Pull locking updates from Ingo Molnar:
"The tree got pretty big in this development cycle, but the net effect
is pretty good:
115 files changed, 673 insertions(+), 1522 deletions(-)
The main changes were:
- Rework and generalize the mutex code to remove per arch mutex
primitives. (Peter Zijlstra)
- Add vCPU preemption support: add an interface to query the
preemption status of vCPUs and use it in locking primitives - this
optimizes paravirt performance. (Pan Xinhui, Juergen Gross,
Christian Borntraeger)
- Introduce cpu_relax_yield() and remov cpu_relax_lowlatency() to
clean up and improve the s390 lock yielding machinery and its core
kernel impact. (Christian Borntraeger)
- Micro-optimize mutexes some more. (Waiman Long)
- Reluctantly add the to-be-deprecated mutex_trylock_recursive()
interface on a temporary basis, to give the DRM code more time to
get rid of its locking hacks. Any other users will be NAK-ed on
sight. (We turned off the deprecation warning for the time being to
not pollute the build log.) (Peter Zijlstra)
- Improve the rtmutex code a bit, in light of recent long lived
bugs/races. (Thomas Gleixner)
- Misc fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/paravirt: Fix bool return type for PVOP_CALL()
x86/paravirt: Fix native_patch()
locking/ww_mutex: Use relaxed atomics
locking/rtmutex: Explain locking rules for rt_mutex_proxy_unlock()/init_proxy_locked()
locking/rtmutex: Get rid of RT_MUTEX_OWNER_MASKALL
x86/paravirt: Optimize native pv_lock_ops.vcpu_is_preempted()
locking/mutex: Break out of expensive busy-loop on {mutex,rwsem}_spin_on_owner() when owner vCPU is preempted
locking/osq: Break out of spin-wait busy waiting loop for a preempted vCPU in osq_lock()
Documentation/virtual/kvm: Support the vCPU preemption check
x86/xen: Support the vCPU preemption check
x86/kvm: Support the vCPU preemption check
x86/kvm: Support the vCPU preemption check
kvm: Introduce kvm_write_guest_offset_cached()
locking/core, x86/paravirt: Implement vcpu_is_preempted(cpu) for KVM and Xen guests
locking/spinlocks, s390: Implement vcpu_is_preempted(cpu)
locking/core, powerpc: Implement vcpu_is_preempted(cpu)
sched/core: Introduce the vcpu_is_preempted(cpu) interface
sched/wake_q: Rename WAKE_Q to DEFINE_WAKE_Q
locking/core: Provide common cpu_relax_yield() definition
locking/mutex: Don't mark mutex_trylock_recursive() as deprecated, temporarily
...
This patch exports the sender chronograph stats via the socket
SO_TIMESTAMPING channel. Currently we can instrument how long a
particular application unit of data was queued in TCP by tracking
SOF_TIMESTAMPING_TX_SOFTWARE and SOF_TIMESTAMPING_TX_SCHED. Having
these sender chronograph stats exported simultaneously along with
these timestamps allow further breaking down the various sender
limitation. For example, a video server can tell if a particular
chunk of video on a connection takes a long time to deliver because
TCP was experiencing small receive window. It is not possible to
tell before this patch without packet traces.
To prepare these stats, the user needs to set
SOF_TIMESTAMPING_OPT_STATS and SOF_TIMESTAMPING_OPT_TSONLY flags
while requesting other SOF_TIMESTAMPING TX timestamps. When the
timestamps are available in the error queue, the stats are returned
in a separate control message of type SCM_TIMESTAMPING_OPT_STATS,
in a list of TLVs (struct nlattr) of types: TCP_NLA_BUSY_TIME,
TCP_NLA_RWND_LIMITED, TCP_NLA_SNDBUF_LIMITED. Unit is microsecond.
Signed-off-by: Francis Yan <francisyyan@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
No need to duplicate the same define everywhere. Since
the only user is stop-machine and the only provider is
s390, we can use a default implementation of cpu_relax_yield()
in sched.h.
Suggested-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-s390 <linux-s390@vger.kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: sparclinux@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1479298985-191589-1-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As there are no users left, we can remove cpu_relax_lowlatency()
implementations from every architecture.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Cc: <linux-arch@vger.kernel.org>
Link: http://lkml.kernel.org/r/1477386195-32736-6-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For spinning loops people do often use barrier() or cpu_relax().
For most architectures cpu_relax and barrier are the same, but on
some architectures cpu_relax can add some latency.
For example on power,sparc64 and arc, cpu_relax can shift the CPU
towards other hardware threads in an SMT environment.
On s390 cpu_relax does even more, it uses an hypercall to the
hypervisor to give up the timeslice.
In contrast to the SMT yielding this can result in larger latencies.
In some places this latency is unwanted, so another variant
"cpu_relax_lowlatency" was introduced. Before this is used in more
and more places, lets revert the logic and provide a cpu_relax_yield
that can be called in places where yielding is more important than
latency. By default this is the same as cpu_relax on all architectures.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1477386195-32736-2-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its all generic atomic_long_t stuff now.
Tested-by: Jason Low <jason.low2@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull uaccess.h prepwork from Al Viro:
"Preparations to tree-wide switch to use of linux/uaccess.h (which,
obviously, will allow to start unifying stuff for real). The last step
there, ie
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
`git grep -l "$PATT"|grep -v ^include/linux/uaccess.h`
is not taken here - I would prefer to do it once just before or just
after -rc1. However, everything should be ready for it"
* 'work.uaccess2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
remove a stray reference to asm/uaccess.h in docs
sparc64: separate extable_64.h, switch elf_64.h to it
score: separate extable.h, switch module.h to it
mips: separate extable.h, switch module.h to it
x86: separate extable.h, switch sections.h to it
remove stray include of asm/uaccess.h from cacheflush.h
mn10300: remove a bogus processor.h->uaccess.h include
xtensa: split uaccess.h into C and asm sides
bonding: quit messing with IOCTL
kill __kernel_ds_p off
mn10300: finish verify_area() off
frv: move HAVE_ARCH_UNMAPPED_AREA to pgtable.h
exceptions: detritus removal
Pull protection keys syscall interface from Thomas Gleixner:
"This is the final step of Protection Keys support which adds the
syscalls so user space can actually allocate keys and protect memory
areas with them. Details and usage examples can be found in the
documentation.
