A radix guest can execute tlbie instructions to invalidate TLB entries.
After a tlbie or a group of tlbies, it must then do the architected
sequence eieio; tlbsync; ptesync to ensure that the TLB invalidation
has been processed by all CPUs in the system before it can rely on
no CPU using any translation that it just invalidated.
In fact it is the ptesync which does the actual synchronization in
this sequence, and hardware has a requirement that the ptesync must
be executed on the same CPU thread as the tlbies which it is expected
to order. Thus, if a vCPU gets moved from one physical CPU to
another after it has done some tlbies but before it can get to do the
ptesync, the ptesync will not have the desired effect when it is
executed on the second physical CPU.
To fix this, we do a ptesync in the exit path for radix guests. If
there are any pending tlbies, this will wait for them to complete.
If there aren't, then ptesync will just do the same as sync.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HV KVM guest entry/exit code adds the timebase offset
from the vcore struct to the timebase on guest entry, and subtracts
it on guest exit. Which is fine, except that it is possible for
userspace to change the offset using the SET_ONE_REG interface while
the vcore is running, as there is only one timebase offset per vcore
but potentially multiple VCPUs in the vcore. If that were to happen,
KVM would subtract a different offset on guest exit from that which
it had added on guest entry, leading to the timebase being out of sync
between cores in the host, which then leads to bad things happening
such as hangs and spurious watchdog timeouts.
To fix this, we add a new field 'tb_offset_applied' to the vcore struct
which stores the offset that is currently applied to the timebase.
This value is set from the vcore tb_offset field on guest entry, and
is what is subtracted from the timebase on guest exit. Since it is
zero when the timebase offset is not applied, we can simplify the
logic in kvmhv_start_timing and kvmhv_accumulate_time.
In addition, we had secondary threads reading the timebase while
running concurrently with code on the primary thread which would
eventually add or subtract the timebase offset from the timebase.
This occurred while saving or restoring the DEC register value on
the secondary threads. Although no specific incorrect behaviour has
been observed, this is a race which should be fixed. To fix it, we
move the DEC saving code to just before we call kvmhv_commence_exit,
and the DEC restoring code to after the point where we have waited
for the primary thread to switch the MMU context and add the timebase
offset. That way we are sure that the timebase contains the guest
timebase value in both cases.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
During guest entry/exit, we switch over to/from the guest MMU context
and we cannot take exceptions in the hypervisor code.
Since ftrace may be enabled and since it can result in us taking a trap,
disable ftrace by setting paca->ftrace_enabled to zero. There are two
paths through which we enter/exit a guest:
1. If we are the vcore runner, then we enter the guest via
__kvmppc_vcore_entry() and we disable ftrace around this. This is always
the case for Power9, and for the primary thread on Power8.
2. If we are a secondary thread in Power8, then we would be in nap due
to SMT being disabled. We are woken up by an IPI to enter the guest. In
this scenario, we enter the guest through kvm_start_guest(). We disable
ftrace at this point. In this scenario, ftrace would only get re-enabled
on the secondary thread when SMT is re-enabled (via start_secondary()).
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016 and no one
noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q Syndrome.
- A big series to make the allocation of our pacas (per cpu area), kernel page
tables, and per-cpu stacks NUMA aware when using the Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to:
Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy, Alistair Popple, Andy
Shevchenko, Aneesh Kumar K.V, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Christophe Leroy, Christophe Lombard, Cyril Bur, Daniel Axtens,
Dave Young, Finn Thain, Frederic Barrat, Gustavo Romero, Horia Geantă,
Jonathan Neuschäfer, Kees Cook, Larry Finger, Laurent Dufour, Laurent Vivier,
Logan Gunthorpe, Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus
Elfring, Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de
Oliveira, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher Boessenkool,
Simon Guo, Simon Horman, Stewart Smith, Sukadev Bhattiprolu, Suraj Jitindar
Singh, Thiago Jung Bauermann, Vaibhav Jain, Vaidyanathan Srinivasan, Vasant
Hegde, Wei Yongjun.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJayKxDExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYAr
JQ/6A9Xs4zHDn9OeT9esEIxciETqUlrP0Wp64c4JVC7EkG1E7xRDZ4Xb4m8R2nNt
9sPhtNO1yCtEk6kFQtPNB0N8v6pud4I6+aMcYnn+tP8mJRYQ4x9bYaF3Hw98IKmE
Kd6TglmsUQvh2GpwPiF93KpzzWu1HB2kZzzqJcAMTMh7C79Qz00BjrTJltzXB2jx
tJ+B4lVy8BeU8G5nDAzJEEwb5Ypkn8O40rS/lpAwVTYOBJ8Rbyq8Fj82FeREK9YO
4EGaEKPkC/FdzX7OJV3v2/nldCd8pzV471fAoGuBUhJiJBMBoBybcTHIdDex7LlL
zMLV1mUtGo8iolRPhL8iCH+GGifZz2WzstYCozz7hgIraWtc/frq9rZp6q0LdH/K
trk7UbPGlVb92ecWZVpZyEcsMzKrCgZqnAe9wRNh1uEKScEdzd/bmRaMhENUObRh
Hili6AVvmSKExpy7k2sZP/oUMaeC15/xz8Lk7l8a/iCkYhNmPYh5iSXM5+UKpcRT
FYOcO0o3DwXsN46Whow3nJ7TqAsDy9/ecPUG71JQi3ZrHnRrm8jxkn8MCG5pZ1Fi
KvKDxlg6RiJo3DF9/fSOpJUokvMwqBS5dJo4eh5eiDy94aBTqmBKFecvPxQm7a0L
l3uXCF/6JuXEvMukFjGBO4RiYhw8i+B2uKsh81XUh7HKrgE=
=HAB1
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016
and no one noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory
on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on
Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs
files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q
Syndrome.
- A big series to make the allocation of our pacas (per cpu area),
kernel page tables, and per-cpu stacks NUMA aware when using the
Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to: Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy,
Alistair Popple, Andy Shevchenko, Aneesh Kumar K.V, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Cyril Bur, Daniel Axtens, Dave Young, Finn Thain, Frederic
Barrat, Gustavo Romero, Horia Geantă, Jonathan Neuschäfer, Kees Cook,
Larry Finger, Laurent Dufour, Laurent Vivier, Logan Gunthorpe,
Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus Elfring,
Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de Oliveira,
Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher
Boessenkool, Simon Guo, Simon Horman, Stewart Smith, Sukadev
Bhattiprolu, Suraj Jitindar Singh, Thiago Jung Bauermann, Vaibhav
Jain, Vaidyanathan Srinivasan, Vasant Hegde, Wei Yongjun"
* tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (207 commits)
powerpc/64s/idle: Fix restore of AMOR on POWER9 after deep sleep
powerpc/64s: Fix POWER9 DD2.2 and above in cputable features
powerpc/64s: Fix pkey support in dt_cpu_ftrs, add CPU_FTR_PKEY bit
powerpc/64s: Fix dt_cpu_ftrs to have restore_cpu clear unwanted LPCR bits
Revert "powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead"
powerpc: iomap.c: introduce io{read|write}64_{lo_hi|hi_lo}
powerpc: io.h: move iomap.h include so that it can use readq/writeq defs
cxl: Fix possible deadlock when processing page faults from cxllib
powerpc/hw_breakpoint: Only disable hw breakpoint if cpu supports it
powerpc/mm/radix: Update command line parsing for disable_radix
powerpc/mm/radix: Parse disable_radix commandline correctly.
powerpc/mm/hugetlb: initialize the pagetable cache correctly for hugetlb
powerpc/mm/radix: Update pte fragment count from 16 to 256 on radix
powerpc/mm/keys: Update documentation and remove unnecessary check
powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead
powerpc/64s/idle: Consolidate power9_offline_stop()/power9_idle_stop()
powerpc/powernv: Always stop secondaries before reboot/shutdown
powerpc: hard disable irqs in smp_send_stop loop
powerpc: use NMI IPI for smp_send_stop
powerpc/powernv: Fix SMT4 forcing idle code
...
SLOF checks for 'sc 1' (hypercall) support by issuing a hcall with
H_SET_DABR. Since the recent commit e8ebedbf31 ("KVM: PPC: Book3S
HV: Return error from h_set_dabr() on POWER9") changed H_SET_DABR to
return H_UNSUPPORTED on Power9, we see guest boot failures, the
symptom is the boot seems to just stop in SLOF, eg:
SLOF ***************************************************************
QEMU Starting
Build Date = Sep 24 2017 12:23:07
FW Version = buildd@ release 20170724
<no further output>
SLOF can cope if H_SET_DABR returns H_HARDWARE. So wwitch the return
value to H_HARDWARE instead of H_UNSUPPORTED so that we don't break
the guest boot.
That does mean we return a different error to PowerVM in this case,
but that's probably not a big concern.
Fixes: e8ebedbf31 ("KVM: PPC: Book3S HV: Return error from h_set_dabr() on POWER9")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
The "lppaca" is a structure registered with the hypervisor. This is
unnecessary when running on non-virtualised platforms. One field from
the lppaca (pmcregs_in_use) is also used by the host, so move the host
part out into the paca (lppaca field is still updated in
guest mode).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix non-pseries build with some #ifdefs]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 with the DAWR disabled causes problems for partition
migration. Either we have to fail the migration (since we lose the
DAWR) or we silently drop the DAWR and allow the migration to pass.
This patch does the latter and allows the migration to pass (at the
cost of silently losing the DAWR). This is not ideal but hopefully the
best overall solution. This approach has been acked by Paulus.
With this patch kvmppc_set_one_reg() will store the DAWR in the vcpu
but won't actually set it on POWER9 hardware.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER7 compat mode guests can use h_set_dabr on POWER9. POWER9 should
use the DAWR but since it's disabled there we can't.
This returns H_UNSUPPORTED on a h_set_dabr() on POWER9 where the DAWR
is disabled.
Current Linux guests ignore this error, so they will silently not get
the DAWR (sigh). The same error code is being used by POWERVM in this
case.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a hardware bug in "Nimbus" POWER9 DD2.2 processors,
where the contents of the TEXASR can get corrupted while a thread is
in fake suspend state. The workaround is for the instruction emulation
code to use the value saved at the most recent guest exit in real
suspend mode. We achieve this by simply not saving the TEXASR into
the vcpu struct on an exit in fake suspend state. We also have to
take care to set the orig_texasr field only on guest exit in real
suspend state.
