Add __init for functions alloc_frozen_cpus() and cpu_hotplug_pm_sync_init()
because they are only called during boot time.
Add static for function cpu_hotplug_pm_sync_init() because its scope is limited
in this file only.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
The CPU hotplug notifications sent out by the _cpu_up() and _cpu_down()
functions depend on the value of the 'tasks_frozen' argument passed to them
(which indicates whether tasks have been frozen or not).
(Examples for such CPU hotplug notifications: CPU_ONLINE, CPU_ONLINE_FROZEN,
CPU_DEAD, CPU_DEAD_FROZEN).
Thus, it is essential that while the callbacks for those notifications are
running, the state of the system with respect to the tasks being frozen or
not remains unchanged, *throughout that duration*. Hence there is a need for
synchronizing the CPU hotplug code with the freezer subsystem.
Since the freezer is involved only in the Suspend/Hibernate call paths, this
patch hooks the CPU hotplug code to the suspend/hibernate notifiers
PM_[SUSPEND|HIBERNATE]_PREPARE and PM_POST_[SUSPEND|HIBERNATE] to prevent
the race between CPU hotplug and freezer, thus ensuring that CPU hotplug
notifications will always be run with the state of the system really being
what the notifications indicate, _throughout_ their execution time.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Change the printk() calls to have the KERN_INFO/KERN_ERROR stuff, and
fixes other coding style errors. Not _all_ of them are gone, though.
[akpm@linux-foundation.org: revert the bits I disagree with]
Signed-off-by: Michael Rodriguez <dkingston02@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-alternatives-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, suspend: Avoid unnecessary smp alternatives switch during suspend/resume
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-64, asm: Use fxsaveq/fxrestorq in more places
* 'x86-hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, hwmon: Add core threshold notification to therm_throt.c
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, paravirt: Use native_halt on a halt, not native_safe_halt
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
locking, lockdep: Convert sprintf_symbol to %pS
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
irq: Better struct irqaction layout
During suspend, we disable all the non boot cpus. And during resume we bring
them all back again. So no need to do alternatives_smp_switch() in between.
On my core 2 based laptop, this speeds up the suspend path by 15msec and the
resume path by 5 msec (suspend/resume speed up differences can be attributed
to the different P-states that the cpu is in during suspend/resume).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1290557500.4946.8.camel@sbsiddha-MOBL3.sc.intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Oleg mentioned that there is no actual guarantee the dying cpu's
migration thread is actually finished running when we get there, so
replace the BUG_ON() with a spinloop waiting for it.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
GCC warns us about:
kernel/cpu.c: In function ‘take_cpu_down’:
kernel/cpu.c:200:15: warning: unused variable ‘cpu’
This variable is unused since param->hcpu is directly
used later on in cpu_notify.
Signed-off-by: Dhaval Giani <dhaval_giani@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290091494.1145.5.camel@gondor.retis>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While discussing the need for sched_idle_next(), Oleg remarked that
since try_to_wake_up() ensures sleeping tasks will end up running on a
sane cpu, we can do away with migrate_live_tasks().
If we then extend the existing hack of migrating current from
CPU_DYING to migrating the full rq worth of tasks from CPU_DYING, the
need for the sched_idle_next() abomination disappears as well, since
idle will be the only possible thread left after the migration thread
stops.
This greatly simplifies the hot-unplug task migration path, as can be
seen from the resulting code reduction (and about half the new lines
are comments).
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1289851597.2109.547.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, when a cpu goes down, cpu_active is cleared before
CPU_DOWN_PREPARE starts and cpuset configuration is updated from a
default priority cpu notifier. When a cpu is coming up, it's set
before CPU_ONLINE but cpuset configuration again is updated from the
same cpu notifier.
For cpu notifiers, this presents an inconsistent state. Threads which
a CPU_DOWN_PREPARE notifier expects to be bound to the CPU can be
migrated to other cpus because the cpu is no more inactive.
Fix it by updating cpu_active in the highest priority cpu notifier and
cpuset configuration in the second highest when a cpu is coming up.
Down path is updated similarly. This guarantees that all other cpu
notifiers see consistent cpu_active and cpuset configuration.
cpuset_track_online_cpus() notifier is converted to
cpuset_update_active_cpus() which just updates the configuration and
now called from cpuset_cpu_[in]active() notifiers registered from
sched_init_smp(). If cpuset is disabled, cpuset_update_active_cpus()
degenerates into partition_sched_domains() making separate notifier
for !CONFIG_CPUSETS unnecessary.
This problem is triggered by cmwq. During CPU_DOWN_PREPARE, hotplug
callback creates a kthread and kthread_bind()s it to the target cpu,
and the thread is expected to run on that cpu.
* Ingo's test discovered __cpuinit/exit markups were incorrect.
Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Menage <menage@google.com>
In commit e9fb7631eb ("cpu-hotplug: introduce cpu_notify(),
__cpu_notify(), cpu_notify_nofail()") the new helper functions access
cpu_chain. As a result, it shouldn't be marked __cpuinitdata (via
section mismatch warning).
Alternatively, the helper functions should be forced inline, or marked
__ref or __cpuinit. In the meantime, this patch silences the warning
the trivial way.
Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If there's only one CPU online when disable_nonboot_cpus() is called,
the error variable will not be initialized and that may lead to
erroneous behavior. Fix this issue by initializing error in
disable_nonboot_cpus() as appropriate.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e9fb7631eb ("cpu-hotplug: introduce cpu_notify(),
__cpu_notify(), cpu_notify_nofail()") also introduced this annoying
warning:
kernel/cpu.c:157: warning: 'cpu_notify_nofail' defined but not used
when CONFIG_HOTPLUG_CPU wasn't set.
So move that helper inside the #ifdef CONFIG_HOTPLUG_CPU region, and
simplify it while at it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since when CONFIG_HOTPLUG_CPU=n, get_online_cpus() do nothing, so we don't
need cpu_hotplug_begin() either.
This patch moves cpu_hotplug_begin()/cpu_hotplug_done() into the code
block of CONFIG_HOTPLUG_CPU=y.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, onlining or offlining a CPU failure by one of the cpu notifiers
error always cause -EINVAL error. (i.e. writing 0 or 1 to
/sys/devices/system/cpu/cpuX/online gets EINVAL)
To get better error reporting rather than always getting -EINVAL, This
changes cpu_notify() to return -errno value with notifier_to_errno() and
fix the callers. Now that cpu notifiers can return encapsulate errno
value.
