One of the roles of the PM core is to prevent different PM callbacks
executed for the same device object from racing with each other.
Unfortunately, after commit e866500247
(PM: Allow pm_runtime_suspend() to succeed during system suspend)
runtime PM callbacks may be executed concurrently with system
suspend/resume callbacks for the same device.
The main reason for commit e866500247
was that some subsystems and device drivers wanted to use runtime PM
helpers, pm_runtime_suspend() and pm_runtime_put_sync() in
particular, for carrying out the suspend of devices in their
.suspend() callbacks. However, as it's been determined recently,
there are multiple reasons not to do so, inlcuding:
* The caller really doesn't control the runtime PM usage counters,
because user space can access them through sysfs and effectively
block runtime PM. That means using pm_runtime_suspend() or
pm_runtime_get_sync() to suspend devices during system suspend
may or may not work.
* If a driver calls pm_runtime_suspend() from its .suspend()
callback, it causes the subsystem's .runtime_suspend() callback to
be executed, which leads to the call sequence:
subsys->suspend(dev)
driver->suspend(dev)
pm_runtime_suspend(dev)
subsys->runtime_suspend(dev)
recursive from the subsystem's point of view. For some subsystems
that may actually work (e.g. the platform bus type), but for some
it will fail in a rather spectacular fashion (e.g. PCI). In each
case it means a layering violation.
* Both the subsystem and the driver can provide .suspend_noirq()
callbacks for system suspend that can do whatever the
.runtime_suspend() callbacks do just fine, so it really isn't
necessary to call pm_runtime_suspend() during system suspend.
* The runtime PM's handling of wakeup devices is usually different
from the system suspend's one, so .runtime_suspend() may simply be
inappropriate for system suspend.
* System suspend is supposed to work even if CONFIG_PM_RUNTIME is
unset.
* The runtime PM workqueue is frozen before system suspend, so if
whatever the driver is going to do during system suspend depends
on it, that simply won't work.
Still, there is a good reason to allow pm_runtime_resume() to
succeed during system suspend and resume (for instance, some
subsystems and device drivers may legitimately use it to ensure that
their devices are in full-power states before suspending them).
Moreover, there is no reason to prevent runtime PM callbacks from
being executed in parallel with the system suspend/resume .prepare()
and .complete() callbacks and the code removed by commit
e866500247 went too far in this
respect. On the other hand, runtime PM callbacks, including
.runtime_resume(), must not be executed during system suspend's
"late" stage of suspending devices and during system resume's "early"
device resume stage.
Taking all of the above into consideration, make the PM core
acquire a runtime PM reference to every device and resume it if
there's a runtime PM resume request pending right before executing
the subsystem-level .suspend() callback for it. Make the PM core
drop references to all devices right after executing the
subsystem-level .resume() callbacks for them. Additionally,
make the PM core disable the runtime PM framework for all devices
during system suspend, after executing the subsystem-level .suspend()
callbacks for them, and enable the runtime PM framework for all
devices during system resume, right before executing the
subsystem-level .resume() callbacks for them.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Kevin Hilman <khilman@ti.com>
The naming convention used by commit 7538e3db6e015e890825fbd9f86599b
(PM: Add support for device power domains), which introduced the
struct dev_power_domain type for representing device power domains,
evidently confuses some developers who tend to think that objects
of this type must correspond to "power domains" as defined by
hardware, which is not the case. Namely, at the kernel level, a
struct dev_power_domain object can represent arbitrary set of devices
that are mutually dependent power management-wise and need not belong
to one hardware power domain. To avoid that confusion, rename struct
dev_power_domain to struct dev_pm_domain and rename the related
pointers in struct device and struct pm_clk_notifier_block from
pwr_domain to pm_domain.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Kevin Hilman <khilman@ti.com>
The PM core doesn't handle suspend failures correctly when it comes to
asynchronously suspended devices. These devices are moved onto the
dpm_suspended_list as soon as the corresponding async thread is
started up, and they remain on the list even if they fail to suspend
or the sleep transition is cancelled before they get suspended. As a
result, when the PM core unwinds the transition, it tries to resume
the devices even though they were never suspended.