This also means that on guest entry in fake suspend state, TEXASR
will be restored to the value it had on the last exit in real suspend
state, effectively counteracting any hardware-caused corruption. This
works because TEXASR may not be written in suspend state.
With this, the guest might see the wrong values in TEXASR if it reads
it while in suspend state, but will see the correct value in
non-transactional state (e.g. after a treclaim), and treclaim will
work correctly.
With this workaround, the code will actually run slightly faster, and
will operate correctly on systems without the TEXASR bug (since TEXASR
may not be written in suspend state, and is only changed by failure
recording, which will have already been done before we get into fake
suspend state). Therefore these changes are not made subject to a CPU
feature bit.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a hardware bug in "Nimbus" POWER9 DD2.2 processors,
where a treclaim performed in fake suspend mode can cause subsequent
reads from the XER register to return inconsistent values for the SO
(summary overflow) bit. The inconsistent SO bit state can potentially
be observed on any thread in the core. We have to do the treclaim
because that is the only way to get the thread out of suspend state
(fake or real) and into non-transactional state.
The workaround for the bug is to force the core into SMT4 mode before
doing the treclaim. This patch adds the code to do that, conditional
on the CPU_FTR_P9_TM_XER_SO_BUG feature bit.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Since commit 6964e6a4e4 ("KVM: PPC: Book3S HV: Do SLB load/unload
with guest LPCR value loaded", 2018-01-11), we have been seeing
occasional machine check interrupts on POWER8 systems when running
KVM guests, due to SLB multihit errors.
This turns out to be due to the guest exit code reloading the host
SLB entries from the SLB shadow buffer when the SLB was not previously
cleared in the guest entry path. This can happen because the path
which skips from the guest entry code to the guest exit code without
entering the guest now does the skip before the SLB is cleared and
loaded with guest values, but the host values are loaded after the
point in the guest exit path that we skip to.
To fix this, we move the code that reloads the host SLB values up
so that it occurs just before the point in the guest exit code (the
label guest_bypass:) where we skip to from the guest entry path.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Fixes: 6964e6a4e4 ("KVM: PPC: Book3S HV: Do SLB load/unload with guest LPCR value loaded")
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug where the trap number that is returned by
__kvmppc_vcore_entry gets corrupted. The effect of the corruption
is that IPIs get ignored on POWER9 systems when the IPI is sent via
a doorbell interrupt to a CPU which is executing in a KVM guest.
The effect of the IPI being ignored is often that another CPU locks
up inside smp_call_function_many() (and if that CPU is holding a
spinlock, other CPUs then lock up inside raw_spin_lock()).
The trap number is currently held in register r12 for most of the
assembly-language part of the guest exit path. In that path, we
call kvmppc_subcore_exit_guest(), which is a C function, without
restoring r12 afterwards. Depending on the kernel config and the
compiler, it may modify r12 or it may not, so some config/compiler
combinations see the bug and others don't.
To fix this, we arrange for the trap number to be stored on the
stack from the 'guest_bypass:' label until the end of the function,
then the trap number is loaded and returned in r12 as before.
Cc: stable@vger.kernel.org # v4.8+
Fixes: fd7bacbca4 ("KVM: PPC: Book3S HV: Fix TB corruption in guest exit path on HMI interrupt")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJafWn0AAoJEJ2a6ncsY3GfaMsIANF0hQD8SS78WNKnoy0vnZ/X
PUXdjwHEsfkg5KdQ7o0oaa2BJHHqO3vozddmMiG14r2L1mNCHJpnVZCVV0GaEJcZ
eU8++OPK6yrsPNNpAjnrtQ0Vk4LwzoT0bftEjS3TtLt1s2uSo+R1+HLmxbxGhQUX
bZngo9wQ3cjUfAXLrPtAVhE5wTmgVOiufVRyfRsBRdFzRsAWqjY4hBtJAfwdff4r
AA5H0RCrXO6e1feKr5ElU8KzX6b7IjH9Xu868oJ1r16zZfE05PBl1X5n4XG7XDm7
xWvs8uLAB7iRv2o/ecFznYJ+Dz1NCBVzD0RmAUTqPCcVKDrxixaTkqMPFW97IAA=
=HOJR
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
Second PPC KVM update for 4.16
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
We ended up with code that did a conditional branch inside a feature
section to code outside of the feature section. Depending on how the
object file gets organized, that might mean we exceed the 14bit
relocation limit for conditional branches:
arch/powerpc/kvm/built-in.o:arch/powerpc/kvm/book3s_hv_rmhandlers.S:416:(__ftr_alt_97+0x8): relocation truncated to fit: R_PPC64_REL14 against `.text'+1ca4
So instead of doing a conditional branch outside of the feature section,
let's just jump at the end of the same, making the branch very short.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaYXViAAoJEJ2a6ncsY3GfDhgIAIDVBZH/Ftq7eJiUSxDpqyCQ
DF/x7fNKzK/J33pu+3ntOI2gZsldExAy7vH2M27I4qLIkbI5y3vu4v8l3CDlS1LK
9dKi72zg7baozoVF5mGUNm0B1sSvZiIQlC/kaami2aPTF1GcrJ561GthzfZwxENX
TSLqOA4LkeUZh2tUsvbcUrPi6v+E4Em2lgacQcx2ioMblWz56sZu79VsUbSSw/a3
P8+pIv7EbHw+TrOZMehjCbZkOdBeZ3IRLJsdlIAfe7y4vWME/5b9uVnQS/+XQj/B
6f3rQrduGvF2P6GMjsm8gDkgE5oZ1zbKlgO4i5WApnu80MMLFlfEUN+GWuGJ95Q=
=OjGs
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.16
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
Merge our fixes branch from the 4.15 cycle.
Unusually the fixes branch saw some significant features merged,
notably the RFI flush patches, so we want the code in next to be
tested against that, to avoid any surprises when the two are merged.
There's also some other work on the panic handling that was reverted
in fixes and we now want to do properly in next, which would conflict.
And we also fix a few other minor merge conflicts.
Merge the topic branch we share with kvm-ppc, this brings in two xive
commits, one from Paul to rework HMI handling, and a minor cleanup to
drop an unused flag.
Rename the paca->soft_enabled to paca->irq_soft_mask as it is no
longer used as a flag for interrupt state, but a mask.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works on top of the single escalation support. When in single
escalation, with this change, we will keep the escalation interrupt
disabled unless the VCPU is in H_CEDE (idle). In any other case, we
know the VCPU will be rescheduled and thus there is no need to take
escalation interrupts in the host whenever a guest interrupt fires.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The prodded flag is only cleared at the beginning of H_CEDE,
so every time we have an escalation, we will cause the *next*
H_CEDE to return immediately.
Instead use a dedicated "irq_pending" flag to indicate that
a guest interrupt is pending for the VCPU. We don't reuse the
existing exception bitmap so as to avoid expensive atomic ops.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get
two patches which are prerequisites for the following patch series,
plus another patch which touches both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Hypervisor maintenance interrupts (HMIs) are generated by various
causes, signalled by bits in the hypervisor maintenance exception
register (HMER). In most cases calling OPAL to handle the interrupt
is the correct thing to do, but the "debug trigger" HMIs signalled by
PPC bit 17 (bit 46) of HMER are used to invoke software workarounds
for hardware bugs, and OPAL does not have any code to handle this
cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips
to work around a hardware bug in executing vector load instructions to
cache inhibited memory. In POWER9 DD2.2 chips, it is generated when
conditions are detected relating to threads being in TM (transactional
memory) suspended mode when the core SMT configuration needs to be
reconfigured.
The kernel currently has code to detect the vector CI load condition,
but only when the HMI occurs in the host, not when it occurs in a
guest. If a HMI occurs in the guest, it is always passed to OPAL, and
then we always re-sync the timebase, because the HMI cause might have
been a timebase error, for which OPAL would re-sync the timebase, thus
removing the timebase offset which KVM applied for the guest. Since
we don't know what OPAL did, we don't know whether to subtract the
timebase offset from the timebase, so instead we re-sync the timebase.
This adds code to determine explicitly what the cause of a debug
trigger HMI will be. This is based on a new device-tree property
under the CPU nodes called ibm,hmi-special-triggers, if it is
present, or otherwise based on the PVR (processor version register).
The handling of debug trigger HMIs is pulled out into a separate
function which can be called from the KVM guest exit code. If this
function handles and clears the HMI, and no other HMI causes remain,
then we skip calling OPAL and we proceed to subtract the guest
timebase offset from the timebase.
The overall handling for HMIs that occur in the host (i.e. not in a
KVM guest) is largely unchanged, except that we now don't set the flag
for the vector CI load workaround on DD2.2 processors.
This also removes a BUG_ON in the KVM code. BUG_ON is generally not
useful in KVM guest entry/exit code since it is difficult to handle
the resulting trap gracefully.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves the code that loads and unloads the guest SLB values so that
it is done while the guest LPCR value is loaded in the LPCR register.
The reason for doing this is that on POWER9, the behaviour of the
slbmte instruction depends on the LPCR[UPRT] bit. If UPRT is 1, as
it is for a radix host (or guest), the SLB index is truncated to
2 bits. This means that for a HPT guest on a radix host, the SLB
was not being loaded correctly, causing the guest to crash.
The SLB is now loaded much later in the guest entry path, after the
LPCR is loaded, which for a secondary thread is after it sees that
the primary thread has switched the MMU to the guest. The loop that
waits for the primary thread has a branch out to the exit code that
is taken if it sees that other threads have commenced exiting the
guest. Since we have now not loaded the SLB at this point, we make
this path branch to a new label 'guest_bypass' and we move the SLB
unload code to before this label.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug where it is possible to enter a guest on a POWER9
system without having the XIVE (interrupt controller) context loaded.
This can happen because we unload the XIVE context from the CPU
before doing the real-mode handling for machine checks. After the
real-mode handler runs, it is possible that we re-enter the guest
via a fast path which does not load the XIVE context.