Currently, all cpu hotplug notifiers return NOTIFY_OK, NOTIFY_BAD, or
NOTIFY_DONE. So cpu_notify() can returns 0 or -EPERM with this change for
now.
(notifier_to_errno(NOTIFY_OK) == 0, notifier_to_errno(NOTIFY_DONE) == 0,
notifier_to_errno(NOTIFY_BAD) == -EPERM)
Forthcoming patches convert several cpu notifiers to return encapsulate
errno value with notifier_from_errno().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change. These are just wrappers of
raw_cpu_notifier_call_chain.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add global mutex zonelists_mutex to fix the possible race:
CPU0 CPU1 CPU2
(1) zone->present_pages += online_pages;
(2) build_all_zonelists();
(3) alloc_page();
(4) free_page();
(5) build_all_zonelists();
(6) __build_all_zonelists();
(7) zone->pageset = alloc_percpu();
In step (3,4), zone->pageset still points to boot_pageset, so bad
things may happen if 2+ nodes are in this state. Even if only 1 node
is accessing the boot_pageset, (3) may still consume too much memory
to fail the memory allocations in step (7).
Besides, atomic operation ensures alloc_percpu() in step (7) will never fail
since there is a new fresh memory block added in step(6).
[haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For each new populated zone of hotadded node, need to update its pagesets
with dynamically allocated per_cpu_pageset struct for all possible CPUs:
1) Detach zone->pageset from the shared boot_pageset
at end of __build_all_zonelists().
2) Use mutex to protect zone->pageset when it's still
shared in onlined_pages()
Otherwises, multiple zones of different nodes would share same boot strapping
boot_pageset for same CPU, which will finally cause below kernel panic:
------------[ cut here ]------------
kernel BUG at mm/page_alloc.c:1239!
invalid opcode: 0000 [#1] SMP
...
Call Trace:
[<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0
[<ffffffff81162e67>] alloc_pages_current+0x87/0xd0
[<ffffffff81128407>] __page_cache_alloc+0x67/0x70
[<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260
[<ffffffff81132751>] ra_submit+0x21/0x30
[<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0
[<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0
[<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670
[<ffffffff81266cfa>] nfs_file_read+0xca/0x130
[<ffffffff8117b20a>] do_sync_read+0xfa/0x140
[<ffffffff8117bf75>] vfs_read+0xb5/0x1a0
[<ffffffff8117c151>] sys_read+0x51/0x80
[<ffffffff8103c032>] system_call_fastpath+0x16/0x1b
RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900
RSP <ffff88000d1e78a8>
---[ end trace 4bda28328b9990db ]
[akpm@linux-foundation.org: merge fix]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enable users to online CPUs even if the CPUs belongs to a numa node which
doesn't have onlined local memory.
The zonlists(pg_data_t.node_zonelists[]) of a numa node are created either
in system boot/init period, or at the time of local memory online. For a
numa node without onlined local memory, its zonelists are not initialized
at present. As a result, any memory allocation operations executed by
CPUs within this node will fail. In fact, an out-of-memory error is
triggered when attempt to online CPUs before memory comes to online.
This patch tries to create zonelists for such numa nodes, so that the
memory allocation for this node can be fallback'ed to other nodes.
[akpm@linux-foundation.org: remove unneeded export]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: minskey guo<chaohong.guo@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reimplement stop_machine using cpu_stop. As cpu stoppers are
guaranteed to be available for all online cpus,
stop_machine_create/destroy() are no longer necessary and removed.
With resource management and synchronization handled by cpu_stop, the
new implementation is much simpler. Asking the cpu_stop to execute
the stop_cpu() state machine on all online cpus with cpu hotplug
disabled is enough.
stop_machine itself doesn't need to manage any global resources
anymore, so all per-instance information is rolled into struct
stop_machine_data and the mutex and all static data variables are
removed.
The previous implementation created and destroyed RT workqueues as
necessary which made stop_machine() calls highly expensive on very
large machines. According to Dimitri Sivanich, preventing the dynamic
creation/destruction makes booting faster more than twice on very
large machines. cpu_stop resources are preallocated for all online
cpus and should have the same effect.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
_cpu_down() changes the current task's affinity and then recovers it at
the end. The problems are well known: we can't restore old_allowed if it
was bound to the now-dead-cpu, and we can race with the userspace which
can change cpu-affinity during unplug.
_cpu_down() should not play with current->cpus_allowed at all. Instead,
take_cpu_down() can migrate the caller of _cpu_down() after __cpu_disable()
removes the dying cpu from cpu_online_mask.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100315091023.GA9148@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Additional_cpus is only supported for IA64 now. X86_64 should not be
included.
Signed-off-by: Chen Gong <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to an incorrect line break the output currently contains tabs.
Also remove trailing space.
The actual output that logcheck sent me looked like this:
Task events/1 (pid = 10) is on cpu 1^I^I^I^I(state = 1, flags = 84208040)
After this patch it becomes:
Task events/1 (pid = 10) is on cpu 1 (state = 1, flags = 84208040)
Signed-off-by: Frans Pop <elendilplanet.nl>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <201001251456.34996.elendil@planet.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We moved to migrate on wakeup, which means that sleeping tasks could
still be present on offline cpus. Amend the check to only test running
tasks.
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Sachin found cpu hotplug test failures on powerpc, which made
the kernel hang on his POWER box.
The problem is that we fail to re-activate a cpu when a
hot-unplug fails. Fix this by moving the de-activation into
_cpu_down after doing the initial checks.
Remove the synchronize_sched() calls and rely on those implied
by rebuilding the sched domains using the new mask.
Reported-by: Sachin Sant <sachinp@in.ibm.com>
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Tested-by: Sachin Sant <sachinp@in.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170517.500272612@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since (e761b77: cpu hotplug, sched: Introduce cpu_active_map and redo
sched domain managment) we have cpu_active_mask which is suppose to rule
scheduler migration and load-balancing, except it never (fully) did.