This patch (as1474) fixes the problem by adding a new "is_suspended"
flag to dev_pm_info. Devices are resumed only if the flag is set.
[rjw:
* Moved the dev->power.is_suspended check into device_resume(),
because we need to complete dev->power.completion and clear
dev->power.is_prepared too for devices whose
dev->power.is_suspended flags are unset.
* Fixed __device_suspend() to avoid setting dev->power.is_suspended
if async_error is different from zero.]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@kernel.org
This patch (as1473) renames the "in_suspend" field in struct
dev_pm_info to "is_prepared", in preparation for an upcoming change.
The new name is more descriptive of what the field really means.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@kernel.org
If device drivers allocate substantial amounts of memory (above 1 MB)
in their hibernate .freeze() callbacks (or in their legacy suspend
callbcks during hibernation), the subsequent creation of hibernate
image may fail due to the lack of memory. This is the case, because
the drivers' .freeze() callbacks are executed after the hibernate
memory preallocation has been carried out and the preallocated amount
of memory may be too small to cover the new driver allocations.
Unfortunately, the drivers' .prepare() callbacks also are executed
after the hibernate memory preallocation has completed, so they are
not suitable for allocating additional memory either. Thus the only
way a driver can safely allocate memory during hibernation is to use
a hibernate/suspend notifier. However, the notifiers are called
before the freezing of user space and the drivers wanting to use them
for allocating additional memory may not know how much memory needs
to be allocated at that point.
To let device drivers overcome this difficulty rework the hibernation
sequence so that the memory preallocation is carried out after the
drivers' .prepare() callbacks have been executed, so that the
.prepare() callbacks can be used for allocating additional memory
to be used by the drivers' .freeze() callbacks. Update documentation
to match the new behavior of the code.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Change the PM core's behavior related to power domains in such a way
that, if a power domain is defined for a given device, its callbacks
will be executed instead of and not in addition to the device
subsystem's PM callbacks.
The idea behind the initial implementation of power domains handling
by the PM core was that power domain callbacks would be executed in
addition to subsystem callbacks, so that it would be possible to
extend the subsystem callbacks by using power domains. It turns out,
however, that this wouldn't be really convenient in some important
situations.
For example, there are systems in which power can only be removed
from entire power domains. On those systems it is not desirable to
execute device drivers' PM callbacks until it is known that power is
going to be removed from the devices in question, which means that
they should be executed by power domain callbacks rather then by
subsystem (e.g. bus type) PM callbacks, because subsystems generally
have no information about what devices belong to which power domain.
Thus, for instance, if the bus type in question is the platform bus
type, its PM callbacks generally should not be called in addition to
power domain callbacks, because they run device drivers' callbacks
unconditionally if defined.
While in principle the default subsystem PM callbacks, or a subset of
them, may be replaced with different functions, it doesn't seem
correct to do so, because that would change the subsystem's behavior
with respect to all devices in the system, regardless of whether or
not they belong to any power domains. Thus, the only remaining
option is to make power domain callbacks take precedence over
subsystem callbacks.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: Kevin Hilman <khilman@ti.com>
It turns out that some PCI devices are only found to be
wakeup-capable during registration, in which case, when
device_set_wakeup_capable() is called, device_is_registered() already
returns 'true' for the given device, but dpm_sysfs_add() hasn't been
called for it yet. This leads to situations in which the device's
power.can_wakeup flag is not set as requested because of failing
wakeup_sysfs_add() and its wakeup-related sysfs files are not
created, although they should be present. This is a post-2.6.38
regression introduced by commit cb8f51bdad
(PM: Do not create wakeup sysfs files for devices that cannot wake
up).
To work around this problem initialize the device's power.entry
field to an empty list head and make device_set_wakeup_capable()
check if it is still empty before attempting to add the devices
wakeup-related sysfs files with wakeup_sysfs_add(). Namely, if
power.entry is still empty at this point, device_pm_add() hasn't been
called yet for the device and its wakeup-related files will be
created later, so device_set_wakeup_capable() doesn't have to create
them.