To fix this, we move the unloading of the XIVE context to come after
the real-mode machine check handler is called.
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.11+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On Book3S in HV mode, we don't use the vcpu->arch.dec field at all.
Instead, all logic is built around vcpu->arch.dec_expires.
So let's remove the one remaining piece of code that was setting it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This commit does simple conversions of rfi/rfid to the new macros that
include the expected destination context. By simple we mean cases
where there is a single well known destination context, and it's
simply a matter of substituting the instruction for the appropriate
macro.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This merges in a couple of fixes from the kvm-ppc-fixes branch that
modify the same areas of code as some commits from the kvm-ppc-next
branch, in order to resolve the conflicts.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch removes the restriction that a radix host can only run
radix guests, allowing us to run HPT (hashed page table) guests as
well. This is useful because it provides a way to run old guest
kernels that know about POWER8 but not POWER9.
Unfortunately, POWER9 currently has a restriction that all threads
in a given code must either all be in HPT mode, or all in radix mode.
This means that when entering a HPT guest, we have to obtain control
of all 4 threads in the core and get them to switch their LPIDR and
LPCR registers, even if they are not going to run a guest. On guest
exit we also have to get all threads to switch LPIDR and LPCR back
to host values.
To make this feasible, we require that KVM not be in the "independent
threads" mode, and that the CPU cores be in single-threaded mode from
the host kernel's perspective (only thread 0 online; threads 1, 2 and
3 offline). That allows us to use the same code as on POWER8 for
obtaining control of the secondary threads.
To manage the LPCR/LPIDR changes required, we extend the kvm_split_info
struct to contain the information needed by the secondary threads.
All threads perform a barrier synchronization (where all threads wait
for every other thread to reach the synchronization point) on guest
entry, both before and after loading LPCR and LPIDR. On guest exit,
they all once again perform a barrier synchronization both before
and after loading host values into LPCR and LPIDR.
Finally, it is also currently necessary to flush the entire TLB every
time we enter a HPT guest on a radix host. We do this on thread 0
with a loop of tlbiel instructions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch allows for a mode on POWER9 hosts where we control all the
threads of a core, much as we do on POWER8. The mode is controlled by
a module parameter on the kvm_hv module, called "indep_threads_mode".
The normal mode on POWER9 is the "independent threads" mode, with
indep_threads_mode=Y, where the host is in SMT4 mode (or in fact any
desired SMT mode) and each thread independently enters and exits from
KVM guests without reference to what other threads in the core are
doing.
If indep_threads_mode is set to N at the point when a VM is started,
KVM will expect every core that the guest runs on to be in single
threaded mode (that is, threads 1, 2 and 3 offline), and will set the
flag that prevents secondary threads from coming online. We can still
use all four threads; the code that implements dynamic micro-threading
on POWER8 will become active in over-commit situations and will allow
up to three other VCPUs to be run on the secondary threads of the core
whenever a VCPU is run.
The reason for wanting this mode is that this will allow us to run HPT
guests on a radix host on a POWER9 machine that does not support
"mixed mode", that is, having some threads in a core be in HPT mode
while other threads are in radix mode. It will also make it possible
to implement a "strict threads" mode in future, if desired.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get the
commit that reverts the patch "KVM: PPC: Book3S HV: POWER9 does not
require secondary thread management". This is needed for subsequent
patches which will be applied on this branch.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This reverts commit 94a04bc25a.
In order to run HPT guests on a radix POWER9 host, we will have to run
the host in single-threaded mode, because POWER9 processors do not
currently support running some threads of a core in HPT mode while
others are in radix mode ("mixed mode").
That means that we will need the same mechanisms that are used on
POWER8 to make the secondary threads available to KVM, which were
disabled on POWER9 by commit 94a04bc25a.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9 systems, we push the VCPU context onto the XIVE (eXternal
Interrupt Virtualization Engine) hardware when entering a guest,
and pull the context off the XIVE when exiting the guest. The push
is done with cache-inhibited stores, and the pull with cache-inhibited
loads.
Testing has revealed that it is possible (though very rare) for
the stores to get reordered with the loads so that we end up with the
guest VCPU context still loaded on the XIVE after we have exited the
guest. When that happens, it is possible for the same VCPU context
to then get loaded on another CPU, which causes the machine to
checkstop.
To fix this, we add I/O barrier instructions (eieio) before and
after the push and pull operations. As partial compensation for the
potential slowdown caused by the extra barriers, we remove the eieio
instructions between the two stores in the push operation, and between
the two loads in the pull operation. (The architecture requires
loads to cache-inhibited, guarded storage to be kept in order, and
requires stores to cache-inhibited, guarded storage likewise to be
kept in order, but allows such loads and stores to be reordered with
respect to each other.)
Reported-by: Carol L Soto <clsoto@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present, if an interrupt (i.e. an exception or trap) occurs in the
code where KVM is switching the MMU to or from guest context, we jump
to kvmppc_bad_host_intr, where we simply spin with interrupts disabled.
In this situation, it is hard to debug what happened because we get no
indication as to which interrupt occurred or where. Typically we get
a cascade of stall and soft lockup warnings from other CPUs.
In order to get more information for debugging, this adds code to
create a stack frame on the emergency stack and save register values
to it. We start half-way down the emergency stack in order to give
ourselves some chance of being able to do a stack trace on secondary
threads that are already on the emergency stack.
On POWER7 or POWER8, we then just spin, as before, because we don't
know what state the MMU context is in or what other threads are doing,
and we can't switch back to host context without coordinating with
other threads. On POWER9 we can do better; there we load up the host
MMU context and jump to C code, which prints an oops message to the
console and panics.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Add another case where msgsync is required.
- Required barrier sequence for global doorbells is msgsync ; lwsync
When msgsnd is used for IPIs to other cores, msgsync must be executed by
the target to order stores performed on the source before its msgsnd
(provided the source executes the appropriate sync).
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage
Interrupt (HDSI) the HDSISR is not be updated at all.
To work around this we put a canary value into the HDSISR before
returning to a guest and then check for this canary when we take a
HDSI. If we find the canary on a HDSI, we know the hardware didn't
update the HDSISR. In this case we return to the guest to retake the
HDSI which should correctly update the HDSISR the second time HDSI
entry.
After talking to Paulus we've applied this workaround to all POWER9
CPUs. The workaround of returning to the guest shouldn't ever be
triggered on well behaving CPU. The extra instructions should have
negligible performance impact.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Aneesh Kumar reported seeing host crashes when running recent kernels
on POWER8. The symptom was an oops like this:
Unable to handle kernel paging request for data at address 0xf00000000786c620
Faulting instruction address: 0xc00000000030e1e4
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: powernv_op_panel
CPU: 24 PID: 6663 Comm: qemu-system-ppc Tainted: G W 4.13.0-rc7-43932-gfc36c59 #2
task: c000000fdeadfe80 task.stack: c000000fdeb68000
NIP: c00000000030e1e4 LR: c00000000030de6c CTR: c000000000103620
REGS: c000000fdeb6b450 TRAP: 0300 Tainted: G W (4.13.0-rc7-43932-gfc36c59)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24044428 XER: 20000000
CFAR: c00000000030e134 DAR: f00000000786c620 DSISR: 40000000 SOFTE: 0
GPR00: 0000000000000000 c000000fdeb6b6d0 c0000000010bd000 000000000000e1b0
GPR04: c00000000115e168 c000001fffa6e4b0 c00000000115d000 c000001e1b180386
GPR08: f000000000000000 c000000f9a8913e0 f00000000786c600 00007fff587d0000
GPR12: c000000fdeb68000 c00000000fb0f000 0000000000000001 00007fff587cffff
GPR16: 0000000000000000 c000000000000000 00000000003fffff c000000fdebfe1f8
GPR20: 0000000000000004 c000000fdeb6b8a8 0000000000000001 0008000000000040
GPR24: 07000000000000c0 00007fff587cffff c000000fdec20bf8 00007fff587d0000
GPR28: c000000fdeca9ac0 00007fff587d0000 00007fff587c0000 00007fff587d0000
NIP [c00000000030e1e4] __get_user_pages_fast+0x434/0x1070
LR [c00000000030de6c] __get_user_pages_fast+0xbc/0x1070
Call Trace:
[c000000fdeb6b6d0] [c00000000139dab8] lock_classes+0x0/0x35fe50 (unreliable)
[c000000fdeb6b7e0] [c00000000030ef38] get_user_pages_fast+0xf8/0x120
[c000000fdeb6b830] [c000000000112318] kvmppc_book3s_hv_page_fault+0x308/0xf30
[c000000fdeb6b960] [c00000000010e10c] kvmppc_vcpu_run_hv+0xfdc/0x1f00
[c000000fdeb6bb20] [c0000000000e915c] kvmppc_vcpu_run+0x2c/0x40
[c000000fdeb6bb40] [c0000000000e5650] kvm_arch_vcpu_ioctl_run+0x110/0x300
[c000000fdeb6bbe0] [c0000000000d6468] kvm_vcpu_ioctl+0x528/0x900
[c000000fdeb6bd40] [c0000000003bc04c] do_vfs_ioctl+0xcc/0x950
[c000000fdeb6bde0] [c0000000003bc930] SyS_ioctl+0x60/0x100
[c000000fdeb6be30] [c00000000000b96c] system_call+0x58/0x6c
Instruction dump:
7ca81a14 2fa50000 41de0010 7cc8182a 68c60002 78c6ffe2 0b060000 3cc2000a
794a3664 390610d8 e9080000 7d485214 <e90a0020> 7d435378 790507e1 408202f0
---[ end trace fad4a342d0414aa2 ]---
It turns out that what has happened is that the SLB entry for the
vmmemap region hasn't been reloaded on exit from a guest, and it has
the wrong page size. Then, when the host next accesses the vmemmap
region, it gets a page fault.
Commit a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with
KVM", 2017-07-24) modified the guest exit code so that it now only clears
out the SLB for hash guest. The code tests the radix flag and puts the
result in a non-volatile CR field, CR2, and later branches based on CR2.
