather than
spreading them all over the place. They are verifying the on-disk
format, so while xfs_format.h might be a good place, it is not part
of the on disk format.
Hence we need to create a new header file that we centralise these
related definitions. Start by moving the bffer operations
structures, and then also move all the other definitions that have
crept into xfs_log_format.h and xfs_format.h as there was no other
shared header file to put them in.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Call xfs_alloc_file_space or xfs_free_file_space directly from
xfs_file_fallocate instead of going through xfs_change_file_space.
This simplified the code by removing the unessecary marshalling of the
arguments into an xfs_flock64_t structure and allows removing checks that
are already done in the VFS code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently fallocate always holds the iolock when calling into
xfs_change_file_space, while the ioctl path lets some of the lower level
functions take it, but leave it out in others.
This patch makes sure the ioctl path also always holds the iolock and
thus introduces consistent locking for the preallocation operations while
simplifying the code and allowing to kill the now unused XFS_ATTR_NOLOCK
flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no reason to conditionally take the iolock inside xfs_setattr_size
when we can let the caller handle it unconditionally, which just incrases
the lock hold time for the case where it was previously taken internally
by a few instructions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now we have xfs_inode.c for holding kernel-only XFS inode
operations, move all the inode operations from xfs_vnodeops.c to
this new file as it holds another set of kernel-only inode
operations. The name of this file traces back to the days of Irix
and it's vnodes which we don't have anymore.
Essentially this move consolidates the inode locking functions
and a bunch of XFS inode operations into the one file. Eventually
the high level functions will be merged into the VFS interface
functions in xfs_iops.c.
This leaves only internal preallocation, EOF block manipulation and
hole punching functions in vnodeops.c. Move these to xfs_bmap_util.c
where we are already consolidating various in-kernel physical extent
manipulation and querying functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Many of the definitions within xfs_dir2_priv.h are needed in
userspace outside libxfs. Definitions within xfs_dir2_priv.h are
wholly contained within libxfs, so we need to shuffle some of the
definitions around to keep consistency across files shared between
user and kernel space.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
For those file systems(btrfs/ext4/ocfs2/tmpfs) that support
SEEK_DATA/SEEK_HOLE functions, we end up handling the similar
matter in lseek_execute() to update the current file offset
to the desired offset if it is valid, ceph also does the
simliar things at ceph_llseek().
To reduce the duplications, this patch make lseek_execute()
public accessible so that we can call it directly from the
underlying file systems.
Thanks Dave Chinner for this suggestion.
[AV: call it vfs_setpos(), don't bring the removed 'inode' argument back]
v2->v1:
- Add kernel-doc comments for lseek_execute()
- Call lseek_execute() in ceph->llseek()
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Ted Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Sage Weil <sage@inktank.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For 3.10-rc1 we have a number of bug fixes and cleanups and a currently
experimental feature from David Chinner, CRCs protection for metadata.
CRCs are enabled by using mkfs.xfs to create a filesystem with the
feature bits set.