The particular problem being solved here is a crash in try_to_wake_up()
where select_task_rq() ends up selecting an offline cpu because
select_task_rq_fair() trusts the sched_domain tree to reflect the
current state of affairs, similarly select_task_rq_rt() trusts the
root_domain.
However, the sched_domains are updated from CPU_DEAD, which is after the
cpu is taken offline and after stop_machine is done. Therefore it can
race perfectly well with code assuming the domains are right.
Cure this by building the domains from cpu_active_mask on
CPU_DOWN_PREPARE.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Limit the number of per cpu calibration messages by only
printing out results for the first cpu to boot.
Also, don't print "CPUx is down" as this is expected, and we
don't need 4096 reminders... ;-)
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20091118002219.889552000@alcatraz.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-pat-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, pat: Fix cacheflush address in change_page_attr_set_clr()
mm: remove !NUMA condition from PAGEFLAGS_EXTENDED condition set
x86: Fix earlyprintk=dbgp for machines without NX
x86, pat: Sanity check remap_pfn_range for RAM region
x86, pat: Lookup the protection from memtype list on vm_insert_pfn()
x86, pat: Add lookup_memtype to get the current memtype of a paddr
x86, pat: Use page flags to track memtypes of RAM pages
x86, pat: Generalize the use of page flag PG_uncached
x86, pat: Add rbtree to do quick lookup in memtype tracking
x86, pat: Add PAT reserve free to io_mapping* APIs
x86, pat: New i/f for driver to request memtype for IO regions
x86, pat: ioremap to follow same PAT restrictions as other PAT users
x86, pat: Keep identity maps consistent with mmaps even when pat_disabled
x86, mtrr: make mtrr_aps_delayed_init static bool
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
generic-ipi: Allow cpus not yet online to call smp_call_function with irqs disabled
x86: Fix an incorrect argument of reserve_bootmem()
x86: Fix system crash when loading with "reservetop" parameter
Move tboot.h from asm to linux to fix the build errors of intel_txt
patch on non-X86 platforms. Remove the tboot code from generic code
init/main.c and kernel/cpu.c.
Signed-off-by: Shane Wang <shane.wang@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
SDM Vol 3a section titled "MTRR considerations in MP systems" specifies
the need for synchronizing the logical cpu's while initializing/updating
MTRR.
Currently Linux kernel does the synchronization of all cpu's only when
a single MTRR register is programmed/updated. During an AP online
(during boot/cpu-online/resume) where we initialize all the MTRR/PAT registers,
we don't follow this synchronization algorithm.
This can lead to scenarios where during a dynamic cpu online, that logical cpu
is initializing MTRR/PAT with cache disabled (cr0.cd=1) etc while other logical
HT sibling continue to run (also with cache disabled because of cr0.cd=1
on its sibling).
Starting from Westmere, VMX transitions with cr0.cd=1 don't work properly
(because of some VMX performance optimizations) and the above scenario
(with one logical cpu doing VMX activity and another logical cpu coming online)
can result in system crash.
Fix the MTRR initialization by doing rendezvous of all the cpus. During
boot and resume, we delay the MTRR/PAT init for APs till all the
logical cpu's come online and the rendezvous process at the end of AP's bringup,
will initialize the MTRR/PAT for all AP's.
For dynamic single cpu online, we synchronize all the logical cpus and
do the MTRR/PAT init on the AP that is coming online.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Support for graceful handling of sleep states (S3/S4/S5) after an Intel(R) TXT launch.
Without this patch, attempting to place the system in one of the ACPI sleep
states (S3/S4/S5) will cause the TXT hardware to treat this as an attack and
will cause a system reset, with memory locked. Not only may the subsequent
memory scrub take some time, but the platform will be unable to enter the
requested power state.
This patch calls back into the tboot so that it may properly and securely clean
up system state and clear the secrets-in-memory flag, after which it will place
the system into the requested sleep state using ACPI information passed by the kernel.
arch/x86/kernel/smpboot.c | 2 ++
drivers/acpi/acpica/hwsleep.c | 3 +++
kernel/cpu.c | 7 ++++++-
3 files changed, 11 insertions(+), 1 deletion(-)
Signed-off-by: Joseph Cihula <joseph.cihula@intel.com>
Signed-off-by: Shane Wang <shane.wang@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
SLAB uses get/put_online_cpus() which use a mutex which is itself only
initialized when cpu_hotplug_init() is called. Currently we hang suring
boot in SLAB due to doing that too late.
Reported by James Bottomley and Sachin Sant (and possibly others).
Debugged by Benjamin Herrenschmidt.
This just removes the dynamic initialization of the data structures, and
replaces it with a static one, avoiding this dependency entirely, and
removing one unnecessary special initcall.
Tested-by: Sachin Sant <sachinp@in.ibm.com>
Tested-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Tested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cpu_active_map is deprecated in favor of cpu_active_mask, which is
const for safety: we use accessors now (set_cpu_active) is we really
want to make a change.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Introduce stop_machine_create/destroy. With this interface subsystems
that need a non-failing stop_machine environment can create the
stop_machine machine threads before actually calling stop_machine.
When the threads aren't needed anymore they can be killed with
stop_machine_destroy again.
When stop_machine gets called and the threads aren't present they
will be created and destroyed automatically. This restores the old
behaviour of stop_machine.
This patch also converts cpu hotplug to the new interface since it
is special: cpu_down calls __stop_machine instead of stop_machine.
However the kstop threads will only be created when stop_machine
gets called.
Changing the code so that the threads would be created automatically
on __stop_machine is currently not possible: when __stop_machine gets
called we hold cpu_add_remove_lock, which is the same lock that
create_rt_workqueue would take. So the workqueue needs to be created
before the cpu hotplug code locks cpu_add_remove_lock.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: Reduce kernel stack and memory usage, use new cpumask API.
Use cpumask_var_t for take_cpu_down() stack var, and frozen_cpus.
Note that notify_cpu_starting() can be called before core_initcall
allocates frozen_cpus, but the NULL check is optimized out by gcc for
the CONFIG_CPUMASK_OFFSTACK=n case.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
They're only for use in boot/cpu hotplug code anyway, and this avoids
the use of deprecated cpu_*_map.