Reported-and-tested-by: Tino Keitel <tino.keitel@tikei.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Xen save/restore is going to use hibernate device callbacks for
quiescing devices and putting them back to normal operations and it
would need to select CONFIG_HIBERNATION for this purpose. However,
that also would cause the hibernate interfaces for user space to be
enabled, which might confuse user space, because the Xen kernels
don't support hibernation. Moreover, it would be wasteful, as it
would make the Xen kernels include a substantial amount of code that
they would never use.
To address this issue introduce new power management Kconfig option
CONFIG_HIBERNATE_CALLBACKS, such that it will only select the code
that is necessary for the hibernate device callbacks to work and make
CONFIG_HIBERNATION select it. Then, Xen save/restore will be able to
select CONFIG_HIBERNATE_CALLBACKS without dragging the entire
hibernate code along with it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Tested-by: Shriram Rajagopalan <rshriram@cs.ubc.ca>
The code handling system-wide power transitions (eg. suspend-to-RAM)
can in theory execute callbacks provided by the device's bus type,
device type and class in each phase of the power transition. In
turn, the runtime PM core code only calls one of those callbacks at
a time, preferring bus type callbacks to device type or class
callbacks and device type callbacks to class callbacks.
It seems reasonable to make them both behave in the same way in that
respect. Moreover, even though a device may belong to two subsystems
(eg. bus type and device class) simultaneously, in practice power
management callbacks for system-wide power transitions are always
provided by only one of them (ie. if the bus type callbacks are
defined, the device class ones are not and vice versa). Thus it is
possible to modify the code handling system-wide power transitions
so that it follows the core runtime PM code (ie. treats the
subsystem callbacks as mutually exclusive).
On the other hand, the core runtime PM code will choose to execute,
for example, a runtime suspend callback provided by the device type
even if the bus type's struct dev_pm_ops object exists, but the
runtime_suspend pointer in it happens to be NULL. This is confusing,
because it may lead to the execution of callbacks from different
subsystems during different operations (eg. the bus type suspend
callback may be executed during runtime suspend of the device, while
the device type callback will be executed during system suspend).
Make all of the power management code treat subsystem callbacks in
a consistent way, such that:
(1) If the device's type is defined (eg. dev->type is not NULL)
and its pm pointer is not NULL, the callbacks from dev->type->pm
will be used.
(2) If dev->type is NULL or dev->type->pm is NULL, but the device's
class is defined (eg. dev->class is not NULL) and its pm pointer
is not NULL, the callbacks from dev->class->pm will be used.
(3) If dev->type is NULL or dev->type->pm is NULL and dev->class is
NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm
will be used provided that both dev->bus and dev->bus->pm are
not NULL.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Kevin Hilman <khilman@ti.com>
Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
The platform bus type is often used to handle Systems-on-a-Chip (SoC)
where all devices are represented by objects of type struct
platform_device. In those cases the same "platform" device driver
may be used with multiple different system configurations, but the
actions needed to put the devices it handles into a low-power state
and back into the full-power state may depend on the design of the
given SoC. The driver, however, cannot possibly include all the
information necessary for the power management of its device on all
the systems it is used with. Moreover, the device hierarchy in its
current form also is not suitable for representing this kind of
information.
The patch below attempts to address this problem by introducing
objects of type struct dev_power_domain that can be used for
representing power domains within a SoC. Every struct
dev_power_domain object provides a sets of device power
management callbacks that can be used to perform what's needed for
device power management in addition to the operations carried out by
the device's driver and subsystem.
Namely, if a struct dev_power_domain object is pointed to by the
pwr_domain field in a struct device, the callbacks provided by its
ops member will be executed in addition to the corresponding
callbacks provided by the device's subsystem and driver during all
power transitions.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Tested-and-acked-by: Kevin Hilman <khilman@ti.com>
The dpm_prepare() function increments the runtime PM reference
counters of all devices to prevent pm_runtime_suspend() from
executing subsystem-level callbacks. However, this was supposed to
guard against a specific race condition that cannot happen, because
the power management workqueue is freezable, so pm_runtime_suspend()
can only be called synchronously during system suspend and we can
rely on subsystems and device drivers to avoid doing that
unnecessarily.