* numerous fixes for speculative preallocation
* don't verify buffers on IO errors
* rename of random32 to prandom32
* refactoring/rearrangement in xfs_bmap.c
* removal of unused m_inode_shrink in struct xfs_mount
* fix error handling of xfs_bufs and readahead
* quota driven preallocation throttling
* fix WARN_ON in xfs_vm_releasepage
* add ratelimited printk for different alert levels
* fix spurious forced shutdowns due to freed Extent Free Intents
* remove some obsolete XLOG_CIL_HARD_SPACE_LIMIT() macros
* remove some obsoleted comments
* (experimental) CRC support for metadata
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJRgocuAAoJENaLyazVq6ZOXHUP+wbTG7P1cX33AeG9PErEJduU
dpwzDmDn1n41pA5AY3/i5sm67qYSpF793LgI95n+wPxOh0LTDdKPqrLSEh5GAQ2c
bAaax4UTmwFI8bnnHC2zcexyZX0tKDgfW8pxQe8i8xEh/bJalLFOLq7wTFfhAcQX
8NqI1BXp6bN7arm37rsUXpOS+mNIXxc5UtpKhREQ1zDQ/J+tQ3dGjnUmmMj4CX7F
iRKzezT/5YpuWPX0MGgfuUAbSnNDQ9d4tPumTHEuTYuDtVWrea8ZRGMnXs+dEd4l
NoFpeo1R0XaGtWx/4jOnWnmt3D+O3/k03jrFLmoZQKSuBW27jDkE7RRIq7OPmEo2
WVhDOO3I3CzoTGWfQ3BZ78dWF6rU/a5baxPmnkla4o4GIxyycgtARvsQWF97aeKO
ImISIIBrBoifaElKOA+bDyP57EMe5DHSHAiMXGxuo/+djhTAxn5GugLwbes0u/sS
95DAsGy4PPOKcFJfHJvS0i64+lw0yFmeGqfcQ9GwsXALvl2QmA79O9wB9qN+AaXY
AwC7eeC3xWnG86aPtxmnK8vduEFXWdBZ2ZPZjtr2wVo+FC/46pRhUqK1cUyDQxXH
jx5CIyxe+8snRs8eGYu4k6lwVbCH6ICzRhNMtOCB6e4c+bXBun5eAoGP6jln2g3F
z+CvMq0/WBFJ+86wzJqz
=hHSs
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v3.10-rc1' of git://oss.sgi.com/xfs/xfs
Pull xfs update from Ben Myers:
"For 3.10-rc1 we have a number of bug fixes and cleanups and a
currently experimental feature from David Chinner, CRCs protection for
metadata. CRCs are enabled by using mkfs.xfs to create a filesystem
with the feature bits set.
- numerous fixes for speculative preallocation
- don't verify buffers on IO errors
- rename of random32 to prandom32
- refactoring/rearrangement in xfs_bmap.c
- removal of unused m_inode_shrink in struct xfs_mount
- fix error handling of xfs_bufs and readahead
- quota driven preallocation throttling
- fix WARN_ON in xfs_vm_releasepage
- add ratelimited printk for different alert levels
- fix spurious forced shutdowns due to freed Extent Free Intents
- remove some obsolete XLOG_CIL_HARD_SPACE_LIMIT() macros
- remove some obsoleted comments
- (experimental) CRC support for metadata"
* tag 'for-linus-v3.10-rc1' of git://oss.sgi.com/xfs/xfs: (46 commits)
xfs: fix da node magic number mismatches
xfs: Remote attr validation fixes and optimisations
xfs: Teach dquot recovery about CONFIG_XFS_QUOTA
xfs: add metadata CRC documentation
xfs: implement extended feature masks
xfs: add CRC checks to the superblock
xfs: buffer type overruns blf_flags field
xfs: add buffer types to directory and attribute buffers
xfs: add CRC protection to remote attributes
xfs: split remote attribute code out
xfs: add CRCs to attr leaf blocks
xfs: add CRCs to dir2/da node blocks
xfs: shortform directory offsets change for dir3 format
xfs: add CRC checking to dir2 leaf blocks
xfs: add CRC checking to dir2 data blocks
xfs: add CRC checking to dir2 free blocks
xfs: add CRC checks to block format directory blocks
xfs: add CRC checks to remote symlinks
xfs: split out symlink code into it's own file.
xfs: add version 3 inode format with CRCs
...
This addition follows the same pattern as the dir2 block CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_IOC_ZERO_RANGE simply does not work properly for non page cache
aligned ranges. Neither test 242 or 290 exercise this correctly, so
the behaviour is completely busted even though the tests pass.
Fix it to support full byte range granularity as was originally
intended for this ioctl.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
It's just a simple wrapper around VFS functionality, and is actually
bugging in that it doesn't remove mappings before invalidating the
page cache. Remove it and replace it with the correct VFS
functionality.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Andrew Dahl <adahl@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We don't do any data writeback from XFS any more - the VFS is
completely responsible for that, including for freeze. We can
replace the remaining caller with a VFS level function that
achieves the same thing, but without conflicting with current
writeback work.
