The mv_cesa_queue_req() function calls crypto_enqueue_request() to
enqueue a request. In the normal case (i.e the queue isn't full), this
function returns -EINPROGRESS. The current Marvell CESA crypto driver
takes this into account and cleans up the request only if an error
occured, i.e if the return value is not -EINPROGRESS.
Unfortunately this causes problems with
CRYPTO_TFM_REQ_MAY_BACKLOG-flagged requests. When such a request is
passed to crypto_enqueue_request() and the queue is full,
crypto_enqueue_request() will return -EBUSY, but will keep the request
enqueued nonetheless. This situation was not properly handled by the
Marvell CESA driver, which was anyway cleaning up the request in such
a situation. When later on the request was taken out of the backlog
and actually processed, a kernel crash occured due to the internal
driver data structures for this structure having been cleaned up.
To avoid this situation, this commit adds a
mv_cesa_req_needs_cleanup() helper function which indicates if the
request needs to be cleaned up or not after a call to
crypto_enqueue_request(). This helper allows to do the cleanup only in
the appropriate cases, and all call sites of mv_cesa_queue_req() are
fixed to use this new helper function.
Reported-by: Vincent Donnefort <vdonnefort@gmail.com>
Fixes: db509a4533 ("crypto: marvell/cesa - add TDMA support")
Cc: <stable@vger.kernel.org> # v4.2+
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Vincent Donnefort <vdonnefort@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for SHA256 operations.
Signed-off-by: Arnaud Ebalard <arno@natisbad.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for MD5 operations.
Signed-off-by: Arnaud Ebalard <arno@natisbad.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CESA IP supports CPU offload through a dedicated DMA engine (TDMA)
which can control the crypto block.
When you use this mode, all the required data (operation metadata and
payload data) are transferred using DMA, and the results are retrieved
through DMA when possible (hash results are not retrieved through DMA yet),
thus reducing the involvement of the CPU and providing better performances
in most cases (for small requests, the cost of DMA preparation might
exceed the performance gain).
Note that some CESA IPs do not embed this dedicated DMA, hence the
activation of this feature on a per platform basis.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Arnaud Ebalard <arno@natisbad.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The existing mv_cesa driver supports some features of the CESA IP but is
quite limited, and reworking it to support new features (like involving the
TDMA engine to offload the CPU) is almost impossible.
This driver has been rewritten from scratch to take those new features into
account.
This commit introduce the base infrastructure allowing us to add support
for DMA optimization.
It also includes support for one hash (SHA1) and one cipher (AES)
algorithm, and enable those features on the Armada 370 SoC.
Other algorithms and platforms will be added later on.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Arnaud Ebalard <arno@natisbad.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>