Make dpm_prepare() drop the runtime PM reference to each device
after making sure that runtime resume is not pending for it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Kevin Hilman <khilman@ti.com>
The registration of a new parentless device during system suspend
will not lead to any complications affecting the PM core (the device
will be effectively seen after the subsequent resume has completed),
so remove the code used for detection of such events.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The device power.status field is too complicated for its purpose
(storing the information about whether or not the device is in the
"active" state from the PM core's point of view), so replace it with
a bit field and modify all of its users accordingly.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Since a separate list of devices is used to link devices that have
completed each stage of suspend (or resume), it is not necessary to
check dev->power.status in the core device resume routines any more.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Instead of keeping all devices in the same list during system suspend
and resume, regardless of what suspend-resume callbacks have been
executed for them already, use separate lists of devices that have
had their ->prepare(), ->suspend() and ->suspend_noirq() callbacks
executed. This will allow us to simplify the core device suspend and
resume routines.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The compiler complains that calltime may be uninitialized in
pm_noirq_op(), so add extra initialization for that variable to
avoid the warning.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Before starting to suspend a device in __device_suspend() check if
there's a request to abort the power transition and return -EBUSY
in that case.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
To avoid confusion with the meaning and return value of
pm_check_wakeup_events() replace it with pm_wakeup_pending() that
will work the other way around (ie. return true when system-wide
power transition should be aborted).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Currently dpm_prepare() returns error code if it finds that a device
being suspended has a pending runtime resume request. However, it
should not do that if the checking for wakeup events is not enabled.
On the other hand, if the checking for wakeup events is enabled, it
can return error when a wakeup event is detected, regardless of its
source.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Conflicts:
MAINTAINERS
arch/arm/mach-omap2/pm24xx.c
drivers/scsi/bfa/bfa_fcpim.c
Needed to update to apply fixes for which the old branch was too
outdated.
Holding dpm_list_mtx across late suspend and early resume of devices
is problematic for the PCMCIA subsystem and doesn't allow device
objects to be removed by late suspend and early resume driver
callbacks. This appears to be overly restrictive, as drivers are
generally allowed to remove device objects in other phases of suspend
and resume. Therefore rework dpm_{suspend|resume}_noirq() so that
they don't have to hold dpm_list_mtx all the time.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
There is a potential issue with the asynchronous suspend code that
a device driver suspending asynchronously may not notice that it
should back off. There are two failing scenarions, (1) when the
driver is waiting for a driver suspending synchronously to complete
and that second driver returns error code, in which case async_error
won't be set and the waiting driver will continue suspending and (2)
after the driver has called device_pm_wait_for_dev() and the waited
for driver returns error code, in which case the caller of
device_pm_wait_for_dev() will not know that there was an error and
will continue suspending.
To fix this issue make __device_suspend() set async_error, so
async_suspend() doesn't need to set it any more, and make
device_pm_wait_for_dev() return async_error, so that its callers
can check whether or not they should continue suspending.
No more changes are necessary, since device_pm_wait_for_dev() is
not used by any drivers' suspend routines.
Reported-by: Colin Cross <ccross@android.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Introduce struct wakeup_source for representing system wakeup sources
within the kernel and for collecting statistics related to them.
Make the recently introduced helper functions pm_wakeup_event(),
pm_stay_awake() and pm_relax() use struct wakeup_source objects
internally, so that wakeup statistics associated with wakeup devices
can be collected and reported in a consistent way (the definition of
pm_relax() is changed, which is harmless, because this function is
not called directly by anyone yet). Introduce new wakeup-related
sysfs device attributes in /sys/devices/.../power for reporting the
device wakeup statistics.