The mm side of this has been acked by Mel"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pkeys: Update documentation
x86/mm/pkeys: Do not skip PKRU register if debug registers are not used
x86/pkeys: Fix pkeys build breakage for some non-x86 arches
x86/pkeys: Add self-tests
x86/pkeys: Allow configuration of init_pkru
x86/pkeys: Default to a restrictive init PKRU
pkeys: Add details of system call use to Documentation/
generic syscalls: Wire up memory protection keys syscalls
x86: Wire up protection keys system calls
x86/pkeys: Allocation/free syscalls
x86/pkeys: Make mprotect_key() mask off additional vm_flags
mm: Implement new pkey_mprotect() system call
x86/pkeys: Add fault handling for PF_PK page fault bit
- add new kernel memory layouts for MMUv3 cores: with 256MB and 512MB
KSEG size, starting at physical address other than 0;
- make kernel load address configurable;
- clean up kernel memory layout macros;
- drop sysmem early allocator and switch to memblock;
- enable kmemleak and memory reservation from the device tree;
- wire up new syscalls: userfaultfd, membarrier, mlock2, copy_file_range,
preadv2 and pwritev2;
- add new platform: Cadence Configurable System Platform (CSP) and new
core variant for it: xt_lnx;
- rearrange CCOUNT calibration code, make most of it generic;
- improve machine reset code (XTFPGA now reboots reliably with MMUv3
cores);
- provide default memmap command line option for configurations without
device tree support;
- ISS fixes: simdisk is now capable of using highmem pages, panic
correctly terminates simulator.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJX9RvtAAoJEFH5zJH4P6BEwmoQAJTUTrkRVd0nlTkh2vt8GfNR
s0rGUnAZa2dm3EY+J7F7RFxDfcXHP5Z73iM0fm8mUt8V/f6NR4QEF1FB9BI0lqXy
fTKHCgt+85BtPzIsNukwDi+QRyEtn3wFVCluKU4mtZ6KcEffTJwT0zMxrpDXoMdq
gcoFGViSdQ0aNo1RosHUBCF/f34+cfUnvvmF8FhcnkAmTWniM+kWk0nDmGz+qInF
ZWhvbcrPEEqR0j/wLLgL7kMhz1AYLI08+DaGR2UP80NQ9yuWraDfsRFnKbAHDqE0
JHAdcUQtPrQmBPSlc+CaE84sPXutsKVoZ/DKby70OR1TljrdytxnVC7zBvdgfVGd
bWa7+qNdhSjGKtxwOPIvjOK5VJZYsFAI3SDEVW9pg0ZD3uBec+P1yWbh1Wvo+Geb
X46EdlUfjsVp4U4G8CTG3aTQB8Dgn6QnkhtbI067l6evCebT21bx4Re1nPCfLD8C
nlt1bgstVUuWDJt+2J0cGbMBill+RBtCEHEwsU778dqq7dJmiawg1aLI2kyHL6P5
VpBaprVrUHHZ5We0obl1BPyK1Sfc7L/NiaKv0wZbuAIoEjeEloYEB+q56HFz9NWn
CJfcfugIh9q58842C0L0XY6uhce+7ZIpqTCMYFC6e8QjpJibY9qbORyineQy4Q7V
QtGm6s1HFRCyvzpx2Uen
=8HqU
-----END PGP SIGNATURE-----
Merge tag 'xtensa-20161005' of git://github.com/jcmvbkbc/linux-xtensa
Pull Xtensa updates from Max Filippov:
"Updates for the xtensa architecture. It is a combined set of patches
for 4.8 that never got to the mainline and new patches for 4.9.
- add new kernel memory layouts for MMUv3 cores: with 256MB and 512MB
KSEG size, starting at physical address other than 0
- make kernel load address configurable
- clean up kernel memory layout macros
- drop sysmem early allocator and switch to memblock
- enable kmemleak and memory reservation from the device tree
- wire up new syscalls: userfaultfd, membarrier, mlock2,
copy_file_range, preadv2 and pwritev2
- add new platform: Cadence Configurable System Platform (CSP) and
new core variant for it: xt_lnx
- rearrange CCOUNT calibration code, make most of it generic
- improve machine reset code (XTFPGA now reboots reliably with MMUv3
cores)
- provide default memmap command line option for configurations
without device tree support
- ISS fixes: simdisk is now capable of using highmem pages, panic
correctly terminates simulator"
* tag 'xtensa-20161005' of git://github.com/jcmvbkbc/linux-xtensa: (24 commits)
xtensa: disable MMU initialization option on MMUv2 cores
xtensa: add default memmap and mmio32native options to defconfigs
xtensa: add default memmap option to common_defconfig
xtensa: add default memmap option to iss_defconfig
xtensa: ISS: allow simdisk to use high memory buffers
xtensa: ISS: define simc_exit and use it instead of inline asm
xtensa: xtfpga: group platform_* functions together
xtensa: rearrange CCOUNT calibration
xtensa: xtfpga: use clock provider, don't update DT
xtensa: Tweak xuartps UART driver Rx watermark for Cadence CSP config.
xtensa: initialize MMU before jumping to reset vector
xtensa: fix icountlevel setting in cpu_reset
xtensa: extract common CPU reset code into separate function
xtensa: Added Cadence CSP kernel configuration for Xtensa
xtensa: fix default kernel load address
xtensa: wire up new syscalls
xtensa: support reserved-memory DT node
xtensa: drop sysmem and switch to memblock
xtensa: minimize use of PLATFORM_DEFAULT_MEM_{ADDR,SIZE}
xtensa: cleanup MMU setup and kernel layout macros
...
platform_restart implementatations do the same thing to reset CPU.
Don't duplicate that code, move it to a function and call it from
platform_restart.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
This patch adds two new system calls:
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
These implement an "allocator" for the protection keys
themselves, which can be thought of as analogous to the allocator
that the kernel has for file descriptors. The kernel tracks
which numbers are in use, and only allows operations on keys that
are valid. A key which was not obtained by pkey_alloc() may not,
for instance, be passed to pkey_mprotect().