Unfortunately, the kvmppc_save_tm function, which gets called between
those two points, modifies all the user-visible registers in the case
where the guest was in transactional or suspended state, except for a
few which it restores (namely r1, r2, r9 and r13). Thus the hash/radix indication in CR2 gets corrupted.
This fixes the problem by re-doing the comparison just before the
result is needed. For good measure, this also adds comments next to
the call sites of kvmppc_save_tm and kvmppc_restore_tm pointing out
that non-volatile register state will be lost.
Cc: stable@vger.kernel.org # v4.13
Fixes: a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with KVM")
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fix was intended for 4.13, but didn't get in because both
maintainers were on vacation.
Paul Mackerras:
"It adds mutual exclusion between list_add_rcu and list_del_rcu calls
on the kvm->arch.spapr_tce_tables list. Without this, userspace could
potentially trigger corruption of the list and cause a host crash or
worse."
This merges in the 'ppc-kvm' topic branch from the powerpc tree in
order to bring in some fixes which touch both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 2f2724630f ("KVM: PPC: Book3S HV: Cope with host using large
decrementer mode", 2017-05-22) added code to treat the hypervisor
decrementer (HDEC) as a 64-bit value on POWER9 rather than 32-bit.
Unfortunately, that commit missed one place where HDEC is treated
as a 32-bit value. This fixes it.
This bug should not have any user-visible consequences that I can
think of, beyond an occasional unnecessary exit to the host kernel.
If the hypervisor decrementer has gone negative, then the bottom
32 bits will be negative for about 4 seconds after that, so as
long as we get out of the guest within those 4 seconds we won't
conclude that the HDEC interrupt is spurious.
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Fixes: 2f2724630f ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
binutils >= 2.26 now warns about misuse of register expressions in
assembler operands that are actually literals. In this instance r0 is
being used where a literal 0 should be used.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
[mpe: Split into separate KVM patch, tweak change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 CPUs have independent MMU contexts per thread, so KVM does not
need to quiesce secondary threads, so the hwthread_req/hwthread_state
protocol does not have to be used. So patch it away on POWER9, and patch
away the branch from the Linux idle wakeup to kvm_start_guest that is
never used.
Add a warning and error out of kvmppc_grab_hwthread in case it is ever
called on POWER9.
This avoids a hwsync in the idle wakeup path on POWER9.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Use WARN(...) instead of WARN_ON()/pr_err(...)]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When msgsnd is used for IPIs to other cores, msgsync must be executed by
the target to order stores performed on the source before its msgsnd
(provided the source executes the appropriate sync).
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There's a somewhat architectural issue with Radix MMU and KVM.
When coming out of a guest with AIL (Alternate Interrupt Location, ie,
MMU enabled), we start executing hypervisor code with the PID register
still containing whatever the guest has been using.
The problem is that the CPU can (and will) then start prefetching or
speculatively load from whatever host context has that same PID (if
any), thus bringing translations for that context into the TLB, which
Linux doesn't know about.
This can cause stale translations and subsequent crashes.
Fixing this in a way that is neither racy nor a huge performance
impact is difficult. We could just make the host invalidations always
use broadcast forms but that would hurt single threaded programs for
example.
We chose to fix it instead by partitioning the PID space between guest
and host. This is possible because today Linux only use 19 out of the
20 bits of PID space, so existing guests will work if we make the host
use the top half of the 20 bits space.
We additionally add support for a property to indicate to Linux the
size of the PID register which will be useful if we eventually have
processors with a larger PID space available.
There is still an issue with malicious guests purposefully setting the
PID register to a value in the hosts PID range. Hopefully future HW
can prevent that, but in the meantime, we handle it with a pair of
kludges:
- On the way out of a guest, before we clear the current VCPU in the
PACA, we check the PID and if it's outside of the permitted range
we flush the TLB for that PID.
- When context switching, if the mm is "new" on that CPU (the
corresponding bit was set for the first time in the mm cpumask), we
check if any sibling thread is in KVM (has a non-NULL VCPU pointer
in the PACA). If that is the case, we also flush the PID for that
CPU (core).
This second part is needed to handle the case where a process is
migrated (or starts a new pthread) on a sibling thread of the CPU
coming out of KVM, as there's a window where stale translations can
exist before we detect it and flush them out.
A future optimization could be added by keeping track of whether the
PID has ever been used and avoid doing that for completely fresh PIDs.
We could similarily mark PIDs that have been the subject of a global
invalidation as "fresh". But for now this will do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop
unneeded include of kvm_book3s_asm.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to:
Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dan Carpenter, Gautham R. Shenoy, Hari Bathini, Ian
Munsie, Ivan Mikhaylov, Javier Martinez Canillas, Madhavan Srinivasan,
Masahiro Yamada, Matt Brown, Michael Neuling, Michal Suchanek, Murilo
Opsfelder Araujo, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul
Mackerras, Pavel Machek, Russell Currey, Santosh Sivaraj, Stephen Rothwell,
Thiago Jung Bauermann, Yang Li.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZXyPCAAoJEFHr6jzI4aWAI9QQAISf2x5y//cqCi4ISyQB5pTq
KLS/yQajNkQOw7c0fzBZOaH5Xd/SJ6AcKWDg8yDlpDR3+sRRsr98iIRECgKS5I7/
DxD9ywcbSoMXFQQo1ZMCp5CeuMUIJRtugBnUQM+JXCSUCPbznCY5DchDTLyTBTpO
MeMVhI//JxthhoOMA9MudiEGaYCU9ho442Z4OJUSiLUv8WRbvQX9pTqoc4vx1fxA
BWf2mflztBVcIfKIyxIIIlDLukkMzix6gSYPMCbC7lzkbnU7JSqKiheJXjo1gJS2
ePHKDxeNR2/QP0g/j3aT/MR1uTt9MaNBSX3gANE1xQ9OoJ8m1sOtCO4gNbSdLWae
eXhDnoiEp930DRZOeEioOItuWWoxFaMyYk3BMmRKV4QNdYL3y3TRVeL2/XmRGqYL
Lxz4IY/x5TteFEJNGcRX90uizNSi8AaEXPF16pUk8Ctt6eH3ZSwPMv2fHeYVCMr0
KFlKHyaPEKEoztyzLcUR6u9QB56yxDN58bvLpd32AeHvKhqyxFoySy59x9bZbatn
B2y8mmDItg860e0tIG6jrtplpOVvL8i5jla5RWFVoQDuxxrLAds3vG9JZQs+eRzx
Fiic93bqeUAS6RzhXbJ6QQJYIyhE7yqpcgv7ME1W87SPef3HPBk9xlp3yIDwdA2z
bBDvrRnvupusz8qCWrxe
=w8rj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to: Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Benjamin Herrenschmidt,
Christophe Leroy, Christophe Lombard, Colin Ian King, Dan Carpenter,
Gautham R. Shenoy, Hari Bathini, Ian Munsie, Ivan Mikhaylov, Javier
Martinez Canillas, Madhavan Srinivasan, Masahiro Yamada, Matt Brown,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Naveen N.
Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pavel Machek,
Russell Currey, Santosh Sivaraj, Stephen Rothwell, Thiago Jung
Bauermann, Yang Li"
* tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc/Kconfig: Enable STRICT_KERNEL_RWX for some configs
powerpc/mm/radix: Implement STRICT_RWX/mark_rodata_ro() for Radix
powerpc/mm/hash: Implement mark_rodata_ro() for hash
powerpc/vmlinux.lds: Align __init_begin to 16M
powerpc/lib/code-patching: Use alternate map for patch_instruction()
powerpc/xmon: Add patch_instruction() support for xmon
powerpc/kprobes/optprobes: Use patch_instruction()
powerpc/kprobes: Move kprobes over to patch_instruction()
powerpc/mm/radix: Fix execute permissions for interrupt_vectors
powerpc/pseries: Fix passing of pp0 in updatepp() and updateboltedpp()
powerpc/64s: Blacklist rtas entry/exit from kprobes
powerpc/64s: Blacklist functions invoked on a trap
powerpc/64s: Un-blacklist system_call() from kprobes
powerpc/64s: Move system_call() symbol to just after setting MSR_EE
powerpc/64s: Blacklist system_call() and system_call_common() from kprobes
powerpc/64s: Convert .L__replay_interrupt_return to a local label
powerpc64/elfv1: Only dereference function descriptor for non-text symbols
cxl: Export library to support IBM XSL
powerpc/dts: Use #include "..." to include local DT
powerpc/perf/hv-24x7: Aggregate result elements on POWER9 SMT8
...
At present, interrupts are hard-disabled fairly late in the guest
entry path, in the assembly code. Since we check for pending signals
for the vCPU(s) task(s) earlier in the guest entry path, it is
possible for a signal to be delivered before we enter the guest but
not be noticed until after we exit the guest for some other reason.
Similarly, it is possible for the scheduler to request a reschedule
while we are in the guest entry path, and we won't notice until after
we have run the guest, potentially for a whole timeslice.
Furthermore, with a radix guest on POWER9, we can take the interrupt
with the MMU on. In this case we end up leaving interrupts
hard-disabled after the guest exit, and they are likely to stay
hard-disabled until we exit to userspace or context-switch to
another process. This was masking the fact that we were also not
setting the RI (recoverable interrupt) bit in the MSR, meaning
that if we had taken an interrupt, it would have crashed the host
kernel with an unrecoverable interrupt message.
To close these races, we need to check for signals and reschedule
requests after hard-disabling interrupts, and then keep interrupts
hard-disabled until we enter the guest. If there is a signal or a
reschedule request from another CPU, it will send an IPI, which will
cause a guest exit.
This puts the interrupt disabling before we call kvmppc_start_thread()
for all the secondary threads of this core that are going to run vCPUs.
The reason for that is that once we have started the secondary threads
there is no easy way to back out without going through at least part
of the guest entry path. However, kvmppc_start_thread() includes some
code for radix guests which needs to call smp_call_function(), which
must be called with interrupts enabled. To solve this problem, this
patch moves that code into a separate function that is called earlier.
When the guest exit is caused by an external interrupt, a hypervisor
doorbell or a hypervisor maintenance interrupt, we now handle these
using the replay facility. __kvmppc_vcore_entry() now returns the
trap number that caused the exit on this thread, and instead of the
assembly code jumping to the handler entry, we return to C code with
interrupts still hard-disabled and set the irq_happened flag in the
PACA, so that when we do local_irq_enable() the appropriate handler
gets called.