Change the global wakeup events counters event_count and
events_in_progress into atomic variables, so that it is not necessary
to acquire a global spinlock in pm_wakeup_event(), pm_stay_awake()
and pm_relax(), which should allow us to avoid lock contention in
these functions on SMP systems with many wakeup devices.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Seen on MIPS32, gcc 4.4.3, 2.6.36-rc4:
drivers/base/power/main.c: In function 'dpm_show_time':
drivers/base/power/main.c:415: warning: comparison of distinct pointer types lacks a cast
do_div() takes unsigned parameters:
uint32_t do_div(uint64_t *n, uint32_t base);
Using an unsigned variable for usecs64 should not cause any problems,
because calltime >= starttime .
Signed-off-by: Kevin Cernekee <cernekee@gmail.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
During suspend, the power.completion is expected to be set when a
device has not yet started suspending. Set it on init to fix a
corner case where a device is resumed when its parent has never
suspended.
Consider three drivers, A, B, and C. The parent of A is C, and C
has async_suspend set. On boot, C->power.completion is initialized
to 0.
During the first suspend:
suspend_devices_and_enter(...)
dpm_resume(...)
device_suspend(A)
device_suspend(B) returns error, aborts suspend
dpm_resume_end(...)
dpm_resume(...)
device_resume(A)
dpm_wait(A->parent == C)
wait_for_completion(C->power.completion)
The wait_for_completion will never complete, because
complete_all(C->power.completion) will only be called from
device_suspend(C) or device_resume(C), neither of which is called
if suspend is aborted before C.
After a successful suspend->resume cycle, where B doesn't abort
suspend, C->power.completion is left in the completed state by the
call to device_resume(C), and the same call path will work if B
aborts suspend.
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
One of the arguments during the suspend blockers discussion was that
the mainline kernel didn't contain any mechanisms making it possible
to avoid races between wakeup and system suspend.
Generally, there are two problems in that area. First, if a wakeup
event occurs exactly when /sys/power/state is being written to, it
may be delivered to user space right before the freezer kicks in, so
the user space consumer of the event may not be able to process it
before the system is suspended. Second, if a wakeup event occurs
after user space has been frozen, it is not generally guaranteed that
the ongoing transition of the system into a sleep state will be
aborted.
To address these issues introduce a new global sysfs attribute,
/sys/power/wakeup_count, associated with a running counter of wakeup
events and three helper functions, pm_stay_awake(), pm_relax(), and
pm_wakeup_event(), that may be used by kernel subsystems to control
the behavior of this attribute and to request the PM core to abort
system transitions into a sleep state already in progress.
The /sys/power/wakeup_count file may be read from or written to by
user space. Reads will always succeed (unless interrupted by a
signal) and return the current value of the wakeup events counter.
Writes, however, will only succeed if the written number is equal to
the current value of the wakeup events counter. If a write is
successful, it will cause the kernel to save the current value of the
wakeup events counter and to abort the subsequent system transition
into a sleep state if any wakeup events are reported after the write
has returned.
[The assumption is that before writing to /sys/power/state user space
will first read from /sys/power/wakeup_count. Next, user space
consumers of wakeup events will have a chance to acknowledge or
veto the upcoming system transition to a sleep state. Finally, if
the transition is allowed to proceed, /sys/power/wakeup_count will
be written to and if that succeeds, /sys/power/state will be written
to as well. Still, if any wakeup events are reported to the PM core
by kernel subsystems after that point, the transition will be
aborted.]
Additionally, put a wakeup events counter into struct dev_pm_info and
make these per-device wakeup event counters available via sysfs,
so that it's possible to check the activity of various wakeup event
sources within the kernel.
To illustrate how subsystems can use pm_wakeup_event(), make the
low-level PCI runtime PM wakeup-handling code use it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: markgross <markgross@thegnar.org>
Reviewed-by: Alan Stern <stern@rowland.harvard.edu>
The new-style dev_pm_ops provide callbacks for both IRQs enabled
and disabled. However, the _noirq variants were only called for
buses registered with a device, not for classes and types.