These system calls are also very important given the kernel's use
of pkeys to implement execute-only support. These help ensure
that userspace can never assume that it has control of a key
unless it first asks the kernel. The kernel does not promise to
preserve PKRU (right register) contents except for allocated
pkeys.
The 'init_access_rights' argument to pkey_alloc() specifies the
rights that will be established for the returned pkey. For
instance:
pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
will allocate 'pkey', but also sets the bits in PKRU[1] such that
writing to 'pkey' is already denied.
The kernel does not prevent pkey_free() from successfully freeing
in-use pkeys (those still assigned to a memory range by
pkey_mprotect()). It would be expensive to implement the checks
for this, so we instead say, "Just don't do it" since sane
software will never do it anyway.
Any piece of userspace calling pkey_alloc() needs to be prepared
for it to fail. Why? pkey_alloc() returns the same error code
(ENOSPC) when there are no pkeys and when pkeys are unsupported.
They can be unsupported for a whole host of reasons, so apps must
be prepared for this. Also, libraries or LD_PRELOADs might steal
keys before an application gets access to them.
This allocation mechanism could be implemented in userspace.
Even if we did it in userspace, we would still need additional
user/kernel interfaces to tell userspace which keys are being
used by the kernel internally (such as for execute-only
mappings). Having the kernel provide this facility completely
removes the need for these additional interfaces, or having an
implementation of this in userspace at all.
Note that we have to make changes to all of the architectures
that do not use mman-common.h because we use the new
PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
1. PKRU is the Protection Key Rights User register. It is a
usermode-accessible register that controls whether writes
and/or access to each individual pkey is allowed or denied.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
- add new kernel memory layouts for MMUv3 cores: with 256MB and 512MB
KSEG size, starting at physical address other than 0;
- make kernel load address configurable;
- clean up kernel memory layout macros;
- drop sysmem early allocator and switch to memblock;
- enable kmemleak and memory reservation from the device tree;
- wire up new syscalls: userfaultfd, membarrier, mlock2, copy_file_range,
preadv2 and pwritev2.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXnX9MAAoJEFH5zJH4P6BEq40P/3oAbO64xMyHG9iOBlCi2xkz
c1P5f5Y0ZogVn2ItlIZgNbRCQd7U0UyUX6fcKpBA288zSgBWVVCh0PeEamA6MWgg
PY4qXIwa7UxAF0iH5YIj++PAdcxAuv0ZjkGty7i68Ve4Ah2oRK5hCqDMo69VCGO4
yEIUn7Z/Yg6k3NuccUYWJKIuv6NUc7ZOBhxXxoEGe9ARKmsE2Ci2yZ7AEfxzK9EA
74fKzlhbOxnKdCqe2/CJ8Mh7/dlHMtzGgUq+PAQETc9hMKYZcyWlKHItsc2ISToX
cvRk7z+8wNZvRVU/6ilL8dro85KbrMNch+n0DRD8BmjDB++3AO0TnR+5EZNAmXKO
/XRDyAmqtMHN/JwuKbs4ABWATdlM9ccha1HPo+ft2Ww0sfqMoIQLlgznluXOpDh5
1KhV9EGKISGd+M67eG1ab6nkqntddW4M6OYeUPJzNCHzyc0r9azinurm9s09T11R
9onr2ChQfbAUhKI1xex9MWwk+JJj6Z7ADKpIYNNz7lpvWf3tuL34pdw6cx0V5eFX
Khw94DBonzKMMrnsEaCT1u4Iu3Wi6TBGJIKu8YO+oLemauFOUoOmU4HgoW4gnVgt
4N0k4rFiA/6lhBRH/wlDDmEDbmNbetfIK8DjtFNPruxG0sbRsE+OqJAWxS3DFywv
YUmqpsAJgC2VfnUaihyU
=HUkh
-----END PGP SIGNATURE-----
Merge tag 'xtensa-for-next-20160731' of git://github.com/jcmvbkbc/linux-xtensa into for_next
Xtensa improvements for 4.8:
- add new kernel memory layouts for MMUv3 cores: with 256MB and 512MB
KSEG size, starting at physical address other than 0;
- make kernel load address configurable;
- clean up kernel memory layout macros;
- drop sysmem early allocator and switch to memblock;
- enable kmemleak and memory reservation from the device tree;
- wire up new syscalls: userfaultfd, membarrier, mlock2, copy_file_range,
preadv2 and pwritev2.
Pull locking updates from Ingo Molnar:
"The locking tree was busier in this cycle than the usual pattern - a
couple of major projects happened to coincide.
The main changes are:
- implement the atomic_fetch_{add,sub,and,or,xor}() API natively
across all SMP architectures (Peter Zijlstra)
- add atomic_fetch_{inc/dec}() as well, using the generic primitives
(Davidlohr Bueso)
- optimize various aspects of rwsems (Jason Low, Davidlohr Bueso,
Waiman Long)
- optimize smp_cond_load_acquire() on arm64 and implement LSE based
atomic{,64}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
on arm64 (Will Deacon)
- introduce smp_acquire__after_ctrl_dep() and fix various barrier
mis-uses and bugs (Peter Zijlstra)
- after discovering ancient spin_unlock_wait() barrier bugs in its
implementation and usage, strengthen its semantics and update/fix
usage sites (Peter Zijlstra)
- optimize mutex_trylock() fastpath (Peter Zijlstra)
- ... misc fixes and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
locking/atomic: Introduce inc/dec variants for the atomic_fetch_$op() API
locking/barriers, arch/arm64: Implement LDXR+WFE based smp_cond_load_acquire()
locking/static_keys: Fix non static symbol Sparse warning
locking/qspinlock: Use __this_cpu_dec() instead of full-blown this_cpu_dec()
locking/atomic, arch/tile: Fix tilepro build
locking/atomic, arch/m68k: Remove comment
locking/atomic, arch/arc: Fix build
locking/Documentation: Clarify limited control-dependency scope
locking/atomic, arch/rwsem: Employ atomic_long_fetch_add()
locking/atomic, arch/qrwlock: Employ atomic_fetch_add_acquire()
locking/atomic, arch/mips: Convert to _relaxed atomics
locking/atomic, arch/alpha: Convert to _relaxed atomics
locking/atomic: Remove the deprecated atomic_{set,clear}_mask() functions
locking/atomic: Remove linux/atomic.h:atomic_fetch_or()
locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
locking/atomic: Fix atomic64_relaxed() bits
locking/atomic, arch/xtensa: Implement atomic_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/x86: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/tile: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/sparc: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
...