With all this, we now have the interrupt soft-enable flag clear while
we are in the guest. This is useful because code in the real-mode
hypercall handlers that checks whether interrupts are enabled will
now see that they are disabled, which is correct, since interrupts
are hard-disabled in the real-mode code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Enhance KVM to cause a guest exit with KVM_EXIT_NMI
exit reason upon a machine check exception (MCE) in
the guest address space if the KVM_CAP_PPC_FWNMI
capability is enabled (instead of delivering a 0x200
interrupt to guest). This enables QEMU to build error
log and deliver machine check exception to guest via
guest registered machine check handler.
This approach simplifies the delivery of machine
check exception to guest OS compared to the earlier
approach of KVM directly invoking 0x200 guest interrupt
vector.
This design/approach is based on the feedback for the
QEMU patches to handle machine check exception. Details
of earlier approach of handling machine check exception
in QEMU and related discussions can be found at:
https://lists.nongnu.org/archive/html/qemu-devel/2014-11/msg00813.html
Note:
This patch now directly invokes machine_check_print_event_info()
from kvmppc_handle_exit_hv() to print the event to host console
at the time of guest exit before the exception is passed on to the
guest. Hence, the host-side handling which was performed earlier
via machine_check_fwnmi is removed.
The reasons for this approach is (i) it is not possible
to distinguish whether the exception occurred in the
guest or the host from the pt_regs passed on the
machine_check_exception(). Hence machine_check_exception()
calls panic, instead of passing on the exception to
the guest, if the machine check exception is not
recoverable. (ii) the approach introduced in this
patch gives opportunity to the host kernel to perform
actions in virtual mode before passing on the exception
to the guest. This approach does not require complex
tweaks to machine_check_fwnmi and friends.
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Idle code now always runs at the 0xc... effective address whether
in real or virtual mode. This means rfid can be ditched, along
with a lot of SRR manipulations.
In the wakeup path, carry SRR1 around in r12. Use mtmsrd to change
MSR states as required.
This also balances the return prediction for the idle call, by
doing blr rather than rfid to return to the idle caller.
On POWER9, 2-process context switch on different cores, with snooze
disabled, increases performance by 2%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Incorporate v2 fixes from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9, we no longer have the restriction that we had on POWER8
where all threads in a core have to be in the same partition, so
the CPU threads are now independent. However, we still want to be
able to run guests with a virtual SMT topology, if only to allow
migration of guests from POWER8 systems to POWER9.
A guest that has a virtual SMT mode greater than 1 will expect to
be able to use the doorbell facility; it will expect the msgsndp
and msgclrp instructions to work appropriately and to be able to read
sensible values from the TIR (thread identification register) and
DPDES (directed privileged doorbell exception status) special-purpose
registers. However, since each CPU thread is a separate sub-processor
in POWER9, these instructions and registers can only be used within
a single CPU thread.
In order for these instructions to appear to act correctly according
to the guest's virtual SMT mode, we have to trap and emulate them.
We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR
register. The emulation is triggered by the hypervisor facility
unavailable interrupt that occurs when the guest uses them.
To cause a doorbell interrupt to occur within the guest, we set the
DPDES register to 1. If the guest has interrupts enabled, the CPU
will generate a doorbell interrupt and clear the DPDES register in
hardware. The DPDES hardware register for the guest is saved in the
vcpu->arch.vcore->dpdes field. Since this gets written by the guest
exit code, other VCPUs wishing to cause a doorbell interrupt don't
write that field directly, but instead set a vcpu->arch.doorbell_request
flag. This is consumed and set to 0 by the guest entry code, which
then sets DPDES to 1.
Emulating reads of the DPDES register is somewhat involved, because
it requires reading the doorbell pending interrupt status of all of the
VCPU threads in the virtual core, and if any of those VCPUs are
running, their doorbell status is only up-to-date in the hardware
DPDES registers of the CPUs where they are running. In order to get
a reasonable approximation of the current doorbell status, we send
those CPUs an IPI, causing an exit from the guest which will update
the vcpu->arch.vcore->dpdes field. We then use that value in
constructing the emulated DPDES register value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to allow us to use a different value for the HFSCR
(Hypervisor Facilities Status and Control Register) when running the
guest from that which applies in the host. The reason for doing this
is to allow us to trap the msgsndp instruction and related operations
in future so that they can be virtualized. We also save the value of
HFSCR when a hypervisor facility unavailable interrupt occurs, because
the high byte of HFSCR indicates which facility the guest attempted to
access.
We save and restore the host value on guest entry/exit because some
bits of it affect host userspace execution.
We only do all this on POWER9, not on POWER8, because we are not
intending to virtualize any of the facilities controlled by HFSCR on
POWER8. In particular, the HFSCR bit that controls execution of
msgsndp and related operations does not exist on POWER8. The HFSCR
doesn't exist at all on POWER7.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace (e.g. QEMU) to enable large decrementer mode for
the guest when running on a POWER9 host, by setting the LPCR_LD bit in
the guest LPCR value. With this, the guest exit code saves 64 bits of
the guest DEC value on exit. Other places that use the guest DEC
value check the LPCR_LD bit in the guest LPCR value, and if it is set,
omit the 32-bit sign extension that would otherwise be done.
This doesn't change the DEC emulation used by PR KVM because PR KVM
is not supported on POWER9 yet.
This is partly based on an earlier patch by Oliver O'Halloran.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present, HV KVM on POWER8 and POWER9 machines loses any instruction
or data breakpoint set in the host whenever a guest is run.
Instruction breakpoints are currently only used by xmon, but ptrace
and the perf_event subsystem can set data breakpoints as well as xmon.
To fix this, we save the host values of the debug registers (CIABR,
DAWR and DAWRX) before entering the guest and restore them on exit.
To provide space to save them in the stack frame, we expand the stack
frame allocated by kvmppc_hv_entry() from 112 to 144 bytes.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This restores several special-purpose registers (SPRs) to sane values
on guest exit that were missed before.
TAR and VRSAVE are readable and writable by userspace, and we need to
save and restore them to prevent the guest from potentially affecting
userspace execution (not that TAR or VRSAVE are used by any known
program that run uses the KVM_RUN ioctl). We save/restore these
in kvmppc_vcpu_run_hv() rather than on every guest entry/exit.
FSCR affects userspace execution in that it can prohibit access to
certain facilities by userspace. We restore it to the normal value
for the task on exit from the KVM_RUN ioctl.
IAMR is normally 0, and is restored to 0 on guest exit. However,
with a radix host on POWER9, it is set to a value that prevents the
kernel from executing user-accessible memory. On POWER9, we save
IAMR on guest entry and restore it on guest exit to the saved value
rather than 0. On POWER8 we continue to set it to 0 on guest exit.
PSPB is normally 0. We restore it to 0 on guest exit to prevent
userspace taking advantage of the guest having set it non-zero
(which would allow userspace to set its SMT priority to high).
UAMOR is normally 0. We restore it to 0 on guest exit to prevent
the AMR from being used as a covert channel between userspace
processes, since the AMR is not context-switched at present.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 introduces a new mode for the decrementer register, called
large decrementer mode, in which the decrementer counter is 56 bits
wide rather than 32, and reads are sign-extended rather than
zero-extended. For the decrementer, this new mode is optional and
controlled by a bit in the LPCR. The hypervisor decrementer (HDEC)
is 56 bits wide on POWER9 and has no mode control.
Since KVM code reads and writes the decrementer and hypervisor
decrementer registers in a few places, it needs to be aware of the
need to treat the decrementer value as a 64-bit quantity, and only do
a 32-bit sign extension when large decrementer mode is not in effect.
Similarly, the HDEC should always be treated as a 64-bit quantity on
POWER9. We define a new EXTEND_HDEC macro to encapsulate the feature
test for POWER9 and the sign extension.
To enable the sign extension to be removed in large decrementer mode,
we test the LPCR_LD bit in the host LPCR image stored in the struct
kvm for the guest. If is set then large decrementer mode is enabled
and the sign extension should be skipped.
This is partly based on an earlier patch by Oliver O'Halloran.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In HPT mode on POWER9, the ASDR register is supposed to record
segment information for hypervisor page faults. It turns out that
POWER9 DD1 does not record the page size information in the ASDR
for faults in guest real mode. We have the necessary information
in memory already, so by moving the checks for real mode that already
existed, we can use the in-memory copy. Since a load is likely to
be faster than reading an SPR, we do this unconditionally (not just
for POWER9 DD1).
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9 DD1, we need to invalidate the ERAT (effective to real
address translation cache) when changing the PIDR register, which
we do as part of guest entry and exit.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If we allow LPCR[AIL] to be set for radix guests, then interrupts from
the guest to the host can be delivered by the hardware with relocation
on, and thus the code path starting at kvmppc_interrupt_hv can be
executed in virtual mode (MMU on) for radix guests (previously it was
only ever executed in real mode).
Most of the code is indifferent to whether the MMU is on or off, but
the calls to OPAL that use the real-mode OPAL entry code need to
be switched to use the virtual-mode code instead. The affected
calls are the calls to the OPAL XICS emulation functions in
kvmppc_read_one_intr() and related functions. We test the MSR[IR]
bit to detect whether we are in real or virtual mode, and call the
opal_rm_* or opal_* function as appropriate.
The other place that depends on the MMU being off is the optimization
where the guest exit code jumps to the external interrupt vector or
hypervisor doorbell interrupt vector, or returns to its caller (which
is __kvmppc_vcore_entry). If the MMU is on and we are returning to
the caller, then we don't need to use an rfid instruction since the
MMU is already on; a simple blr suffices. If there is an external
or hypervisor doorbell interrupt to handle, we branch to the
relocation-on version of the interrupt vector.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With radix, the guest can do TLB invalidations itself using the tlbie
(global) and tlbiel (local) TLB invalidation instructions. Linux guests
use local TLB invalidations for translations that have only ever been
accessed on one vcpu. However, that doesn't mean that the translations
have only been accessed on one physical cpu (pcpu) since vcpus can move
around from one pcpu to another. Thus a tlbiel might leave behind stale
TLB entries on a pcpu where the vcpu previously ran, and if that task
then moves back to that previous pcpu, it could see those stale TLB
entries and thus access memory incorrectly. The usual symptom of this
is random segfaults in userspace programs in the guest.