Stephen Rothwell points out that gcc 4.2.4 (on powerpc at least)
didn't like the cast away of const anyway:
include/linux/cpumask.h: In function 'set_cpu_possible':
include/linux/cpumask.h:1052: warning: passing argument 2 of 'cpumask_set_cpu' discards qualifiers from pointer target type
So this kills two birds with one stone.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: cleanup
This implements the obsolescent cpu_online_map in terms of
cpu_online_mask, rather than the other way around. Same for the other
maps.
The documentation comments are also updated to refer to _mask rather
than _map.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Impact: cleanup
Each SMP arch defines these themselves. Move them to a central
location.
Twists:
1) Some archs (m32, parisc, s390) set possible_map to all 1, so we add a
CONFIG_INIT_ALL_POSSIBLE for this rather than break them.
2) mips and sparc32 '#define cpu_possible_map phys_cpu_present_map'.
Those archs simply have phys_cpu_present_map replaced everywhere.
3) Alpha defined cpu_possible_map to cpu_present_map; this is tricky
so I just manipulate them both in sync.
4) IA64, cris and m32r have gratuitous 'extern cpumask_t cpu_possible_map'
declarations.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: Grant Grundler <grundler@parisc-linux.org>
Tested-by: Tony Luck <tony.luck@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Mike Travis <travis@sgi.com>
Cc: ink@jurassic.park.msu.ru
Cc: rmk@arm.linux.org.uk
Cc: starvik@axis.com
Cc: tony.luck@intel.com
Cc: takata@linux-m32r.org
Cc: ralf@linux-mips.org
Cc: grundler@parisc-linux.org
Cc: paulus@samba.org
Cc: schwidefsky@de.ibm.com
Cc: lethal@linux-sh.org
Cc: wli@holomorphy.com
Cc: davem@davemloft.net
Cc: jdike@addtoit.com
Cc: mingo@redhat.com
Impact: introduce new APIs
We want to deprecate cpumasks on the stack, as we are headed for
gynormous numbers of CPUs. Eventually, we want to head towards an
undefined 'struct cpumask' so they can never be declared on stack.
1) New cpumask functions which take pointers instead of copies.
(cpus_* -> cpumask_*)
2) Several new helpers to reduce requirements for temporary cpumasks
(cpumask_first_and, cpumask_next_and, cpumask_any_and)
3) Helpers for declaring cpumasks on or offstack for large NR_CPUS
(cpumask_var_t, alloc_cpumask_var and free_cpumask_var)
4) 'struct cpumask' for explicitness and to mark new-style code.
5) Make iterator functions stop at nr_cpu_ids (a runtime constant),
not NR_CPUS for time efficiency and for smaller dynamic allocations
in future.
6) cpumask_copy() so we can allocate less than a full cpumask eventually
(for alloc_cpumask_var), and so we can eliminate the 'struct cpumask'
definition eventually.
7) work_on_cpu() helper for doing task on a CPU, rather than saving old
cpumask for current thread and manipulating it.
8) smp_call_function_many() which is smp_call_function_mask() except
taking a cpumask pointer.
Note that this patch simply introduces the new functions and leaves
the obsolescent ones in place. This is to simplify the transition
patches.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Right now, there is no notifier that is called on a new cpu, before the new
cpu begins processing interrupts/softirqs.
Various kernel function would need that notification, e.g. kvm works around
by calling smp_call_function_single(), rcu polls cpu_online_map.
The patch adds a CPU_STARTING notification. It also adds a helper function
that sends the message to all cpu_chain handlers.
Tested on x86-64.
All other archs are untested. Especially on sparc, I'm not sure if I got
it right.
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a cpu is taken offline, the CPU_DYING notifiers are called on the
dying cpu. According to <linux/notifiers.h>, the cpu should be "not
running any task, not handling interrupts, soon dead".
For the current implementation, this is not true:
- __cpu_disable can fail. If it fails, then the cpu will remain alive
and happy.
- At least on x86, __cpu_disable() briefly enables the local interrupts
to handle any outstanding interrupts.
What about moving CPU_DYING down a few lines, behind the __cpu_disable()
line?
There are only two CPU_DYING handlers in the kernel right now: one in
kvm, one in the scheduler. Both should work with the patch applied
[and: I'm not sure if either one handles a failing __cpu_disable()]
The patch survives simple offlining a cpu. kvm untested due to lack
of a test setup.
Signed-off-By: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
s390 doesn't support the additional_cpus kernel parameter anymore since a
long time. So we better update the code and documentation to reflect
that.
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark Langsdorf reported:
> One of my co-workers noticed that the powernow-k8
> driver no longer restarts when a CPU core is
> hot-disabled and then hot-enabled on AMD quad-core
> systems.
>
> The following comands work fine on 2.6.26 and fail
> on 2.6.27-rc1:
>
> echo 0 > /sys/devices/system/cpu/cpu3/online
> echo 1 > /sys/devices/system/cpu/cpu3/online
> find /sys -name cpufreq
>
> For 2.6.26, the find will return a cpufreq
> directory for each processor. In 2.6.27-rc1,
> the cpu3 directory is missing.
>
> After digging through the code, the following
> logic is failing when the core is hot-enabled
> at runtime. The code works during the boot
> sequence.
>
> cpumask_t = current->cpus_allowed;
> set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
> if (smp_processor_id() != cpu)
> return -ENODEV;
So set the CPU active before calling the CPU_ONLINE notifier chain,
there are a handful of notifiers that use set_cpus_allowed().
This fix also solves the problem with x86-microcode. I've sent
alternative patches for microcode, but as this "rely on
set_cpus_allowed_ptr() being workable in cpu-hotplug(CPU_ONLINE, ...)"
assumption seems to be more broad than what we thought, perhaps this fix
should be applied.
With this patch we define that by the moment CPU_ONLINE is being sent,
a 'cpu' is online and ready for tasks to be migrated onto it.
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Reported-by: Mark Langsdorf <mark.langsdorf@amd.com>
Tested-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clean up and optimize cpumask_of_cpu(), by sharing all the zero words.
Instead of stupidly generating all possible i=0...NR_CPUS 2^i patterns
creating a huge array of constant bitmasks, realize that the zero words
can be shared.