Memblock is the standard kernel boot-time memory tracker/allocator. Use
it instead of the custom sysmem allocator. This allows using kmemleak,
CMA and device tree memory reservation.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Now that the kernel load address and KSEG physical base address have
their own Kconfig symbols PLATFORM_DEFAULT_MEM seems redundant. It makes
little sense to use it in MMU configurations instead of KSEG_PADDR.
In noMMU configurations there's no explicit KSEG, so it's still useful
for the early cache initialization and definition of ARCH_PFN_OFFSET,
which affects mem_map size.
- limit it to noMMU; MMU variants have XCHAL_KSEG_PADDR and
XCHAL_KSEG_SIZE;
- don't use it to define TASK_SIZE or MAX_LOW_PFN: first doesn't make
any difference in noMMU, second is meaningless as there's no high
memory;
- don't add default physical memory region: memory layout should come
from the DT, bootloader tags, or memmap= command line parameter.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Make kernel load address explicit, independent of the selected MMU
configuration and configurable from Kconfig. Do not restrict it to the
first 512MB of the physical address space.
Cleanup kernel memory layout macros:
- rename VECBASE_RESET_VADDR to VECBASE_VADDR, XC_VADDR to VECTOR_VADDR;
- drop VIRTUAL_MEMORY_ADDRESS and LOAD_MEMORY_ADDRESS;
- introduce PHYS_OFFSET and use it in __va and __pa definitions;
- synchronize MMU/noMMU vectors, drop unused NMI vector;
- replace hardcoded vectors offset of 0x3000 with Kconfig symbol.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
MMUv3 is able to support low memory bigger than 128MB.
Implement 256MB and 512MB KSEG layouts:
- add Kconfig selector for KSEG layout;
- add KSEG base address, size and alignment definitions to
arch/xtensa/include/asm/kmem_layout.h;
- use new definitions in TLB initialization;
- add build time memory map consistency checks.
See Documentation/xtensa/mmu.txt for the details of new memory layouts.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Create a header dedicated to memory layout definitions. Include it from
places where these definitions are needed.
Express vmalloc area address, VIRTUAL_MEMORY_ADDRESS and KERNELOFFSET
through KSEG address.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Make __ffs result type unsigned long to match generic asm
implementation. This fixes the following build warning:
mm/nobootmem.c: In function '__free_pages_memory':
include/linux/kernel.h:742:17: warning: comparison of distinct pointer
types lacks a cast
(void) (&_min1 == &_min2); \
^
mm/nobootmem.c💯11: note: in expansion of macro 'min'
order = min(MAX_ORDER - 1UL, __ffs(start));
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Provide macro definitions regardless of whether caches are lockable or
not, make definitions empty in latter case.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
This is the third version of the patchset previously sent [1]. I have
basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get
rid of superfluous gfp flags" which went through dm tree. I am sending
it now because it is tree wide and chances for conflicts are reduced
considerably when we want to target rc2. I plan to send the next step
and rename the flag and move to a better semantic later during this
release cycle so we will have a new semantic ready for 4.8 merge window
hopefully.
Motivation:
While working on something unrelated I've checked the current usage of
__GFP_REPEAT in the tree. It seems that a majority of the usage is and
always has been bogus because __GFP_REPEAT has always been about costly
high order allocations while we are using it for order-0 or very small
orders very often. It seems that a big pile of them is just a
copy&paste when a code has been adopted from one arch to another.
I think it makes some sense to get rid of them because they are just
making the semantic more unclear. Please note that GFP_REPEAT is
documented as
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
* _might_ fail. This depends upon the particular VM implementation.
while !costly requests have basically nofail semantic. So one could
reasonably expect that order-0 request with __GFP_REPEAT will not loop
for ever. This is not implemented right now though.
I would like to move on with __GFP_REPEAT and define a better semantic
for it.
$ git grep __GFP_REPEAT origin/master | wc -l
111
$ git grep __GFP_REPEAT | wc -l
36
So we are down to the third after this patch series. The remaining
places really seem to be relying on __GFP_REPEAT due to large allocation
requests. This still needs some double checking which I will do later
after all the simple ones are sorted out.
I am touching a lot of arch specific code here and I hope I got it right
but as a matter of fact I even didn't compile test for some archs as I
do not have cross compiler for them. Patches should be quite trivial to
review for stupid compile mistakes though. The tricky parts are usually
hidden by macro definitions and thats where I would appreciate help from
arch maintainers.
[1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org
This patch (of 19):
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations. Yet we
have the full kernel tree with its usage for apparently order-0
allocations. This is really confusing because __GFP_REPEAT is
explicitly documented to allow allocation failures which is a weaker
semantic than the current order-0 has (basically nofail).
Let's simply drop __GFP_REPEAT from those places. This would allow to
identify place which really need allocator to retry harder and formulate
a more specific semantic for what the flag is supposed to do actually.
Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Crispin <blogic@openwrt.org>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since all architectures have this implemented now natively, remove this
dead code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement FETCH-OP atomic primitives, these are very similar to the
existing OP-RETURN primitives we already have, except they return the
value of the atomic variable _before_ modification.
This is especially useful for irreversible operations -- such as
bitops (because it becomes impossible to reconstruct the state prior
to modification).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch updates/fixes all spin_unlock_wait() implementations.
The update is in semantics; where it previously was only a control
dependency, we now upgrade to a full load-acquire to match the
store-release from the spin_unlock() we waited on. This ensures that
when spin_unlock_wait() returns, we're guaranteed to observe the full
critical section we waited on.
This fixes a number of spin_unlock_wait() users that (not
unreasonably) rely on this.
I also fixed a number of ticket lock versions to only wait on the
current lock holder, instead of for a full unlock, as this is
sufficient.
Furthermore; again for ticket locks; I added an smp_rmb() in between
the initial ticket load and the spin loop testing the current value
because I could not convince myself the address dependency is
sufficient, esp. if the loads are of different sizes.