To cope with this, we detect when a vcpu is about to start executing on
a thread in a core that is a different core from the last time it
executed. If that is the case, then we mark the core as needing a
TLB flush and then send an interrupt to any thread in the core that is
currently running a vcpu from the same guest. This will get those vcpus
out of the guest, and the first one to re-enter the guest will do the
TLB flush. The reason for interrupting the vcpus executing on the old
core is to cope with the following scenario:
CPU 0 CPU 1 CPU 4
(core 0) (core 0) (core 1)
VCPU 0 runs task X VCPU 1 runs
core 0 TLB gets
entries from task X
VCPU 0 moves to CPU 4
VCPU 0 runs task X
Unmap pages of task X
tlbiel
(still VCPU 1) task X moves to VCPU 1
task X runs
task X sees stale TLB
entries
That is, as soon as the VCPU starts executing on the new core, it
could unmap and tlbiel some page table entries, and then the task
could migrate to one of the VCPUs running on the old core and
potentially see stale TLB entries.
Since the TLB is shared between all the threads in a core, we only
use the bit of kvm->arch.need_tlb_flush corresponding to the first
thread in the core. To ensure that we don't have a window where we
can miss a flush, this moves the clearing of the bit from before the
actual flush to after it. This way, two threads might both do the
flush, but we prevent the situation where one thread can enter the
guest before the flush is finished.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to branch around the parts that radix guests don't
need - clearing and loading the SLB with the guest SLB contents,
saving the guest SLB contents on exit, and restoring the host SLB
contents.
Since the host is now using radix, we need to save and restore the
host value for the PID register.
On hypervisor data/instruction storage interrupts, we don't do the
guest HPT lookup on radix, but just save the guest physical address
for the fault (from the ASDR register) in the vcpu struct.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 adds a register called ASDR (Access Segment Descriptor
Register), which is set by hypervisor data/instruction storage
interrupts to contain the segment descriptor for the address
being accessed, assuming the guest is using HPT translation.
(For radix guests, it contains the guest real address of the
access.)
Thus, for HPT guests on POWER9, we can use this register rather
than looking up the SLB with the slbfee. instruction.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
64-bit Book3S exception handlers must find the dynamic kernel base
to add to the target address when branching beyond __end_interrupts,
in order to support kernel running at non-0 physical address.
Support this in KVM by branching with CTR, similarly to regular
interrupt handlers. The guest CTR saved in HSTATE_SCRATCH1 and
restored after the branch.
Without this, the host kernel hangs and crashes randomly when it is
running at a non-0 address and a KVM guest is started.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Change the calling convention to put the trap number together with
CR in two halves of r12, which frees up HSTATE_SCRATCH2 in the HV
handler.
The 64-bit PR handler entry translates the calling convention back
to match the previous call convention (i.e., shared with 32-bit), for
simplicity.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 replaces the various power-saving mode instructions on POWER8
(doze, nap, sleep and rvwinkle) with a single "stop" instruction, plus
a register, PSSCR, which controls the depth of the power-saving mode.
This replaces the use of the nap instruction when threads are idle
during guest execution with the stop instruction, and adds code to
set PSSCR to a value which will allow an SMT mode switch while the
thread is idle (given that the core as a whole won't be idle in these
cases).
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 adds new capabilities to the tlbie (TLB invalidate entry)
and tlbiel (local tlbie) instructions. Both instructions get a
set of new parameters (RIC, PRS and R) which appear as bits in the
instruction word. The tlbiel instruction now has a second register
operand, which contains a PID and/or LPID value if needed, and
should otherwise contain 0.
This adapts KVM-HV's usage of tlbie and tlbiel to work on POWER9
as well as older processors. Since we only handle HPT guests so
far, we need RIC=0 PRS=0 R=0, which ends up with the same instruction
word as on previous processors, so we don't need to conditionally
execute different instructions depending on the processor.
The local flush on first entry to a guest in book3s_hv_rmhandlers.S
is a loop which depends on the number of TLB sets. Rather than
using feature sections to set the number of iterations based on
which CPU we're on, we now work out this number at VM creation time
and store it in the kvm_arch struct. That will make it possible to
get the number from the device tree in future, which will help with
compatibility with future processors.
Since mmu_partition_table_set_entry() does a global flush of the
whole LPID, we don't need to do the TLB flush on first entry to the
guest on each processor. Therefore we don't set all bits in the
tlb_need_flush bitmap on VM startup on POWER9.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to handle two new guest-accessible special-purpose
registers on POWER9: TIDR (thread ID register) and PSSCR (processor
stop status and control register). They are context-switched
between host and guest, and the guest values can be read and set
via the one_reg interface.
The PSSCR contains some fields which are guest-accessible and some
which are only accessible in hypervisor mode. We only allow the
guest-accessible fields to be read or set by userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Some special-purpose registers that were present and accessible
by guests on POWER8 no longer exist on POWER9, so this adds
feature sections to ensure that we don't try to context-switch
them when going into or out of a guest on POWER9. These are
all relatively obscure, rarely-used registers, but we had to
context-switch them on POWER8 to avoid creating a covert channel.
They are: SPMC1, SPMC2, MMCRS, CSIGR, TACR, TCSCR, and ACOP.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9, the SDR1 register (hashed page table base address) is no
longer used, and instead the hardware reads the HPT base address
and size from the partition table. The partition table entry also
contains the bits that specify the page size for the VRMA mapping,
which were previously in the LPCR. The VPM0 bit of the LPCR is
now reserved; the processor now always uses the VRMA (virtual
real-mode area) mechanism for guest real-mode accesses in HPT mode,
and the RMO (real-mode offset) mechanism has been dropped.
When entering or exiting the guest, we now only have to set the
LPIDR (logical partition ID register), not the SDR1 register.
There is also no requirement now to transition via a reserved
LPID value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When switching from/to a guest that has a transaction in progress,
we need to save/restore the checkpointed register state. Although
XER is part of the CPU state that gets checkpointed, the code that
does this saving and restoring doesn't save/restore XER.
This fixes it by saving and restoring the XER. To allow userspace
to read/write the checkpointed XER value, we also add a new ONE_REG
specifier.
The visible effect of this bug is that the guest may see its XER
value being corrupted when it uses transactions.
Fixes: e4e3812150 ("KVM: PPC: Book3S HV: Add transactional memory support")
Fixes: 0a8eccefcb ("KVM: PPC: Book3S HV: Add missing code for transaction reclaim on guest exit")
Cc: stable@vger.kernel.org # v3.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER8 has one virtual timebase (VTB) register per subcore, not one
per CPU thread. The HV KVM code currently treats VTB as a per-thread
register, which can lead to spurious soft lockup messages from guests
which use the VTB as the time source for the soft lockup detector.
(CPUs before POWER8 did not have the VTB register.)
For HV KVM, this fixes the problem by making only the primary thread
in each virtual core save and restore the VTB value. With this,
the VTB state becomes part of the kvmppc_vcore structure. This
also means that "piggybacking" of multiple virtual cores onto one
subcore is not possible on POWER8, because then the virtual cores
would share a single VTB register.
PR KVM emulates a VTB register, which is per-vcpu because PR KVM
has no notion of CPU threads or SMT. For PR KVM we move the VTB
state into the kvmppc_vcpu_book3s struct.
Cc: stable@vger.kernel.org # v3.14+
Reported-by: Thomas Huth <thuth@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
In existing real mode ICP code, when updating the virtual ICP
state, if there is a required action that cannot be completely
handled in real mode, as for instance, a VCPU needs to be woken
up, flags are set in the ICP to indicate the required action.
This is checked when returning from hypercalls to decide whether
the call needs switch back to the host where the action can be
performed in virtual mode. Note that if h_ipi_redirect is enabled,
real mode code will first try to message a free host CPU to
complete this job instead of returning the host to do it ourselves.
Currently, the real mode PCI passthrough interrupt handling code
checks if any of these flags are set and simply returns to the host.
This is not good enough as the trap value (0x500) is treated as an
external interrupt by the host code. It is only when the trap value
is a hypercall that the host code searches for and acts on unfinished
work by calling kvmppc_xics_rm_complete.
This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD
which is returned by KVM if there is unfinished business to be
completed in host virtual mode after handling a PCI passthrough
interrupt. The host checks for this special interrupt condition
and calls into the kvmppc_xics_rm_complete, which is made an
exported function for this reason.
[paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, KVM switches back to the host to handle any external
interrupt (when the interrupt is received while running in the
guest). This patch updates real-mode KVM to check if an interrupt
is generated by a passthrough adapter that is owned by this guest.
If so, the real mode KVM will directly inject the corresponding
virtual interrupt to the guest VCPU's ICS and also EOI the interrupt
in hardware. In short, the interrupt is handled entirely in real
mode in the guest context without switching back to the host.
In some rare cases, the interrupt cannot be completely handled in
real mode, for instance, a VCPU that is sleeping needs to be woken
up. In this case, KVM simply switches back to the host with trap
reason set to 0x500. This works, but it is clearly not very efficient.
A following patch will distinguish this case and handle it
correctly in the host. Note that we can use the existing
check_too_hard() routine even though we are not in a hypercall to
determine if there is unfinished business that needs to be
completed in host virtual mode.
The patch assumes that the mapping between hardware interrupt IRQ
and virtual IRQ to be injected to the guest already exists for the
PCI passthrough interrupts that need to be handled in real mode.
If the mapping does not exist, KVM falls back to the default
existing behavior.
The KVM real mode code reads mappings from the mapped array in the
passthrough IRQ map without taking any lock. We carefully order the
loads and stores of the fields in the kvmppc_irq_map data structure
using memory barriers to avoid an inconsistent mapping being seen by
the reader. Thus, although it is possible to miss a map entry, it is
not possible to read a stale value.