In other words, on a 64-bit architecture, we only ever need 64 of these
arrays - with a different bit set in one single world (with enough zero
words around it so that we can create any bitmask by just offsetting in
that big array). And then we just put enough zeroes around it that we
can point every single cpumask to be one of those things.
So when we have 4k CPU's, instead of having 4k arrays (of 4k bits each,
with one bit set in each array - 2MB memory total), we have exactly 64
arrays instead, each 8k bits in size (64kB total).
And then we just point cpumask(n) to the right position (which we can
calculate dynamically). Once we have the right arrays, getting
"cpumask(n)" ends up being:
static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return (const cpumask_t *)p;
}
This brings other advantages and simplifications as well:
- we are not wasting memory that is just filled with a single bit in
various different places
- we don't need all those games to re-create the arrays in some dense
format, because they're already going to be dense enough.
if we compile a kernel for up to 4k CPU's, "wasting" that 64kB of memory
is a non-issue (especially since by doing this "overlapping" trick we
probably get better cache behaviour anyway).
[ mingo@elte.hu:
Converted Linus's mails into a commit. See:
http://lkml.org/lkml/2008/7/27/156http://lkml.org/lkml/2008/7/28/320
Also applied a family filter - which also has the side-effect of leaving
out the bits where Linus calls me an idio... Oh, never mind ;-)
]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of a "cpu" arg with magic values NR_CPUS (any cpu) and ~0 (all
cpus), pass a cpumask_t. Allow NULL for the common case (where we
don't care which CPU the function is run on): temporary cpumask_t's
are usually considered bad for stack space.
This deprecates stop_machine_run, to be removed soon when all the
callers are dead.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Akinobu points out that if take_cpu_down() succeeds, the cpu must be offline.
Remove the cpu_online() check, and put a BUG_ON().
Quoting Akinobu Mita:
Actually the cpu_online() check was necessary before appling this
stop_machine: simplify patch.
With old __stop_machine_run(), __stop_machine_run() could succeed
(return !IS_ERR(p) value) even if take_cpu_down() returned non-zero value.
The return value of take_cpu_down() was obtained through kthread_stop()..
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Akinobu Mita" <akinobu.mita@gmail.com>
stop_machine creates a kthread which creates kernel threads. We can
create those threads directly and simplify things a little. Some care
must be taken with CPU hotunplug, which has special needs, but that code
seems more robust than it was in the past.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
* Create the cpumask_of_cpu_map statically in the init data section
using NR_CPUS but replace it during boot up with one sized by
nr_cpu_ids (num possible cpus).
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If an arch doesn't define cpumask_of_cpu_map, create a generic
statically-initialized one for them. This allows removal of the buggy
cpumask_of_cpu() macro (&cpumask_of_cpu() gives address of
out-of-scope var).
An arch with NR_CPUS of 4096 probably wants to allocate this itself
based on the actual number of CPUs, since otherwise they're using 2MB
of rodata (1024 cpus means 128k). That's what
CONFIG_HAVE_CPUMASK_OF_CPU_MAP is for (only x86/64 does so at the
moment).
In future as we support more CPUs, we'll need to resort to a
get_cpu_map()/put_cpu_map() allocation scheme.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
workqueue_cpu_callback(CPU_DEAD) flushes cwq->thread under
cpu_maps_update_begin(). This means that the multithreaded workqueues
can't use get_online_cpus() due to the possible deadlock, very bad and
very old problem.
Introduce the new state, CPU_POST_DEAD, which is called after
cpu_hotplug_done() but before cpu_maps_update_done().
Change workqueue_cpu_callback() to use CPU_POST_DEAD instead of CPU_DEAD.
This means that create/destroy functions can't rely on get_online_cpus()
any longer and should take cpu_add_remove_lock instead.
[akpm@linux-foundation.org: fix CONFIG_SMP=n]
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Gautham R Shenoy <ego@in.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: hrtick_enabled() should use cpu_active()
sched, x86: clean up hrtick implementation
sched: fix build error, provide partition_sched_domains() unconditionally
sched: fix warning in inc_rt_tasks() to not declare variable 'rq' if it's not needed
cpu hotplug: Make cpu_active_map synchronization dependency clear
cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment (take 2)
sched: rework of "prioritize non-migratable tasks over migratable ones"
sched: reduce stack size in isolated_cpu_setup()
Revert parts of "ftrace: do not trace scheduler functions"
Fixed up conflicts in include/asm-x86/thread_info.h (due to the
TIF_SINGLESTEP unification vs TIF_HRTICK_RESCHED removal) and
kernel/sched_fair.c (due to cpu_active_map vs for_each_cpu_mask_nr()
introduction).
This goes on top of the cpu_active_map (take 2) patch.
Currently we depend on the stop_machine to provide nescessesary
synchronization for the cpu_active_map updates.
As Dmitry Adamushko pointed this is fragile and is not much clearer
than the previous scheme. In other words we do not want to depend on
the internal stop machine operation here.
So make the synchronization rules clear by doing synchronize_sched()
after clearing out cpu active bit.
Tested on quad-Core2 with:
while true; do
for i in 1 2 3; do
echo 0 > /sys/devices/system/cpu/cpu$i/online
done
for i in 1 2 3; do
echo 1 > /sys/devices/system/cpu/cpu$i/online
done
done
and
stress -c 200
No lockdep, preempt or other complaints.
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is based on Linus' idea of creating cpu_active_map that prevents
scheduler load balancer from migrating tasks to the cpu that is going
down.
It allows us to simplify domain management code and avoid unecessary
domain rebuilds during cpu hotplug event handling.
Please ignore the cpusets part for now. It needs some more work in order
to avoid crazy lock nesting. Although I did simplfy and unify domain
reinitialization logic. We now simply call partition_sched_domains() in
all the cases. This means that we're using exact same code paths as in
cpusets case and hence the test below cover cpusets too.
Cpuset changes to make rebuild_sched_domains() callable from various
contexts are in the separate patch (right next after this one).
This not only boots but also easily handles
while true; do make clean; make -j 8; done
and
while true; do on-off-cpu 1; done
at the same time.
(on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing).
Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing
this on right now in gnome-terminal and things are moving just fine.