I'm more than happy to remove this smp_rmb() again if people are
certain the address dependency does indeed work as expected.
Note: PPC32 will be fixed independently
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chris@zankel.net
Cc: cmetcalf@mellanox.com
Cc: davem@davemloft.net
Cc: dhowells@redhat.com
Cc: james.hogan@imgtec.com
Cc: jejb@parisc-linux.org
Cc: linux@armlinux.org.uk
Cc: mpe@ellerman.id.au
Cc: ralf@linux-mips.org
Cc: realmz6@gmail.com
Cc: rkuo@codeaurora.org
Cc: rth@twiddle.net
Cc: schwidefsky@de.ibm.com
Cc: tony.luck@intel.com
Cc: vgupta@synopsys.com
Cc: ysato@users.sourceforge.jp
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since "locking, rwsem: drop explicit memory barriers" the arch specific
code is basically same as the the generic one so we can drop the
superfluous code.
Suggested-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Max Filippov <jcmvbkbc@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-4-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sh and xtensa seem to be the only architectures which use explicit
memory barriers for rw_semaphore operations even though they are not
really needed because there is the full memory barrier is always implied
by atomic_{inc,dec,add,sub}_return() resp. cmpxchg(). Remove them.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-3-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- control whether perf IRQ is treated as NMI from Kconfig;
- implement ioremap for regions outside KIO segment;
- fix ISS serial port behaviour when EOF is reached;
- fix preemption in {clear,copy}_user_highpage;
- fix endianness issues for XTFPGA devices, big-endian cores are now
fully functional;
- clean up debug infrastructure and add support for hardware breakpoints
and watchpoints.
- add processor configurations for Three Core HiFi-2 MX and HiFi3 cpus
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW7lSZAAoJEI9vqH3mFV2sSV4QAI6P5huzOPT6OugN+nnI7REh
Hu6+64F3pNmrtVa2AdApAPjJm9eCeDpFRDI7QC7VArFJFTvYQiu3Ejp3/197cr8s
gUvh9BFSnsqbwtzFXXpwDfSzLVcd6hPKWfTw7r2THotVbkba0JZvErMNwTryvCtY
3W1tVJmBi/6W2LBVkEbJHneguC1tQ6e8+poNDrcYIvxIdRnWGSWNW0xjUtCPX5pB
HmEb5K8a/UWMxrZ8ZReGCsKKfXdIlFpQj23Xt/9IfxoR5UmWna1/BuarlhA0063y
QT8kXv54koIhC08Tn55yaUvK8tcUGqr/3x3VXL8n//0QRdI9weT8ouoqodJ80MmW
AgFm1A0MzJRrm1gdtB6pusgCqalXoKfOuxI7EhazTdBBAcHEdp6+j3t0k73FxPjq
ZXXFpZjGleYaKMqBSU80a/uW/DRELyvPorowJPUN9hGrvXtYx2cPYzbUI3uCJKHb
6lfCe72igM/0LSpbKCysTUNE2gjYESELrmEePSsaNpYbjhzKIoB86+SVpjgekucC
Hpo8PCyoggTaxCgPapd4zJVLStF7UHAX0fnrFQkDCn4bA1iULQCXS4gI1ie1DKBY
imKW26bGPjaZKIT5GTJYiUeff5MBj9SHkq1OdhySJaEz1tJXQFeO3HNd87mKeGUB
8PJXDh0ryXtcXA5ygGOc
=jcKN
-----END PGP SIGNATURE-----
Merge tag 'xtensa-next-20160320' of git://github.com/czankel/xtensa-linux
Pull Xtensa updates from Chris Zankel:
"Xtensa improvements for 4.6:
- control whether perf IRQ is treated as NMI from Kconfig
- implement ioremap for regions outside KIO segment
- fix ISS serial port behaviour when EOF is reached
- fix preemption in {clear,copy}_user_highpage
- fix endianness issues for XTFPGA devices, big-endian cores are now
fully functional
- clean up debug infrastructure and add support for hardware
breakpoints and watchpoints
- add processor configurations for Three Core HiFi-2 MX and HiFi3
cpus"
* tag 'xtensa-next-20160320' of git://github.com/czankel/xtensa-linux:
xtensa: add test_kc705_hifi variant
xtensa: add Three Core HiFi-2 MX Variant.
xtensa: support hardware breakpoints/watchpoints
xtensa: use context structure for debug exceptions
xtensa: remove remaining non-functional KGDB bits
xtensa: clear all DBREAKC registers on start
xtensa: xtfpga: fix earlycon endianness
xtensa: xtfpga: fix i2c controller register width and endianness
xtensa: xtfpga: fix ethernet controller endianness
xtensa: xtfpga: fix serial port register width and endianness
xtensa: define CONFIG_CPU_{BIG,LITTLE}_ENDIAN
xtensa: fix preemption in {clear,copy}_user_highpage
xtensa: ISS: don't hang if stdin EOF is reached
xtensa: support ioremap for memory outside KIO region
xtensa: use XTENSA_INT_LEVEL macro in asm/timex.h
xtensa: make fake NMI configurable
Pull networking updates from David Miller:
"Highlights:
1) Support more Realtek wireless chips, from Jes Sorenson.
2) New BPF types for per-cpu hash and arrap maps, from Alexei
Starovoitov.
3) Make several TCP sysctls per-namespace, from Nikolay Borisov.
4) Allow the use of SO_REUSEPORT in order to do per-thread processing
of incoming TCP/UDP connections. The muxing can be done using a
BPF program which hashes the incoming packet. From Craig Gallek.
5) Add a multiplexer for TCP streams, to provide a messaged based
interface. BPF programs can be used to determine the message
boundaries. From Tom Herbert.
6) Add 802.1AE MACSEC support, from Sabrina Dubroca.
7) Avoid factorial complexity when taking down an inetdev interface
with lots of configured addresses. We were doing things like
traversing the entire address less for each address removed, and
flushing the entire netfilter conntrack table for every address as
well.
8) Add and use SKB bulk free infrastructure, from Jesper Brouer.
9) Allow offloading u32 classifiers to hardware, and implement for
ixgbe, from John Fastabend.