This means we can remove the flush_work and xfs_flush_inodes() - the
VFS functionality completely replaces the internal flush queue for
doing this writeback work in a separate context to avoid stack
overruns.
This does have one complication - it cannot be called with page
locks held. Hence move the flushing of delalloc space when ENOSPC
occurs back up into xfs_file_aio_buffered_write when we don't hold
any locks that will stall writeback.
Unfortunately, writeback_inodes_sb_if_idle() is not sufficient to
trigger delalloc conversion fast enough to prevent spurious ENOSPC
whent here are hundreds of writers, thousands of small files and GBs
of free RAM. Hence we need to use sync_sb_inodes() to block callers
while we wait for writeback like the previous xfs_flush_inodes
implementation did.
That means we have to hold the s_umount lock here, but because this
call can nest inside i_mutex (the parent directory in the create
case, held by the VFS), we have to use down_read_trylock() to avoid
potential deadlocks. In practice, this trylock will succeed on
almost every attempt as unmount/remount type operations are
exceedingly rare.
Note: we always need to pass a count of zero to
generic_file_buffered_write() as the previously written byte count.
We only do this by accident before this patch by the virtue of ret
always being zero when there are no errors. Make this explicit
rather than needing to specifically zero ret in the ENOSPC retry
case.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Move actual pte filling for non-linear file mappings into the new special
vma operation: ->remap_pages().
Filesystems must implement this method to get non-linear mapping support,
if it uses filemap_fault() then generic_file_remap_pages() can be used.
Now device drivers can implement this method and obtain nonlinear vma support.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com> #arch/tile
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfs_seek_hole() refinement with hole searching from page cache for unwritten extent.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_seek_data() refinement with unwritten extents check up from page cache.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Introduce helpers to probe data or hole offset from page cache.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The type is already indicated by the function naming explicitly, so this argument
can be omitted from those calls.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
Generic code now blocks all writers from standard write paths. So we add
blocking of all writers coming from ioctl (we get a protection of ioctl against
racing remount read-only as a bonus) and convert xfs_file_aio_write() to a
non-racy freeze protection. We also keep freeze protection on transaction
start to block internal filesystem writes such as removal of preallocated
blocks.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The generic segment check code now returns a count of the number of
bytes in the iovec, so we don't need to roll our own anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_MAXIOFFSET() is just a simple macro that resolves to
mp->m_maxioffset. It doesn't need to exist, and it just makes the
code unnecessarily loud and shouty.
Make it quiet and easy to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Btrfs has to make sure we have space to allocate new blocks in order to modify
the inode, so updating time can fail. We've gotten around this by having our
own file_update_time but this is kind of a pain, and Christoph has indicated he
would like to make xfs do something different with atime updates. So introduce
->update_time, where we will deal with i_version an a/m/c time updates and
indicate which changes need to be made. The normal version just does what it
has always done, updates the time and marks the inode dirty, and then
filesystems can choose to do something different.
I've gone through all of the users of file_update_time and made them check for
errors with the exception of the fault code since it's complicated and I wasn't
quite sure what to do there, also Jan is going to be pushing the file time
updates into page_mkwrite for those who have it so that should satisfy btrfs and
make it not a big deal to check the file_update_time() return code in the
generic fault path. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
This patch adds lseek(2) SEEK_DATA/SEEK_HOLE functionality to xfs.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the removal of xfs_rw.h and other changes over time, xfs_bit.h
is being included in many files that don't actually need it. Clean
up the includes as necessary.
Also move the only-used-once xfs_ialloc_find_free() static inline
function out of a header file that is widely included to reduce
the number of needless dependencies on xfs_bit.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Instead of calling xfs_zero_eof with the ilock held only take it internally
for the minimall required critical section around xfs_bmapi_read. This
also requires changing the calling convention for xfs_zero_last_block
slightly. The actual zeroing operation is still serialized by the iolock,
which must be taken exclusively over the call to xfs_zero_eof.