Also this is running with most of the debug features enabled (lockdep,
mutex, etc) no BUG_ONs or lockdep complaints so far.
I believe I addressed all of the Dmitry's comments for original Linus'
version. I changed both fair and rt balancer to mask out non-active cpus.
And replaced cpu_is_offline() with !cpu_active() in the main scheduler
code where it made sense (to me).
Signed-off-by: Max Krasnyanskiy <maxk@qualcomm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Gregory Haskins <ghaskins@novell.com>
Cc: dmitry.adamushko@gmail.com
Cc: pj@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The ACPI device node for the cpu has already been unregistered
when acpi_processor_handle_eject is called.
Thus we should offline the cpu and continue, rather than a failure here.
http://bugzilla.kernel.org/show_bug.cgi?id=9772
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
kernel/cpu.c seems a more logical place for those maps since they do not really
have much to do with the scheduler these days.
kernel/cpu.c is now built for the UP kernel too, but it does not affect the size
the kernel sections.
$ size vmlinux
before
text data bss dec hex filename
3313797 307060 310352 3931209 3bfc49 vmlinux
after
text data bss dec hex filename
3313797 307060 310352 3931209 3bfc49 vmlinux
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Cc: pj@sgi.com
Cc: menage@google.com
Cc: rostedt@goodmis.org
Cc: mingo@elte.hu
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change references from for_each_cpu_mask to for_each_cpu_mask_nr
where appropriate
Reviewed-by: Paul Jackson <pj@sgi.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpu_hotplug_begin() must be always called under cpu_add_remove_lock, this
means that only one process can be cpu_hotplug.active_writer. So we don't
need the cpu_hotplug.writer_queue, we can wake up the ->active_writer
directly.
Also, fix the comment.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Acked-by: Gautham R Shenoy <ego@in.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix following warnings:
WARNING: vmlinux.o(.text+0xc60): Section mismatch in reference from the function kvm_init() to the function .cpuinit.text:register_cpu_notifier()
WARNING: vmlinux.o(.text+0x33869a): Section mismatch in reference from the function xfs_icsb_init_counters() to the function .cpuinit.text:register_cpu_notifier()
WARNING: vmlinux.o(.text+0x5556a1): Section mismatch in reference from the function acpi_processor_install_hotplug_notify() to the function .cpuinit.text:register_cpu_notifier()
WARNING: vmlinux.o(.text+0xfe6b28): Section mismatch in reference from the function cpufreq_register_driver() to the function .cpuinit.text:register_cpu_notifier()
register_cpu_notifier() are only really defined when HOTPLUG_CPU is enabled.
So references to the function are OK.
Annotate it with __ref so we do not get warnings from callers and do not get
warnings for the functions/data used by register_cpu_notifier().
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix following warnings:
WARNING: vmlinux.o(.text+0x75c8d): Section mismatch in reference from the function take_cpu_down() to the variable .cpuinit.data:cpu_chain
WARNING: vmlinux.o(.text+0x75d2a): Section mismatch in reference from the function _cpu_down() to the variable .cpuinit.data:cpu_chain
WARNING: vmlinux.o(.text+0x75d4d): Section mismatch in reference from the function _cpu_down() to the variable .cpuinit.data:cpu_chain
WARNING: vmlinux.o(.text+0x75de4): Section mismatch in reference from the function _cpu_down() to the variable .cpuinit.data:cpu_chain
WARNING: vmlinux.o(.text+0x75e33): Section mismatch in reference from the function _cpu_down() to the variable .cpuinit.data:cpu_chain
cpu_down is only used from code surrounded by HOTPLUG_CPU so any references to
__cpuinit is OK.
Add a few __ref to tech modpost to ignore the references.
This is just papering over the fact that the cpu hotplug code is fragile with
respect to use of HOTPLUG_CPU and in many cases rely on __cpuinit to get rid
of code when HOTPLUG_CPU is not enabled. For now this is the least invasive
change.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix following warning:
WARNING: vmlinux.o(.text+0x75f4e): Section mismatch in reference from the function unregister_cpu_notifier() to the variable .cpuinit.data:cpu_chain
We know that unregister_cpu_notifier is using HOTPLUG_CPU
stuff - so ignore these references.
Annotating unregister_cpu_notifier had been another option
but this caused far more warnings since not all callers were
annotated __cpuinit.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Use new set_cpus_allowed_ptr() function added by previous patch,
which instead of passing the "newly allowed cpus" cpumask_t arg
by value, pass it by pointer:
-int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
+int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
* Modify CPU_MASK_ALL
Depends on:
[sched-devel]: sched: add new set_cpus_allowed_ptr function
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix following warning:
WARNING: o-x86_64/kernel/built-in.o(.text+0x36d8b): Section mismatch in reference from the function enable_nonboot_cpus() to the function .cpuinit.text:_cpu_up()
enable_nonboot_cpus() are used solely from CONFIG_CONFIG_PM_SLEEP_SMP=y
and PM_SLEEP_SMP imply HOTPLUG_CPU therefore the reference
to _cpu_up() is valid.
Annotate enable_nonboot_cpus() with __ref to silence modpost.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch converts the known per-subsystem mutexes to get_online_cpus
put_online_cpus. It also eliminates the CPU_LOCK_ACQUIRE and
CPU_LOCK_RELEASE hotplug notification events.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace all lock_cpu_hotplug/unlock_cpu_hotplug from the kernel and use
get_online_cpus and put_online_cpus instead as it highlights the
refcount semantics in these operations.
The new API guarantees protection against the cpu-hotplug operation, but
it doesn't guarantee serialized access to any of the local data
structures. Hence the changes needs to be reviewed.
In case of pseries_add_processor/pseries_remove_processor, use
cpu_maps_update_begin()/cpu_maps_update_done() as we're modifying the
cpu_present_map there.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements a Refcount + Waitqueue based model for
cpu-hotplug.
Now, a thread which wants to prevent cpu-hotplug, will bump up a global
refcount and the thread which wants to perform a cpu-hotplug operation
will block till the global refcount goes to zero.