10) Allow configuring IRQ coalescing parameters on a per-queue basis,
from Kan Liang.
11) Extend ethtool so that larger link mode masks can be supported.
From David Decotigny.
12) Introduce devlink, which can be used to configure port link types
(ethernet vs Infiniband, etc.), port splitting, and switch device
level attributes as a whole. From Jiri Pirko.
13) Hardware offload support for flower classifiers, from Amir Vadai.
14) Add "Local Checksum Offload". Basically, for a tunneled packet
the checksum of the outer header is 'constant' (because with the
checksum field filled into the inner protocol header, the payload
of the outer frame checksums to 'zero'), and we can take advantage
of that in various ways. From Edward Cree"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits)
bonding: fix bond_get_stats()
net: bcmgenet: fix dma api length mismatch
net/mlx4_core: Fix backward compatibility on VFs
phy: mdio-thunder: Fix some Kconfig typos
lan78xx: add ndo_get_stats64
lan78xx: handle statistics counter rollover
RDS: TCP: Remove unused constant
RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket
net: smc911x: convert pxa dma to dmaengine
team: remove duplicate set of flag IFF_MULTICAST
bonding: remove duplicate set of flag IFF_MULTICAST
net: fix a comment typo
ethernet: micrel: fix some error codes
ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it
bpf, dst: add and use dst_tclassid helper
bpf: make skb->tc_classid also readable
net: mvneta: bm: clarify dependencies
cls_bpf: reset class and reuse major in da
ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c
ldmvsw: Add ldmvsw.c driver code
...
Core changes:
- The gpio_chip is now a *real device*. Until now the gpio chips
were just piggybacking the parent device or (gasp) floating in
space outside of the device model. We now finally make GPIO chips
devices. The gpio_chip will create a gpio_device which contains
a struct device, and this gpio_device struct is kept private.
Anything that needs to be kept private from the rest of the kernel
will gradually be moved over to the gpio_device.
- As a result of making the gpio_device a real device, we have added
resource management, so devm_gpiochip_add_data() will cut down on
overhead and reduce code lines. A huge slew of patches convert
almost all drivers in the subsystem to use this.
- Building on making the GPIO a real device, we add the first step
of a new userspace ABI: the GPIO character device. We take small
steps here, so we first add a pure *information* ABI and the tool
"lsgpio" that will list all GPIO devices on the system and all
lines on these devices. We can now discover GPIOs properly from
userspace. We still have not come up with a way to actually *use*
GPIOs from userspace.
- To encourage people to use the character device for the future,
we have it always-enabled when using GPIO. The old sysfs ABI is
still opt-in (and can be used in parallel), but is marked as
deprecated. We will keep it around for the foreseeable future,
but it will not be extended to cover ever more use cases.
Cleanup:
- Bjorn Helgaas removed a whole slew of per-architecture <asm/gpio.h>
includes. This dates back to when GPIO was an opt-in feature and
no shared library even existed: just a header file with proper
prototypes was provided and all semantics were up to the arch to
implement. These patches make the GPIO chip even more a proper
device and cleans out leftovers of the old in-kernel API here
and there. Still some cruft is left but it's very little now.
- There is still some clamping of return values for .get() going
on, but we now return sane values in the vast majority of drivers
and the errorpath is sanitized. Some patches for powerpc, blackfin
and unicore still drop in.
- We continue to switch the ARM, MIPS, blackfin, m68k local GPIO
implementations to use gpiochip_add_data() and cut down on code
lines.
- MPC8xxx is converted to use the generic GPIO helpers.
- ATH79 is converted to use the generic GPIO helpers.
New drivers:
- WinSystems WS16C48
- Acces 104-DIO-48E
- F81866 (a F7188x variant)
- Qoric (a MPC8xxx variant)
- TS-4800
- SPI serializers (pisosr): simple 74xx shift registers connected
to SPI to obtain a dirt-cheap output-only GPIO expander.
- Texas Instruments TPIC2810
- Texas Instruments TPS65218
- Texas Instruments TPS65912
- X-Gene (ARM64) standby GPIO controller
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6m24AAoJEEEQszewGV1zUasP/RpTrjRcNI5QFHjudd2oioDx
R/IljC06Q072ZqVy/MR7QxwhoU8jUnCgKgv4rgMa1OcfHblxC2R1+YBKOUSij831
E+SYmYDYmoMhN7j5Aslr66MXg1rLdFSdCZWemuyNruAK8bx6cTE1AWS8AELQzzTn
Re/CPpCDbujLy0ZK2wJHgr9ZkdcBGICtDRCrOR3Kyjpwk/DSZcruK1PDN+VQMI3k
bJlwgtGenOHINgCq/16edpwj/hzmoJXhTOZXJHI5XVR6czTwb3SvCYACvCkauI/a
/N7b3quG88b5y0OPQPVxp5+VVl9GyVcv5oGzIfTNat/g5QinShZIT4kVV9r0xu6/
TQHh1HlXleh+QI3yX0oRv9ztHreMf+vdpw1dhIwLqHqfJ7AWdOGk7BbKjwCrsOoq
t/qUVFnyvooLpyr53Z5JY8+LqyynHF68G+jUQyHLgTZ0GCE+z+1jqNl1T501n3kv
3CSlNYxSN/YUBN3cnroAIU/ZWcV4YRdxmOtEWP+7xgcdzTE6s/JHb2fuEfVHzWPf
mHWtJGy8U0IR4VSSEln5RtjhRr0PAjTHeTOGAmivUnaIGDziTowyUVF+X5hwC77E
DGTuLVx/Kniv173DK7xNAsUZNAETBa3fQZTgu+RfOpMiM1FZc7tI1rd7K7PjbyCc
d2M0gcq+d11ITJTxC7OM
=9AJ4
-----END PGP SIGNATURE-----
Merge tag 'gpio-v4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio
Pull GPIO updates from Linus Walleij:
"This is the bulk of GPIO changes for kernel v4.6. There is quite a
lot of interesting stuff going on.
The patches to other subsystems and arch-wide are ACKed as far as
possible, though I consider things like per-arch <asm/gpio.h> as
essentially a part of the GPIO subsystem so it should not be needed.