We could in fact use a shared lock for the xfs_bmapi_read calls as long as
the extent list has been read in, but given that we already hold the iolock
exclusively there is little reason to micro optimize this further.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We do not need the ilock for generic_write_checks and the i_size_read,
which are protected by i_mutex and/or iolock, so reduce the ilock
critical section to just the call to xfs_zero_eof.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add an in-memory only flag to say we logged timestamps only, and use it to
check if fdatasync can optimize away the log force.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Timestamps on regular files are the last metadata that XFS does not update
transactionally. Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates. Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.
Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With all the size field updates out of the way xfs_file_aio_write can
be further simplified by pushing all iolock handling into
xfs_file_dio_aio_write and xfs_file_buffered_aio_write and using
the generic generic_write_sync helper for synchronous writes.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
While xfs_iunlock is fine with 0 lockflags the calling conventions are much
cleaner if xfs_file_aio_write_checks never returns without the iolock held.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we use the VFS i_size field throughout XFS there is no need for the
i_new_size field any more given that the VFS i_size field gets updated
in ->write_end before unlocking the page, and thus is always uptodate when
writeback could see a page. Removing i_new_size also has the advantage that
we will never have to trim back di_size during a failed buffered write,
given that it never gets updated past i_size.
Note that currently the generic direct I/O code only updates i_size after
calling our end_io handler, which requires a small workaround to make
sure di_size actually makes it to disk. I hope to fix this properly in
the generic code.
A downside is that we lose the support for parallel non-overlapping O_DIRECT
appending writes that recently was added. I don't think keeping the complex
and fragile i_new_size infrastructure for this is a good tradeoff - if we
really care about parallel appending writers we should investigate turning
the iolock into a range lock, which would also allow for parallel
non-overlapping buffered writers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no fundamental need to keep an in-memory inode size copy in the XFS
inode. We already have the on-disk value in the dinode, and the separate
in-memory copy that we need for regular files only in the XFS inode.
Remove the xfs_inode i_size field and change the XFS_ISIZE macro to use the
VFS inode i_size field for regular files. Switch code that was directly
accessing the i_size field in the xfs_inode to XFS_ISIZE, or in cases where
we are limited to regular files direct access of the VFS inode i_size field.
This also allows dropping some fairly complicated code in the write path
which dealt with keeping the xfs_inode i_size uptodate with the VFS i_size
that is getting updated inside ->write_end.
Note that we do not bother resetting the VFS i_size when truncating a file
that gets freed to zero as there is no point in doing so because the VFS inode
is no longer in use at this point. Just relax the assert in xfs_ifree to
only check the on-disk size instead.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
The below patch fixes some typos in various parts of the kernel, as well as fixes some comments.
Please let me know if I missed anything, and I will try to get it changed and resent.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Directories are only updated transactionally, which means fsync only
needs to flush the log the inode is currently dirty, but not bother
with checking for dirty data, non-transactional updates, and most
importanly doesn't have to flush disk caches except as part of a
transaction commit.
While the first two optimizations can't easily be measured, the
latter actually makes a difference when doing lots of fsync that do
not actually have to commit the inode, e.g. because an earlier fsync
already pushed the log far enough.
The new xfs_dir_fsync is identical to xfs_nfs_commit_metadata except
for the prototype, but I'm not sure creating a common helper for the
two is worth it given how simple the functions are.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
There is no reason to keep a reference to the inode even if we unlock
it during transaction commit because we never drop a reference between
the ijoin and commit. Also use this fact to merge xfs_trans_ijoin_ref
back into xfs_trans_ijoin - the third argument decides if an unlock
is needed now.
I'm actually starting to wonder if allowing inodes to be unlocked
at transaction commit really is worth the effort. The only real
benefit is that they can be unlocked earlier when commiting a
synchronous transactions, but that could be solved by doing the
log force manually after the unlock, too.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Only read the LSN we need to push to with the ilock held, and then release
it before we do the log force to improve concurrency.