The readers, if any, during an ongoing cpu-hotplug operation are blocked
until the cpu-hotplug operation is over.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Paul Jackson <pj@sgi.com> [For !CONFIG_HOTPLUG_CPU ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
cpu-hot-add should be fail if cpu is not set in cpu_possible_map. If go
ahead, the system will panic soon.
Especially, arch which requires additional_cpus= parameter should handle
this. Tested on ia64.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The task_struct->pid member is going to be deprecated, so start
using the helpers (task_pid_nr/task_pid_vnr/task_pid_nr_ns) in
the kernel.
The first thing to start with is the pid, printed to dmesg - in
this case we may safely use task_pid_nr(). Besides, printks produce
more (much more) than a half of all the explicit pid usage.
[akpm@linux-foundation.org: git-drm went and changed lots of stuff]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Dave Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions in a CPU notifier chain is called with CPU_UP_PREPARE event
before making the CPU online. If one of the callback returns NOTIFY_BAD, it
stops to deliver CPU_UP_PREPARE event, and CPU online operation is canceled.
Then CPU_UP_CANCELED event is delivered to the functions in a CPU notifier
chain again.
This CPU_UP_CANCELED event is delivered to the functions which have been
called with CPU_UP_PREPARE, not delivered to the functions which haven't been
called with CPU_UP_PREPARE.
The problem that makes existing cpu hotplug error handlings complex is that
the CPU_UP_CANCELED event is delivered to the function that has returned
NOTIFY_BAD, too.
Usually we don't expect to call destructor function against the object that
has failed to initialize. It is like:
err = register_something();
if (err) {
unregister_something();
return err;
}
So it is natural to deliver CPU_UP_CANCELED event only to the functions that
have returned NOTIFY_OK with CPU_UP_PREPARE event and not to call the function
that have returned NOTIFY_BAD. This is what this patch is doing.
Otherwise, every cpu hotplug notifiler has to track whether notifiler event is
failed or not for each cpu. (drivers/base/topology.c is doing this with
topology_dev_map)
Similary this patch makes same thing with CPU_DOWN_PREPARE and CPU_DOWN_FAILED
evnets.
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dependencies of CONFIG_SUSPEND and CONFIG_HIBERNATION introduced by commit
296699de6b "Introduce CONFIG_SUSPEND for
suspend-to-Ram and standby" are incorrect, as they don't cover the facts that
(1) not all architectures support suspend and (2) SMP hibernation is only
possible on X86 and PPC64 (if CONFIG_PPC64_SWSUSP is set).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KVM wants a notification when a cpu is about to die, so it can disable
hardware extensions, but at a time when user processes cannot be scheduled
on the cpu, so it doesn't try to use virtualization extensions after they
have been disabled.
This adds a CPU_DYING notification. The notification is called in atomic
context on the doomed cpu.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Make the microcode driver use the suspend-related CPU hotplug notifications
to handle the CPU hotplug events occuring during system-wide suspend and
resume transitions. Remove the global variable suspend_cpu_hotplug
previously used for this purpose.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress. This
patch introduces such notifications and causes them to be used during
suspend and resume transitions. It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).
[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are anyway kthread_stop()ping other per-cpu kernel threads after
move_task_off_dead_cpu(), so we can do it with the stop_machine_run thread
as well.
I just checked with Vatsa if there was any subtle reason why they
had put in the kthread_bind() in cpu.c. Vatsa cannot seem to recollect
any and I can't see any. So let us just remove the kthread_bind.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes cpu hotplug symmetrical: if CPU_UP_PREPARE fails we get
CPU_UP_CANCELED, so we can undo what ever happened on PREPARE. The same
should happen for CPU_DOWN_PREPARE.
[akpm@linux-foundation.org: fix for reduce-size-of-task_struct-on-64-bit-machines]
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Gautham Shenoy <ego@in.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an attempt to provide an alternate mechanism for postponing
a hotplug event instead of using a global mechanism like lock_cpu_hotplug.
The proposal is to add two new events namely CPU_LOCK_ACQUIRE and
CPU_LOCK_RELEASE. The notification for these two events would be sent
out before and after a cpu_hotplug event respectively.
During the CPU_LOCK_ACQUIRE event, a cpu-hotplug-aware subsystem is
supposed to acquire any per-subsystem hotcpu mutex ( Eg. workqueue_mutex
in kernel/workqueue.c ).
During the CPU_LOCK_RELEASE release event the cpu-hotplug-aware subsystem
is supposed to release the per-subsystem hotcpu mutex.
The reasons for defining new events as opposed to reusing the existing events
like CPU_UP_PREPARE/CPU_UP_FAILED/CPU_ONLINE for locking/unlocking of
per-subsystem hotcpu mutexes are as follow:
- CPU_LOCK_ACQUIRE: All hotcpu mutexes are taken before subsystems
start handling pre-hotplug events like CPU_UP_PREPARE/CPU_DOWN_PREPARE
etc, thus ensuring a clean handling of these events.
- CPU_LOCK_RELEASE: The hotcpu mutexes will be released only after
all subsystems have handled post-hotplug events like CPU_DOWN_FAILED,
CPU_DEAD,CPU_ONLINE etc thereby ensuring that there are no subsequent
clashes amongst the interdependent subsystems after a cpu hotplugs.
This patch also uses __raw_notifier_call chain in _cpu_up to take care
of the dependency between the two consequetive calls to
raw_notifier_call_chain.
[akpm@linux-foundation.org: fix a bug]
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the regression resulting from the recent change of suspend code
ordering that causes systems based on Intel x86 CPUs using the microcode
driver to hang during the resume.
The problem occurs since the microcode driver uses request_firmware() in
its CPU hotplug notifier, which is called after tasks has been frozen and
hangs. It can be fixed by telling the microcode driver to use the
microcode stored in memory during the resume instead of trying to load it
from disk.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Adrian Bunk <bunk@stusta.de>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maxim <maximlevitsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the ordering of code in kernel/power/disk.c so that device_suspend() is
called before disable_nonboot_cpus() and platform_finish() is called after
enable_nonboot_cpus() and before device_resume(), as indicated by the recent
discussion on Linux-PM (cf.
http://lists.osdl.org/pipermail/linux-pm/2006-November/004164.html).
The changes here only affect the built-in swsusp.