Core changes:
- The gpio_chip is now a *real device*. Until now the gpio chips
were just piggybacking the parent device or (gasp) floating in
space outside of the device model.
We now finally make GPIO chips devices. The gpio_chip will create
a gpio_device which contains a struct device, and this gpio_device
struct is kept private. Anything that needs to be kept private
from the rest of the kernel will gradually be moved over to the
gpio_device.
- As a result of making the gpio_device a real device, we have added
resource management, so devm_gpiochip_add_data() will cut down on
overhead and reduce code lines. A huge slew of patches convert
almost all drivers in the subsystem to use this.
- Building on making the GPIO a real device, we add the first step of
a new userspace ABI: the GPIO character device. We take small
steps here, so we first add a pure *information* ABI and the tool
"lsgpio" that will list all GPIO devices on the system and all
lines on these devices.
We can now discover GPIOs properly from userspace. We still have
not come up with a way to actually *use* GPIOs from userspace.
- To encourage people to use the character device for the future, we
have it always-enabled when using GPIO. The old sysfs ABI is still
opt-in (and can be used in parallel), but is marked as deprecated.
We will keep it around for the foreseeable future, but it will not
be extended to cover ever more use cases.
Cleanup:
- Bjorn Helgaas removed a whole slew of per-architecture <asm/gpio.h>
includes.
This dates back to when GPIO was an opt-in feature and no shared
library even existed: just a header file with proper prototypes was
provided and all semantics were up to the arch to implement. These
patches make the GPIO chip even more a proper device and cleans out
leftovers of the old in-kernel API here and there.
Still some cruft is left but it's very little now.
- There is still some clamping of return values for .get() going on,
but we now return sane values in the vast majority of drivers and
the errorpath is sanitized. Some patches for powerpc, blackfin and
unicore still drop in.
- We continue to switch the ARM, MIPS, blackfin, m68k local GPIO
implementations to use gpiochip_add_data() and cut down on code
lines.
- MPC8xxx is converted to use the generic GPIO helpers.
- ATH79 is converted to use the generic GPIO helpers.
New drivers:
- WinSystems WS16C48
- Acces 104-DIO-48E
- F81866 (a F7188x variant)
- Qoric (a MPC8xxx variant)
- TS-4800
- SPI serializers (pisosr): simple 74xx shift registers connected to
SPI to obtain a dirt-cheap output-only GPIO expander.
- Texas Instruments TPIC2810
- Texas Instruments TPS65218
- Texas Instruments TPS65912
- X-Gene (ARM64) standby GPIO controller"
* tag 'gpio-v4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio: (194 commits)
Revert "Share upstreaming patches"
gpio: mcp23s08: Fix clearing of interrupt.
gpiolib: Fix comment referring to gpio_*() in gpiod_*()
gpio: pca953x: Fix pca953x_gpio_set_multiple() on 64-bit
gpio: xgene: Fix kconfig for standby GIPO contoller
gpio: Add generic serializer DT binding
gpio: uapi: use 0xB4 as ioctl() major
gpio: tps65912: fix bad merge
Revert "gpio: lp3943: Drop pin_used and lp3943_gpio_request/lp3943_gpio_free"
gpio: omap: drop dev field from gpio_bank structure
gpio: mpc8xxx: Slightly update the code for better readability
gpio: mpc8xxx: Remove *read_reg and *write_reg from struct mpc8xxx_gpio_chip
gpio: mpc8xxx: Fixup setting gpio direction output
gpio: mcp23s08: Add support for mcp23s18
dt-bindings: gpio: altera: Fix altr,interrupt-type property
gpio: add driver for MEN 16Z127 GPIO controller
gpio: lp3943: Drop pin_used and lp3943_gpio_request/lp3943_gpio_free
gpio: timberdale: Switch to devm_ioremap_resource()
gpio: ts4800: Add IMX51 dependency
gpiolib: rewrite gpiodev_add_to_list
...
This patch updates csum_ipv6_magic so that it correctly recognizes that
protocol is a unsigned 8 bit value.
This will allow us to better understand what limitations may or may not be
present in how we handle the data. For example there are a number of
places that call htonl on the protocol value. This is likely not necessary
and can be replaced with a multiplication by ntohl(1) which will be
converted to a shift by the compiler.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch updates all instances of csum_tcpudp_magic and
csum_tcpudp_nofold to reflect the types that are usually used as the source
inputs. For example the protocol field is populated based on nexthdr which
is actually an unsigned 8 bit value. The length is usually populated based
on skb->len which is an unsigned integer.
This addresses an issue in which the IPv6 function csum_ipv6_magic was
generating a checksum using the full 32b of skb->len while
csum_tcpudp_magic was only using the lower 16 bits. As a result we could
run into issues when attempting to adjust the checksum as there was no
protocol agnostic way to update it.
With this change the value is still truncated as many architectures use
"(len + proto) << 8", however this truncation only occurs for values
greater than 16776960 in length and as such is unlikely to occur as we stop
the inner headers at ~64K in size.
I did have to make a few minor changes in the arm, mn10300, nios2, and
score versions of the function in order to support these changes as they
were either using things such as an OR to combine the protocol and length,
or were using ntohs to convert the length which would have truncated the
value.
I also updated a few spots in terms of whitespace and type differences for
the addresses. Most of this was just to make sure all of the definitions
were in sync going forward.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use perf framework to manage hardware instruction and data breakpoints.
Add two new ptrace calls: PTRACE_GETHBPREGS and PTRACE_SETHBPREGS to
query and set instruction and data breakpoints.
Address bit 0 choose instruction (0) or data (1) break register, bits
31..1 are the register number.
Both calls transfer two 32-bit words: address (0) and control (1).
Instruction breakpoint contorl word is 0 to clear breakpoint, 1 to set.
Data breakpoint control word bit 31 is 'trigger on store', bit 30 is
'trigger on load, bits 29..0 are length. Length 0 is used to clear a
breakpoint. To set a breakpoint length must be a power of 2 in the range
1..64 and the address must be length-aligned.
Introduce new thread_info flag: TIF_DB_DISABLED. Set it if debug
exception is raised by the kernel code accessing watched userspace
address and disable corresponding data breakpoint. On exit to userspace
check that flag and, if set, restore all data breakpoints.