This also removes the only direct caller of _xfs_trans_commit, thus
allowing it to be merged into the plain xfs_trans_commit again.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
xfs_bmapi() currently handles both extent map reading and
allocation. As a result, the code is littered with "if (wr)"
branches to conditionally do allocation operations if required.
This makes the code much harder to follow and causes significant
indent issues with the code.
Given that read mapping is much simpler than allocation, we can
split out read mapping from xfs_bmapi() and reuse the logic that
we have already factored out do do all the hard work of handling the
extent map manipulations. The results in a much simpler function for
the common extent read operations, and will allow the allocation
code to be simplified in another commit.
Once xfs_bmapi_read() is implemented, convert all the callers of
xfs_bmapi() that are only reading extents to use the new function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Currently a buffered reader or writer can add pages to the pagecache
while we are waiting for the iolock in xfs_file_dio_aio_write. Prevent
this by re-checking mapping->nrpages after we got the iolock, and if
nessecary upgrade the lock to exclusive mode. To simplify this a bit
only take the ilock inside of xfs_file_aio_write_checks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
We now have an i_dio_count filed and surrounding infrastructure to wait
for direct I/O completion instead of i_icount, and we have never needed
to iocount waits for buffered I/O given that we only set the page uptodate
after finishing all required work. Thus remove i_iocount, and replace
the actually needed waits with calls to inode_dio_wait.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
For append write workloads, extending the file requires a certain
amount of exclusive locking to be done up front to ensure sanity in
things like ensuring that we've zeroed any allocated regions
between the old EOF and the start of the new IO.
For single threads, this typically isn't a problem, and for large
IOs we don't serialise enough for it to be a problem for two
threads on really fast block devices. However for smaller IO and
larger thread counts we have a problem.
Take 4 concurrent sequential, single block sized and aligned IOs.
After the first IO is submitted but before it completes, we end up
with this state:
IO 1 IO 2 IO 3 IO 4
+-------+-------+-------+-------+
^ ^
| |
| |
| |
| \- ip->i_new_size
\- ip->i_size
And the IO is done without exclusive locking because offset <=
ip->i_size. When we submit IO 2, we see offset > ip->i_size, and
grab the IO lock exclusive, because there is a chance we need to do
EOF zeroing. However, there is already an IO in progress that avoids
the need for IO zeroing because offset <= ip->i_new_size. hence we
could avoid holding the IO lock exlcusive for this. Hence after
submission of the second IO, we'd end up this state:
IO 1 IO 2 IO 3 IO 4
+-------+-------+-------+-------+
^ ^
| |
| |
| |
| \- ip->i_new_size
\- ip->i_size
There is no need to grab the i_mutex of the IO lock in exclusive
mode if we don't need to invalidate the page cache. Taking these
locks on every direct IO effective serialises them as taking the IO
lock in exclusive mode has to wait for all shared holders to drop
the lock. That only happens when IO is complete, so effective it
prevents dispatch of concurrent direct IO writes to the same inode.
And so you can see that for the third concurrent IO, we'd avoid
exclusive locking for the same reason we avoided the exclusive lock
for the second IO.
Fixing this is a bit more complex than that, because we need to hold
a write-submission local value of ip->i_new_size to that clearing
the value is only done if no other thread has updated it before our
IO completes.....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
There is no need to grab the i_mutex of the IO lock in exclusive
mode if we don't need to invalidate the page cache. Taking these
locks on every direct IO effective serialises them as taking the IO
lock in exclusive mode has to wait for all shared holders to drop
the lock. That only happens when IO is complete, so effective it
prevents dispatch of concurrent direct IO reads to the same inode.
Fix this by taking the IO lock shared to check the page cache state,
and only then drop it and take the IO lock exclusively if there is
work to be done. Hence for the normal direct IO case, no exclusive
locking will occur.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Joern Engel <joern@logfs.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>