[alexey.y.starikovskiy@linux.intel.com: fix LED blinking during image load]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Greg KH <greg@kroah.com>
Cc: Nigel Cunningham <nigel@suspend2.net>
Cc: Patrick Mochel <mochel@digitalimplant.org>
Cc: Alexey Starikovskiy <alexey.y.starikovskiy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compiling the kernel with CONFIG_HOTPLUG = y and CONFIG_HOTPLUG_CPU = n
with CONFIG_RELOCATABLE = y generates the following modpost warnings
WARNING: vmlinux - Section mismatch: reference to .init.data: from
.text between '_cpu_up' (at offset 0xc0141b7d) and 'cpu_up'
WARNING: vmlinux - Section mismatch: reference to .init.data: from
.text between '_cpu_up' (at offset 0xc0141b9c) and 'cpu_up'
WARNING: vmlinux - Section mismatch: reference to .init.text:__cpu_up
from .text between '_cpu_up' (at offset 0xc0141bd8) and 'cpu_up'
WARNING: vmlinux - Section mismatch: reference to .init.data: from
.text between '_cpu_up' (at offset 0xc0141c05) and 'cpu_up'
WARNING: vmlinux - Section mismatch: reference to .init.data: from
.text between '_cpu_up' (at offset 0xc0141c26) and 'cpu_up'
WARNING: vmlinux - Section mismatch: reference to .init.data: from
.text between '_cpu_up' (at offset 0xc0141c37) and 'cpu_up'
This is because cpu_up, _cpu_up and __cpu_up (in some architectures) are
defined as __devinit
AND
__cpu_up calls some __cpuinit functions.
Since __cpuinit would map to __init with this kind of a configuration,
we get a .text refering .init.data warning.
This patch solves the problem by converting all of __cpu_up, _cpu_up
and cpu_up from __devinit to __cpuinit. The approach is justified since
the callers of cpu_up are either dependent on CONFIG_HOTPLUG_CPU or
are of __init type.
Thus when CONFIG_HOTPLUG_CPU=y, all these cpu up functions would land up
in .text section, and when CONFIG_HOTPLUG_CPU=n, all these functions would
land up in .init section.
Tested on a i386 SMP machine running linux-2.6.20-rc3-mm1.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Cc: Vivek Goyal <vgoyal@in.ibm.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clark Williams reported that suspend doesnt work on his laptop on
2.6.20-rc1-rt kernels. The bug was introduced by the following cleanup
commit:
commit 112cecb2cc
Author: Siddha, Suresh B <suresh.b.siddha@intel.com>
Date: Wed Dec 6 20:34:31 2006 -0800
[PATCH] suspend: don't change cpus_allowed for task initiating the suspend
because with this change 'error' is not initialized to 0 anymore, if
there are no other online CPUs. (i.e. if the system is single-CPU).
the fix is the initialize it to 0. The really weird thing is that my
version of gcc does not warn about this non-initialized variable
situation ...
(also fix the kernel printk in the error branch, it was missing a
newline)
Reported-by: Clark Williams <williams@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Don't modify the cpus_allowed of the task initiating the suspend.
_cpu_down() already makes sure that the task doing the suspend doesn't run
on dying cpu.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Nigel Cunningham <nigel@suspend2.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cpu-hotplug locking has a minor race case caused because of setting the
variable "recursive" to NULL *after* releasing the cpu_bitmask_lock in the
function unlock_cpu_hotplug,instead of doing so before releasing the
cpu_bitmask_lock.
This was the cause of most of the recent false spurious lock_cpu_unlock
warnings.
This should fix the problem reported by Martin Lorenz reported in
http://lkml.org/lkml/2006/10/29/127.
Thanks to Srinivasa DS for pointing it out.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
_cpu_down() acquires `workqueue_mutex' on its process, but doen't release it
if __cpu_disable() fails.
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The use of blocking notifier by _cpu_up and _cpu_down in cpu.c has two
problem.
1/ An interaction with the workqueue notifier causes lockdep to spit a
warning.
2/ A notifier could conceivable be added or removed while _cpu_up or
_cpu_down are in process. As each notifier is called twice (prepare
then commit/abort) this could be unhealthy.
To fix to we simply take cpu_add_remove_lock while adding or removing
notifiers to/from the list.
This makes the 'blocking' usage unnecessary as all accesses to cpu_chain
are now protected by cpu_add_remove_lock. So change "blocking" to "raw" in
all relevant places. This fixes 1.
Credit: Andrew Morton
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Michal Piotrowski <michal.k.k.piotrowski@gmail.com> (reporter)
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The current suspend code has to be run on one CPU, so we use the CPU
hotplug to take the non-boot CPUs offline on SMP machines. However, we
should also make sure that these CPUs will not be enabled by someone else
after we have disabled them.
The functions disable_nonboot_cpus() and enable_nonboot_cpus() are moved to
kernel/cpu.c, because they now refer to some stuff in there that should
better be static. Also it's better if disable_nonboot_cpus() returns an
error instead of panicking if something goes wrong, and
enable_nonboot_cpus() has no reason to panic(), because the CPUs may have
been enabled by the userland before it tries to take them online.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The CPU hotplug locking was quite messy, with a recursive lock to
handle the fact that both the actual up/down sequence wanted to
protect itself from being re-entered, but the callbacks that it
called also tended to want to protect themselves from CPU events.
This splits the lock into two (one to serialize the whole hotplug
sequence, the other to protect against the CPU present bitmaps
changing). The latter still allows recursive usage because some
subsystems (ondemand policy for cpufreq at least) had already gotten
too used to the lax locking, but the locking mistakes are hopefully
now less fundamental, and we now warn about recursive lock usage
when we see it, in the hope that it can be fixed.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
CPUs come online only at init time (unless CONFIG_HOTPLUG_CPU is defined).
So, cpu_notifier functionality need to be available only at init time.
This patch makes register_cpu_notifier() available only at init time, unless
CONFIG_HOTPLUG_CPU is defined.
This patch exports register_cpu_notifier() and unregister_cpu_notifier() only
if CONFIG_HOTPLUG_CPU is defined.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Convert kernel/cpu.c from semaphore to mutex.
I've reviewed all lock_cpu_hotplug() critical sections, and they all seem to
fit mutex semantics.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>