In order to properly use dev_pm_ops in class pcmcia_socket_class,
support _noirq actions also on classes and types.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
In the future, we are going to be changing the lock type for struct
device (once we get the lockdep infrastructure properly worked out) To
make that changeover easier, and to possibly burry the lock in a
different part of struct device, let's create some functions to lock and
unlock a device so that no out-of-core code needs to be changed in the
future.
This patch creates the device_lock/unlock/trylock() functions, and
converts all in-tree users to them.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jean Delvare <khali@linux-fr.org>
Cc: Dave Young <hidave.darkstar@gmail.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Cornelia Huck <cornelia.huck@de.ibm.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Len Brown <len.brown@intel.com>
Cc: Magnus Damm <damm@igel.co.jp>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: David Brownell <dbrownell@users.sourceforge.net>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Alex Chiang <achiang@hp.com>
Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Patterson <andrew.patterson@hp.com>
Cc: Yu Zhao <yu.zhao@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Samuel Ortiz <sameo@linux.intel.com>
Cc: Wolfram Sang <w.sang@pengutronix.de>
Cc: CHENG Renquan <rqcheng@smu.edu.sg>
Cc: Oliver Neukum <oliver@neukum.org>
Cc: Frans Pop <elendil@planet.nl>
Cc: David Vrabel <david.vrabel@csr.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
There are some dependencies between devices (in particular, between
EHCI USB controllers and their OHCI/UHCI siblings) which are not
reflected by the structure of the device tree. With synchronous
suspend and resume these dependencies are taken into accout
automatically, because the devices in question are always registered
in the right order, but to meet these constraints with asynchronous
suspend and resume the drivers of these devices will need to use
dpm_wait() in their suspend/resume routines, so introduce a helper
function allowing them to do that.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
It has been shown by testing that total device resume time can be
reduced significantly (by as much as 50% or more) if the async
threads executing some devices' resume routines are all started
before the main resume thread starts to handle the "synchronous"
devices.
This is a consequence of the fact that the slowest devices tend to be
located at the end of dpm_list, so their resume routines are started
very late. Consequently, they have to wait for all the preceding
"synchronous" devices before their resume routines can be started
by the main resume thread, even if they are "asynchronous". By
starting their async threads upfront we effectively move those
devices towards the beginning of dpm_list, without breaking their
ordering with respect to their parents and children. As a result,
their resume routines are started much earlier and we are able to
save much more device resume time this way.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Add sysfs attribute /sys/power/pm_async allowing the user space to
disable/enable asynchronous suspend/resume of devices.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Theoretically, the total time of system sleep transitions (suspend
to RAM, hibernation) can be reduced by running suspend and resume
callbacks of device drivers in parallel with each other. However,
there are dependencies between devices such that we're not allowed
to suspend the parent of a device before suspending the device
itself. Analogously, we're not allowed to resume a device before
resuming its parent.
The most straightforward way to take these dependencies into accout
is to start the async threads used for suspending and resuming
devices at the core level, so that async_schedule() is called for
each suspend and resume callback supposed to be executed
asynchronously.
For this purpose, introduce a new device flag, power.async_suspend,
used to mark the devices whose suspend and resume callbacks are to be
executed asynchronously (ie. in parallel with the main suspend/resume
thread and possibly in parallel with each other) and helper function
device_enable_async_suspend() allowing one to set power.async_suspend
for given device (power.async_suspend is unset by default for all
devices). For each device with the power.async_suspend flag set the
PM core will use async_schedule() to execute its suspend and resume
callbacks.
The async threads started for different devices as a result of
calling async_schedule() are synchronized with each other and with
the main suspend/resume thread with the help of completions, in the
following way:
(1) There is a completion, power.completion, for each device object.
(2) Each device's completion is reset before calling async_schedule()
for the device or, in the case of devices with the
power.async_suspend flags unset, before executing the device's
suspend and resume callbacks.
(3) During suspend, right before running the bus type, device type
and device class suspend callbacks for the device, the PM core
waits for the completions of all the device's children to be
completed.
(4) During resume, right before running the bus type, device type and
device class resume callbacks for the device, the PM core waits
for the completion of the device's parent to be completed.