[paulus@ozlabs.org - get irq_chip from irq_map rather than pimap,
pulled out powernv eoi change into a separate patch, made
kvmppc_read_intr get the vcpu from the paca rather than being
passed in, rewrote the logic at the end of kvmppc_read_intr to
avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S
since we were always restoring SRR0/1 anyway, get rid of the cached
array (just use the mapped array), removed the kick_all_cpus_sync()
call, clear saved_xirr PACA field when we handle the interrupt in
real mode, fix compilation with CONFIG_KVM_XICS=n.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Modify kvmppc_read_intr to make it a C function. Because it is called
from kvmppc_check_wake_reason, any of the assembler code that calls
either kvmppc_read_intr or kvmppc_check_wake_reason now has to assume
that the volatile registers might have been modified.
This also adds in the optimization of clearing saved_xirr in the case
where we completely handle and EOI an IPI. Without this, the next
device interrupt will require two trips through the host interrupt
handling code.
[paulus@ozlabs.org - made kvmppc_check_wake_reason create a stack frame
when it is calling kvmppc_read_intr, which means we can set r12 to
the trap number (0x500) after the call to kvmppc_read_intr, instead
of using r31. Also moved the deliver_guest_interrupt label so as to
restore XER and CTR, plus other minor tweaks.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
It turns out that if the guest does a H_CEDE while the CPU is in
a transactional state, and the H_CEDE does a nap, and the nap
loses the architected state of the CPU (which is is allowed to do),
then we lose the checkpointed state of the virtual CPU. In addition,
the transactional-memory state recorded in the MSR gets reset back
to non-transactional, and when we try to return to the guest, we take
a TM bad thing type of program interrupt because we are trying to
transition from non-transactional to transactional with a hrfid
instruction, which is not permitted.
The result of the program interrupt occurring at that point is that
the host CPU will hang in an infinite loop with interrupts disabled.
Thus this is a denial of service vulnerability in the host which can
be triggered by any guest (and depending on the guest kernel, it can
potentially triggered by unprivileged userspace in the guest).
This vulnerability has been assigned the ID CVE-2016-5412.
To fix this, we save the TM state before napping and restore it
on exit from the nap, when handling a H_CEDE in real mode. The
case where H_CEDE exits to host virtual mode is already OK (as are
other hcalls which exit to host virtual mode) because the exit
path saves the TM state.
Cc: stable@vger.kernel.org # v3.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This moves the transactional memory state save and restore sequences
out of the guest entry/exit paths into separate procedures. This is
so that these sequences can be used in going into and out of nap
in a subsequent patch.
The only code changes here are (a) saving and restore LR on the
stack, since these new procedures get called with a bl instruction,
(b) explicitly saving r1 into the PACA instead of assuming that
HSTATE_HOST_R1(r13) is already set, and (c) removing an unnecessary
and redundant setting of MSR[TM] that should have been removed by
commit 9d4d0bdd9e0a ("KVM: PPC: Book3S HV: Add transactional memory
support", 2013-09-24) but wasn't.
Cc: stable@vger.kernel.org # v3.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Functions like power7_wakeup_loss, power7_wakeup_noloss,
power7_wakeup_tb_loss are used by POWER7 and POWER8 hardware. They can
also be used by POWER9. Hence rename these functions hardware agnostic
names.
Suggested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a guest is assigned to a core it converts the host Timebase (TB)
into guest TB by adding guest timebase offset before entering into
guest. During guest exit it restores the guest TB to host TB. This means
under certain conditions (Guest migration) host TB and guest TB can differ.
When we get an HMI for TB related issues the opal HMI handler would
try fixing errors and restore the correct host TB value. With no guest
running, we don't have any issues. But with guest running on the core
we run into TB corruption issues.
If we get an HMI while in the guest, the current HMI handler invokes opal
hmi handler before forcing guest to exit. The guest exit path subtracts
the guest TB offset from the current TB value which may have already
been restored with host value by opal hmi handler. This leads to incorrect
host and guest TB values.
With split-core, things become more complex. With split-core, TB also gets
split and each subcore gets its own TB register. When a hmi handler fixes
a TB error and restores the TB value, it affects all the TB values of
sibling subcores on the same core. On TB errors all the thread in the core
gets HMI. With existing code, the individual threads call opal hmi handle
independently which can easily throw TB out of sync if we have guest
running on subcores. Hence we will need to co-ordinate with all the
threads before making opal hmi handler call followed by TB resync.
This patch introduces a sibling subcore state structure (shared by all
threads in the core) in paca which holds information about whether sibling
subcores are in Guest mode or host mode. An array in_guest[] of size
MAX_SUBCORE_PER_CORE=4 is used to maintain the state of each subcore.
The subcore id is used as index into in_guest[] array. Only primary
thread entering/exiting the guest is responsible to set/unset its
designated array element.
On TB error, we get HMI interrupt on every thread on the core. Upon HMI,
this patch will now force guest to vacate the core/subcore. Primary
thread from each subcore will then turn off its respective bit
from the above bitmap during the guest exit path just after the
guest->host partition switch is complete.
All other threads that have just exited the guest OR were already in host
will wait until all other subcores clears their respective bit.
Once all the subcores turn off their respective bit, all threads will
will make call to opal hmi handler.
It is not necessary that opal hmi handler would resync the TB value for
every HMI interrupts. It would do so only for the HMI caused due to
TB errors. For rest, it would not touch TB value. Hence to make things
simpler, primary thread would call TB resync explicitly once for each
core immediately after opal hmi handler instead of subtracting guest
offset from TB. TB resync call will restore the TB with host value.
Thus we can be sure about the TB state.
One of the primary threads exiting the guest will take up the
responsibility of calling TB resync. It will use one of the top bits
(bit 63) from subcore state flags bitmap to make the decision. The first
primary thread (among the subcores) that is able to set the bit will
have to call the TB resync. Rest all other threads will wait until TB
resync is complete. Once TB resync is complete all threads will then
proceed.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Upcoming in-kernel VFIO acceleration needs different handling in real
and virtual modes which makes it hard to support both modes in
the same handler.
This creates a copy of kvmppc_rm_h_stuff_tce and kvmppc_rm_h_put_tce
in addition to the existing kvmppc_rm_h_put_tce_indirect.
This also fixes linker breakage when only PR KVM was selected (leaving
HV KVM off): the kvmppc_h_put_tce/kvmppc_h_stuff_tce functions
would not compile at all and the linked would fail.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_* helpers from
Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter values,
display domain indices in sysfs, eliminate domain suffix in event names,
from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
other dt bits, and minor fixes/cleanup."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
Y6ptGm0rYAJluPNlziFj
=qkAt
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This was delayed a day or two by some build-breakage on old toolchains
which we've now fixed.
There's two PCI commits both acked by Bjorn.
There's one commit to mm/hugepage.c which is (co)authored by Kirill.
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul
Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_*
helpers from Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/
relaxed variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas
Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs
from Wei Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell
Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev
Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter
values, display domain indices in sysfs, eliminate domain suffix in
event names, from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit
checksum optimizations, 86xx consolidation, e5500/e6500 cpu
hotplug, more fman and other dt bits, and minor fixes/cleanup"
* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
powerpc: Fix unrecoverable SLB miss during restore_math()
powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
powerpc/rcpm: Fix build break when SMP=n
powerpc/book3e-64: Use hardcoded mttmr opcode
powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
powerpc/T104xRDB: add tdm riser card node to device tree
powerpc32: PAGE_EXEC required for inittext
powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
powerpc/86xx: Introduce and use common dtsi
powerpc/86xx: Update device tree
powerpc/86xx: Move dts files to fsl directory
powerpc/86xx: Switch to kconfig fragments approach
powerpc/86xx: Update defconfigs
powerpc/86xx: Consolidate common platform code
powerpc32: Remove one insn in mulhdu
powerpc32: small optimisation in flush_icache_range()
powerpc: Simplify test in __dma_sync()
powerpc32: move xxxxx_dcache_range() functions inline
powerpc32: Remove clear_pages() and define clear_page() inline
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
Thomas Huth discovered that a guest could cause a hard hang of a
host CPU by setting the Instruction Authority Mask Register (IAMR)
to a suitable value. It turns out that this is because when the
code was added to context-switch the new special-purpose registers
(SPRs) that were added in POWER8, we forgot to add code to ensure
that they were restored to a sane value on guest exit.
This adds code to set those registers where a bad value could
compromise the execution of the host kernel to a suitable neutral
value on guest exit.
Cc: stable@vger.kernel.org # v3.14+
Fixes: b005255e12
Reported-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds real and virtual mode handlers for the H_PUT_TCE_INDIRECT and
H_STUFF_TCE hypercalls for user space emulated devices such as IBMVIO
devices or emulated PCI. These calls allow adding multiple entries
(up to 512) into the TCE table in one call which saves time on
transition between kernel and user space.
The current implementation of kvmppc_h_stuff_tce() allows it to be
executed in both real and virtual modes so there is one helper.
The kvmppc_rm_h_put_tce_indirect() needs to translate the guest address
to the host address and since the translation is different, there are
2 helpers - one for each mode.
This implements the KVM_CAP_PPC_MULTITCE capability. When present,
the kernel will try handling H_PUT_TCE_INDIRECT and H_STUFF_TCE if these
are enabled by the userspace via KVM_CAP_PPC_ENABLE_HCALL.
If they can not be handled by the kernel, they are passed on to
the user space. The user space still has to have an implementation
for these.
Both HV and PR-syle KVM are supported.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
In the old DABR register, the BT (Breakpoint Translation) bit
is bit number 61. In the new DAWRX register, the WT (Watchpoint
Translation) bit is bit number 59. So to move the DABR-BT bit
into the position of the DAWRX-WT bit, it has to be shifted by
two, not only by one. This fixes hardware watchpoints in gdb of
older guests that only use the H_SET_DABR/X interface instead
of the new H_SET_MODE interface.
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
As we saw with the TM Bad Thing type of program interrupt occurring
on the hrfid that enters the guest, it is not completely impossible
to have a trap occurring in the guest entry/exit code, despite the
fact that the code has been written to avoid taking any traps.
