Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Remove hardware sampler support from oprofile module.
The oprofile user space utilty has been switched to use the kernel
perf interface, for which we also provide hardware sampling support.
In addition the hardware sampling support is also slightly broken: it
supports only 16 bits for the pid and therefore would generate wrong
results on machines which have a pid >64k.
Also the pt_regs structure which was passed to oprofile common code
cannot necessarily be used to generate sane backtraces, since the
task(s) in question may run while the samples are fed to oprofile.
So the result would be more or less random.
However given that the only user space tools switched to the perf
interface already four years ago the hardware sampler code seems to be
unused code, and therefore it should be reasonable to remove it.
The timer based oprofile support continues to work.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Andreas Arnez <arnez@linux.vnet.ibm.com>
Acked-by: Andreas Krebbel <krebbel@linux.vnet.ibm.com>
Acked-by: Robert Richter <rric@kernel.org>
Reviewed-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We have four different stack tracers of which three had bugs. So it's
time to merge them to a single stack tracer which allows to specify a
call back function which will be called for each step.
This patch changes behavior a bit:
- the "nosched" and "in_sched_functions" check within
save_stack_trace_tsk did work only for the last stack frame within a
context. Now it considers the check for each stack frame like it
should.
- both the oprofile variant and the perf_events variant did save a
return address twice if a zero back chain was detected, which
indicates an interrupt frame. The new dump_trace function will call
the oprofile and perf_events backends with the psw address that is
contained within the corresponding pt_regs structure instead.
- the original show_trace and save_context_stack functions did already
use the psw address of the pt_regs structure if a zero back chain
was detected. However now we ignore the psw address if it is a user
space address. After all we trace the kernel stack and not the user
space stack. This way we also get rid of the garbage user space
address in case of warnings and / or panic call traces.
So this should make life easier since now there is only one stack
tracer left which we can break.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the 31 bit support in order to reduce maintenance cost and
effectively remove dead code. Since a couple of years there is no
distribution left that comes with a 31 bit kernel.
The 31 bit kernel also has been broken since more than a year before
anybody noticed. In addition I added a removal warning to the kernel
shown at ipl for 5 minutes: a960062e58 ("s390: add 31 bit warning
message") which let everybody know about the plan to remove 31 bit
code. We didn't get any response.
Given that the last 31 bit only machine was introduced in 1999 let's
remove the code.
Anybody with 31 bit user space code can still use the compat mode.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Doesn't work and build for CONFIG_32BIT. So disable it.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Merge the contents of hwsampler_files.c into
arch/s390/oprofile/init.c.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Heinz Graalfs <graalfs@linux.vnet.ibm.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
OProfile is enhanced to export all files for controlling System z's
hardware sampling, and to invoke hwsampler exported functions to
initialize and use System z's hardware sampling.
The patch invokes hwsampler_setup() during oprofile init and exports
following hwsampler files under oprofilefs if hwsampler's setup
succeeded:
A new directory for hardware sampling based files
/dev/oprofile/hwsampling/
The userland daemon must explicitly write to the following files
to disable (or enable) hardware based sampling
/dev/oprofile/hwsampling/hwsampler
to modify the actual sampling rate
/dev/oprofile/hwsampling/hw_interval
to modify the amount of sampling memory (measured in 4K pages)
/dev/oprofile/hwsampling/hw_sdbt_blocks
The following files are read only and show
the possible minimum sampling rate
/dev/oprofile/hwsampling/hw_min_interval
the possible maximum sampling rate
/dev/oprofile/hwsampling/hw_max_interval
The patch splits the oprofile_timer_[init/exit] function so that it
can be also called through user context (oprofilefs) to avoid kernel
oops.
Applied with following changes:
* whitespace changes in Makefile and timer_int.c
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Maran Pakkirisamy <maranp@linux.vnet.ibm.com>
Signed-off-by: Heinz Graalfs <graalfs@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
This adds support for hardware based sampling on System z processors
(models z10 and up).
System z's hardware sampling is described in detail in:
SA23-2260-01 "The Load-Program-Parameter and CPU-Measurement Facilities"
The patch introduces
- support for System z's hardware sampler in OProfile's kernel module
- it adds functions that control all hardware sampling related
operations as:
- checking if hardware sampling feature is available, i.e.: on
System z models z10 and up, in LPAR mode only, and authorised
during LPAR activation
- allocating memory for the hardware sampling feature
- starting/stopping hardware sampling
All functions required to start and stop hardware sampling have to be
invoked by the oprofile kernel module as provided by the other patches
of this patch set.
In case hardware based sampling cannot be setup standard timer based
sampling is used by OProfile.
Applied with following changes:
* enable compilation in Makefile
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Maran Pakkirisamy <maranp@linux.vnet.ibm.com>
Signed-off-by: Heinz Graalfs <graalfs@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!