(5) The PM core completes power.completion for each device right
after the bus type, device type and device class suspend (or
resume) callbacks executed for the device have returned.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Warning(drivers/base/power/main.c:453): No description found for parameter 'dev'
Warning(drivers/base/power/main.c:453): No description found for parameter 'cb'
Warning(drivers/base/power/main.c:719): No description found for parameter 'dev'
Warning(drivers/base/power/main.c:719): No description found for parameter 'state'
Warning(drivers/base/power/main.c:719): No description found for parameter 'cb'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch (as1317) fixes a bug in the PM core. When a device is
resumed following a system sleep, the core decrements the device's
runtime PM usage counter but doesn't issue an idle notification if the
counter reaches 0. This could prevent an otherwise unused device from
being runtime-suspended again after the system sleep.
The fix is to call pm_runtime_put_sync() instead of
pm_runtime_put_noidle().
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Commit f251177486
(PM: Add initcall_debug style timing for suspend/resume) introduced
basic timing instrumentation, needed for a scritps/bootgraph.pl
equivalent or humans, but it missed the fact that bus types and
device classes which haven't been switched to using struct dev_pm_ops
objects yet need special handling. As a result, the suspend/resume
timing information is only available for devices whose bus types or
device classes use struct dev_pm_ops objects, so the majority of
devices is not covered.
Fix this by adding basic suspend/resume timing instrumentation for
devices whose bus types and device classes still don't use struct
dev_pm_ops objects for power management. To reduce code duplication
move the timing code to helper functions.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
In device_resume_noirq() there is the 'End' label and the associated
goto statement that aren't strictly necessary, so rework the code to
get rid of them. Also modify device_suspend_noirq() so that it looks
completely analogous to device_resume_noirq().
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
In order to diagnose overall suspend/resume times, we need
basic instrumentation to break down the total time into per
device timing, similar to initcall_debug.
This patch adds the basic timing instrumentation, needed
for a scritps/bootgraph.pl equivalent or humans.
The bootgraph.pl program is still a work in progress, but
is far enough along to know that this patch is sufficient.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Fixes the point where we need to complete the power transition when
device suspend fails, so that we don't print warnings about devices
added to the device hierarchy after a failing suspend.
[rjw: Modified changelog.]
Signed-off-by: Romit Dasgupta <romit@ti.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
transition_started should be set once the preparation of devices for
a PM has started, reset before starting to resume devices. When
resuming devices, kernel calls dpm_resume_noirq then
dpm_resume_end(dpm_resume). Thus we should reset transition_started
at dpm_resume_noirq.
This patch fixes ACPI warning when resuming from suspend/hibernate:
ACPI: \_SB_.PCI0.IDE1.PRI1.MAS1 - docking
------------[ cut here ]------------
WARNING: at drivers/base/power/main.c:87 device_pm_add+0x8b/0xcc()
Hardware name: OptiPlex 760
Device: acpi
Parentless device registered during a PM transaction
[rjw: Fixed up the changelog.]
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The kerneldoc comments in drivers/base/power/main.c are generally
outdated and some of them don't describe the functions very
accurately. Update them and standardize the format to use spaces
instead of tabs.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Introduce a core framework for run-time power management of I/O
devices. Add device run-time PM fields to 'struct dev_pm_info'
and device run-time PM callbacks to 'struct dev_pm_ops'. Introduce
a run-time PM workqueue and define some device run-time PM helper
functions at the core level. Document all these things.
Special thanks to Alan Stern for his help with the design and
multiple detailed reviews of the pereceding versions of this patch
and to Magnus Damm for testing feedback.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Magnus Damm <damm@igel.co.jp>
They are not supposed to be modified by drivers, so make them const.
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
When the last device in the dpm list is unregistered directly after its
prepare() callback returned with -EAGAIN, the return code is passed to
the calling function, resulting in a suspend failure. Prevent this by
clearing the return code after -EAGAIN.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
This patch removes the legacy callbacks ->suspend() and
->resume() from struct device_type. These callbacks seem
unused, and new code should instead make use of struct
dev_pm_ops.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>