This adds a check in the kvmppc_handle_exit_hv() function to detect
the case when a trap has occurred in the hypervisor-mode code, and
instead of treating it just like a trap in guest code, we now print
a message and return to userspace with a KVM_EXIT_INTERNAL_ERROR
exit reason.
Of the various interrupts that get handled in the assembly code in
the guest exit path and that can return directly to the guest, the
only one that can occur when MSR.HV=1 and MSR.EE=0 is machine check
(other than system call, which we can avoid just by not doing a sc
instruction). Therefore this adds code to the machine check path to
ensure that if the MCE occurred in hypervisor mode, we exit to the
host rather than trying to continue the guest.
Signed-off-by: Paul Mackerras <paulus@samba.org>
When handling a hypervisor data or instruction storage interrupt (HDSI
or HISI), we look up the SLB entry for the address being accessed in
order to translate the effective address to a virtual address which can
be looked up in the guest HPT. This lookup can occasionally fail due
to the guest replacing an SLB entry without invalidating the evicted
SLB entry. In this situation an ERAT (effective to real address
translation cache) entry can persist and be used by the hardware even
though there is no longer a corresponding SLB entry.
Previously we would just deliver a data or instruction storage interrupt
(DSI or ISI) to the guest in this case. However, this is not correct
and has been observed to cause guests to crash, typically with a
data storage protection interrupt on a store to the vmemmap area.
Instead, what we do now is to synthesize a data or instruction segment
interrupt. That should cause the guest to reload an appropriate entry
into the SLB and retry the faulting instruction. If it still faults,
we should find an appropriate SLB entry next time and be able to handle
the fault.
Tested-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently a CPU running a guest can receive a H_DOORBELL in the
following two cases:
1) When the CPU is napping due to CEDE or there not being a guest
vcpu.
2) The CPU is running the guest vcpu.
Case 1), the doorbell message is not cleared since we were waking up
from nap. Hence when the EE bit gets set on transition from guest to
host, the H_DOORBELL interrupt is delivered to the host and the
corresponding handler is invoked.
However in Case 2), the message gets cleared by the action of taking
the H_DOORBELL interrupt. Since the CPU was running a guest, instead
of invoking the doorbell handler, the code invokes the second-level
interrupt handler to switch the context from the guest to the host. At
this point the setting of the EE bit doesn't result in the CPU getting
the doorbell interrupt since it has already been delivered once. So,
the handler for this doorbell is never invoked!
This causes softlockups if the missed DOORBELL was an IPI sent from a
sibling subcore on the same CPU.
This patch fixes it by explitly invoking the doorbell handler on the
exit path if the exit reason is H_DOORBELL similar to the way an
EXTERNAL interrupt is handled. Since this will also handle Case 1), we
can unconditionally clear the doorbell message in
kvmppc_check_wake_reason.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
For the machine check interrupt that happens while we are in the guest,
kvm layer attempts the recovery, and then delivers the machine check interrupt
directly to the guest if recovery fails. On successful recovery we go back to
normal functioning of the guest. But there can be cases where a machine check
interrupt can happen with MSR(RI=0) while we are in the guest. This means
MC interrupt is unrecoverable and we have to deliver a machine check to the
guest since the machine check interrupt might have trashed valid values in
SRR0/1. The current implementation do not handle this case, causing guest
to crash with Bad kernel stack pointer instead of machine check oops message.
[26281.490060] Bad kernel stack pointer 3fff9ccce5b0 at c00000000000490c
[26281.490434] Oops: Bad kernel stack pointer, sig: 6 [#1]
[26281.490472] SMP NR_CPUS=2048 NUMA pSeries
This patch fixes this issue by checking MSR(RI=0) in KVM layer and forwarding
unrecoverable interrupt to guest which then panics with proper machine check
Oops message.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
In guest_exit_cont we call kvmhv_commence_exit which expects the trap
number as the argument. However r3 doesn't contain the trap number at
this point and as a result we would be calling the function with a
spurious trap number.
Fix this by copying r12 into r3 before calling kvmhv_commence_exit as
r12 contains the trap number.
Cc: stable@vger.kernel.org # v4.1+
Fixes: eddb60fb14
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The code that handles the case when we receive a H_DOORBELL interrupt
has a comment which says "Hypervisor doorbell - exit only if host IPI
flag set". However, the current code does not actually check if the
host IPI flag is set. This is due to a comparison instruction that
got missed.
As a result, the current code performs the exit to host only
if some sibling thread or a sibling sub-core is exiting to the
host. This implies that, an IPI sent to a sibling core in
(subcores-per-core != 1) mode will be missed by the host unless the
sibling core is on the exit path to the host.
This patch adds the missing comparison operation which will ensure
that when HOST_IPI flag is set, we unconditionally exit to the host.
Fixes: 66feed61cd
Cc: stable@vger.kernel.org # v4.1+
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The current dynamic micro-threading code has a race due to which a
secondary thread naps when it is supposed to be running a vcpu. As a
side effect of this, on a guest exit, the primary thread in
kvmppc_wait_for_nap() finds that this secondary thread hasn't cleared
its vcore pointer. This results in "CPU X seems to be stuck!"
warnings.
The race is possible since the primary thread on exiting the guests
only waits for all the secondaries to clear its vcore pointer. It
subsequently expects the secondary threads to enter nap while it
unsplits the core. A secondary thread which hasn't yet entered the nap
will loop in kvm_no_guest until its vcore pointer and the do_nap flag
are unset. Once the core has been unsplit, a new vcpu thread can grab
the core and set the do_nap flag *before* setting the vcore pointers
of the secondary. As a result, the secondary thread will now enter nap
via kvm_unsplit_nap instead of running the guest vcpu.
Fix this by setting the do_nap flag after setting the vcore pointer in
the PACA of the secondary in kvmppc_run_core. Also, ensure that a
secondary thread doesn't nap in kvm_unsplit_nap when the vcore pointer
in its PACA struct is set.
Fixes: b4deba5c41
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
In 64 bit kernels, the Fixed Point Exception Register (XER) is a 64
bit field (e.g. in kvm_regs and kvm_vcpu_arch) and in most places it is
accessed as such.
This patch corrects places where it is accessed as a 32 bit field by a
64 bit kernel. In some cases this is via a 32 bit load or store
instruction which, depending on endianness, will cause either the
lower or upper 32 bits to be missed. In another case it is cast as a
u32, causing the upper 32 bits to be cleared.
This patch corrects those places by extending the access methods to
64 bits.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds implementations for the H_CLEAR_REF (test and clear reference
bit) and H_CLEAR_MOD (test and clear changed bit) hypercalls.
When clearing the reference or change bit in the guest view of the HPTE,
we also have to clear it in the real HPTE so that we can detect future
references or changes. When we do so, we transfer the R or C bit value
to the rmap entry for the underlying host page so that kvm_age_hva_hv(),
kvm_test_age_hva_hv() and kvmppc_hv_get_dirty_log() know that the page
has been referenced and/or changed.
These hypercalls are not used by Linux guests. These implementations
have been tested using a FreeBSD guest.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This builds on the ability to run more than one vcore on a physical
core by using the micro-threading (split-core) modes of the POWER8
chip. Previously, only vcores from the same VM could be run together,
and (on POWER8) only if they had just one thread per core. With the
ability to split the core on guest entry and unsplit it on guest exit,
we can run up to 8 vcpu threads from up to 4 different VMs, and we can
run multiple vcores with 2 or 4 vcpus per vcore.
Dynamic micro-threading is only available if the static configuration
of the cores is whole-core mode (unsplit), and only on POWER8.
To manage this, we introduce a new kvm_split_mode struct which is
shared across all of the subcores in the core, with a pointer in the
paca on each thread. In addition we extend the core_info struct to
have information on each subcore. When deciding whether to add a
vcore to the set already on the core, we now have two possibilities:
(a) piggyback the vcore onto an existing subcore, or (b) start a new
subcore.
Currently, when any vcpu needs to exit the guest and switch to host
virtual mode, we interrupt all the threads in all subcores and switch
the core back to whole-core mode. It may be possible in future to
allow some of the subcores to keep executing in the guest while
subcore 0 switches to the host, but that is not implemented in this
patch.
This adds a module parameter called dynamic_mt_modes which controls
which micro-threading (split-core) modes the code will consider, as a
bitmap. In other words, if it is 0, no micro-threading mode is
considered; if it is 2, only 2-way micro-threading is considered; if
it is 4, only 4-way, and if it is 6, both 2-way and 4-way
micro-threading mode will be considered. The default is 6.
With this, we now have secondary threads which are the primary thread
for their subcore and therefore need to do the MMU switch. These
threads will need to be started even if they have no vcpu to run, so
we use the vcore pointer in the PACA rather than the vcpu pointer to
trigger them.
It is now possible for thread 0 to find that an exit has been
requested before it gets to switch the subcore state to the guest. In
that case we haven't added the guest's timebase offset to the
timebase, so we need to be careful not to subtract the offset in the
guest exit path. In fact we just skip the whole path that switches
back to host context, since we haven't switched to the guest context.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
When running a virtual core of a guest that is configured with fewer
threads per core than the physical cores have, the extra physical
threads are currently unused. This makes it possible to use them to
run one or more other virtual cores from the same guest when certain
conditions are met. This applies on POWER7, and on POWER8 to guests
with one thread per virtual core. (It doesn't apply to POWER8 guests
with multiple threads per vcore because they require a 1-1 virtual to
physical thread mapping in order to be able to use msgsndp and the
TIR.)
The idea is that we maintain a list of preempted vcores for each
physical cpu (i.e. each core, since the host runs single-threaded).
Then, when a vcore is about to run, it checks to see if there are
any vcores on the list for its physical cpu that could be
piggybacked onto this vcore's execution. If so, those additional
vcores are put into state VCORE_PIGGYBACK and their runnable VCPU
threads are started as well as the original vcore, which is called
the master vcore.
After the vcores have exited the guest, the extra ones are put back
onto the preempted list if any of their VCPUs are still runnable and
not idle.
This means that vcpu->arch.ptid is no longer necessarily the same as
the physical thread that the vcpu runs on. In order to make it easier
for code that wants to send an IPI to know which CPU to target, we
now store that in a new field in struct vcpu_arch, called thread_cpu.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>