Handle debug exceptions raised with PS.EXCM set. This may happen when
window overflow/underflow handler or fast exception handler hits data
breakpoint, in which case save and disable all data breakpoints,
single-step faulting instruction and restore data breakpoints.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
With implementation of data breakpoints debug exceptions raised when
PS.EXCM is set need to be handled, e.g. window overflow code can write
to watched userspace address. Currently debug exception handler uses
EXCSAVE and DEPC SRs to save temporary registers, but DEPC may not be
available when PS.EXCM is set and more space will be needed to save
additional state.
Reorganize debug context: create per-CPU structure debug_table instance
and store its address in the EXCSAVE<debug level> instead of
debug_exception function address. Expand this structure when more save
space is needed.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
For a long time all architectures implement the pci_dma_* functions using
the generic DMA API, and they all use the same header to do so.
Move this header, pci-dma-compat.h, to include/linux and include it from
the generic pci.h instead of having each arch duplicate this include.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
This patch add the SO_CNX_ADVICE socket option (setsockopt only). The
purpose is to allow an application to give feedback to the kernel about
the quality of the network path for a connected socket. The value
argument indicates the type of quality report. For this initial patch
the only supported advice is a value of 1 which indicates "bad path,
please reroute"-- the action taken by the kernel is to call
dst_negative_advice which will attempt to choose a different ECMP route,
reset the TX hash for flow label and UDP source port in encapsulation,
etc.
This facility should be useful for connected UDP sockets where only the
application can provide any feedback about path quality. It could also
be useful for TCP applications that have additional knowledge about the
path outside of the normal TCP control loop.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
asm/gpio.h is included only by linux/gpio.h, and then only when the arch
selects ARCH_HAVE_CUSTOM_GPIO_H. Only the following arches select it: arm
avr32 blackfin m68k (COLDFIRE only) sh unicore32.
Remove the unused asm/gpio.h files for the arches that do not select
ARCH_HAVE_CUSTOM_GPIO_H.
This is a follow-on to 7563bbf89d ("gpiolib/arches: Centralise
bolierplate asm/gpio.h").
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Move the generic implementation to <linux/dma-mapping.h> now that all
architectures support it and remove the HAVE_DMA_ATTR Kconfig symbol now
that everyone supports them.
[valentinrothberg@gmail.com: remove leftovers in Kconfig]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Helge Deller <deller@gmx.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commits 21f55b018b ("arch/*/include/uapi/asm/mman.h: : let MADV_FREE
have same value for all architectures") and ef58978f1e ("mm: define
MADV_FREE for some arches") both defined MADV_FREE, but did not use the
same values. This results in build errors such as
./arch/alpha/include/uapi/asm/mman.h:53:0: error: "MADV_FREE" redefined
./arch/alpha/include/uapi/asm/mman.h:50:0: note: this is the location of the previous definition
for the affected architectures.
Fixes: 21f55b018b ("arch/*/include/uapi/asm/mman.h: : let MADV_FREE have same value for all architectures")
Fixes: ef58978f1e ("mm: define MADV_FREE for some arches")
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Helge Deller <deller@gmx.de> [parisc]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a new kind of barrier, and reworks virtio and xen
to use it.
Plus some fixes here and there.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWlU2kAAoJECgfDbjSjVRpZ6IH/Ra19ecG8sCQo9zskr4zo22Z
DZXC3u0sJDBYjjBAiw3IY1FKh7wx2Fr1RhUOj1bteBgcFCMCV1zInP5ITiCyzd1H
YYh1w9C2tZaj2T4t9L4hIrAdtIF8fGS+oI2IojXPjOuDLEt6pfFBEjHp/sfl3UJq
ZmZvw4OXviSNej7jBw8Xni3Uv18yfmLGXvMdkvMSPC1/XL29voGDqTVwhqJwxLVz
k/ZLcKFOzIs9N7Nja0Jl1EiZtC2Y9cpItqweicNAzszlpkSL44vQxmCSefB+WyQ4
gt0O3+AxYkLfrxzCBhUA4IpRex3/XPW1b+1e/V1XjfR2n/FlyLe+AIa8uPJElFc=
=ukaV
-----END PGP SIGNATURE-----
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
Pull virtio barrier rework+fixes from Michael Tsirkin:
"This adds a new kind of barrier, and reworks virtio and xen to use it.
Plus some fixes here and there"
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: (44 commits)
checkpatch: add virt barriers
checkpatch: check for __smp outside barrier.h
checkpatch.pl: add missing memory barriers
virtio: make find_vqs() checkpatch.pl-friendly
virtio_balloon: fix race between migration and ballooning
virtio_balloon: fix race by fill and leak
s390: more efficient smp barriers
s390: use generic memory barriers
xen/events: use virt_xxx barriers
xen/io: use virt_xxx barriers
xenbus: use virt_xxx barriers
virtio_ring: use virt_store_mb
sh: move xchg_cmpxchg to a header by itself
sh: support 1 and 2 byte xchg
virtio_ring: update weak barriers to use virt_xxx
Revert "virtio_ring: Update weak barriers to use dma_wmb/rmb"
asm-generic: implement virt_xxx memory barriers
x86: define __smp_xxx
xtensa: define __smp_xxx
tile: define __smp_xxx
...
For uapi, need try to let all macros have same value, and MADV_FREE is
added into main branch recently, so need redefine MADV_FREE for it.
At present, '8' can be shared with all architectures, so redefine it to
'8'.
[sudipm.mukherjee@gmail.com: correct uniform value of MADV_FREE]
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Roland Dreier <roland@kernel.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Jason Evans <je@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Sudip Mukherjee <sudip@vectorindia.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most architectures use asm-generic, but alpha, mips, parisc, xtensa need
their own definitions.
This patch defines MADV_FREE for them so it should fix build break for
their architectures.
Maybe, I should split and feed pieces to arch maintainers but included
here for mmotm convenience.
[gang.chen.5i5j@gmail.com: let MADV_FREE have same value for all architectures]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Max Filippov <jcmvbkbc@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Evans <je@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Roland Dreier <roland@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This defines __smp_xxx barriers for xtensa,
for use by virtualization.
smp_xxx barriers are removed as they are
defined correctly by asm-generic/barriers.h
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>