This reworks some of the SH7786 PCIe initialization code to dynamically
setup and size the various resource windows, as opposed to the original
code that simply wired in a couple of them statically.
At the same time, we tidy up the initialization code a bit, kill off some
read-only register twiddling that was gleaned from the bus analyzer, and
also propagate the physical slot/channel mapping.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Break out sh7723 div4 clocks for SIU and IRDA as
reparent / enable clocks. Similar to the SIU clock
patch for sh7722 by Guennadi.
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Merge the SDHI vectors in the sh7724 INTC table
and update the SDHI platform data for Ecovec24,
KFR2R09 and MS7724SE.
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Merge the SDHI vectors in the sh7723 INTC table
and update the SDHI platform data for AP325.
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Merge the SDHI vectors in the sh7722 INTC table
and update the SDHI platform data for Migo-R.
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds in some of the missing memory resources for channels 1/2 and
gets the code building again for the recent changes.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that the DWARF unwinder is being used to provide perf callstacks
unwinding speed is an issue. It is no longer being used in exceptional
circumstances where we don't care about runtime performance, e.g. when
panicing, so it makes sense improve performance is possible.
With this patch I saw a 42% improvement in unwind time when calling
return_address(1). Greater improvements will be seen as the number of
levels unwound increases as each unwind is now cheaper.
Note that insertion time has doubled but that's just the price we pay
for keeping the trees balanced. However, this is a one-time cost for
kernel boot/module load and so the improvements in lookup time dominate
the extra time we spend keeping the trees balanced.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
There's no need to setup the frame pointer again in
call_handle_tlbmiss. The frame pointer will already have been setup in
handle_interrupt.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Unfortunately, due to poor DWARF info in current toolchains, unwinding
through interrutps cannot be done reliably. The problem is that the
DWARF info for function epilogues is wrong.
Take this standard epilogue sequence,
80003cc4: e3 6f mov r14,r15
80003cc6: 26 4f lds.l @r15+,pr
80003cc8: f6 6e mov.l @r15+,r14
<---- interrupt here
80003cca: f6 6b mov.l @r15+,r11
80003ccc: f6 6a mov.l @r15+,r10
80003cce: f6 69 mov.l @r15+,r9
80003cd0: 0b 00 rts
If we take an interrupt at the highlighted point, the DWARF info will
bogusly claim that the return address can be found at some offset from
the frame pointer, even though the frame pointer was just restored. The
worst part is if the unwinder finds a text address at the bogus stack
address - unwinding will continue, for a bit, until it finally comes
across an unexpected address on the stack and blows up.
The only solution is to stop unwinding once we've calculated the
function that was executing when the interrupt occurred. This PC can be
easily calculated from pt_regs->pc.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
In order to allow the DWARF unwinder to unwind through exceptions we
need to setup the frame pointer register (r14).
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The address that ret_from_exception and ret_from_irq will return to is
found in the stack slot for SPC, not PR. This error was causing the
DWARF unwinder to pick up the wrong return address on the stack and then
unwind using the unwind tables for the wrong function.
While I'm here I might as well add CFI annotations for the other
registers since they could be useful when unwinding.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Tested to work with a SIU ASoC driver on sh7722 (migor).
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Both the original arch/sh/drivers/dma/dma-sh.c and the new SH dmaengine drivers
do not take into account bits 3:2 of the Transfer Size field in the CHCR
register, besides, bit-field defines set bit 2, but the mask only passes bits
1:0 through. TS_16BLK and TS_32BLK macros are bogus too. This patch fixes all
these issues for sh7722 and sh7724, other CPUs stay unchanged and might need to
be fixed too.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
With the sparseirq conversion there was a stray irq_desc reference left
over, this tidies it up and brings the demuxer in line with what the
solution engine boards are doing.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds support for handling early PERR/SERR triggering in between
controller registration and the initial bus scan. Buggy cards end up
asserting these as soon as the M66EN scan is undertaken, resulting in
an early crash.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
IRQ autoprobing hasn't actually worked for us at all since very early in
2.6, but no one seems to have noticed given that none of the drivers
that use it see much testing.
yenta_socket is the odd one out, and that depends on PCI IRQs which are
fixed on all SH platforms anyways. Consequently, turning off autoprobing
fixes up crashes triggered by yenta_socket and at least gets it working
again on r7785rp.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
highlander and r2d are the only remaining ones that were blocking
sparseirq being turned on by default, but it turns out that they already
work fine with it by virtue of register_intc_controller(). As such, we
can kill off the dependencies and turn it on by default.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This uses the new create_irq_nr() to build up the FPGA's desired virtual
IRQ mapping and permits us to finally flip on sparseirq for this board.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This improves power management for the SIUA controller on sh7722. Similar
patches might be desired for other SIU-enabled SH platforms.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Acked-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The SH7780 PCI controller supports 3 different ranges of PCI memory in
addition to its PCI I/O window. In the case of 29-bit mode, only 2 memory
windows are supported, while in 32-bit mode all 3 are visible. This
attempts to make the resource handling completely dynamic and to permit
platforms to map in as many apertures as they can handle.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
These were never handled before, so implement some common infrastructure
to support them, then make use of that in the SH7780-specific code. In
practice there is little here that can not be generalized for SH4 parts,
which will be an incremental change as the 7780/7751 code is gradually
unified.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
register_pci_controller() can fail, but presently is a void function.
Change this over to an int so that we can bail early before continuing on
with post-registration initialization (such as throwing the controller in
to 66MHz mode in the case of the SH7780 host controller).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds some helper glue for scanning the bus and determining if all
of the devices are 66MHz capable or not before flipping on 66MHz mode.
This isn't quite to spec, but it's fairly consistent with what other
embedded controllers end up having to do.
Scanning code cribbed from the MIPS txx9 PCI code.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
For systems that have more than 512MB we need to set up an additional
mapping, this fixes up the rounding to the next power of two and splits
out the mapping accordingly between the two local bus mapping windows.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently headers_check complains about linux/kdebug.h being unexported,
so just bump the __KERNEL__ ifdef up, as per the x86 change.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The irq_desc needs to be accessed with irq_to_desc(), this fixes up a
build error with irq_desc being undefined.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The host controllers only support type 1, so there's not much else to
test for. Some of the older controllers also supported type 2 accesses,
but we've never supported those, and likely never will. Beyond that, the
P1SEG test is meaningless for 32-bit mode, so rather than refactoring it,
just kill the type 1 test off completely.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
'flush_old_exec()' is the point of no return when doing an execve(), and
it is pretty badly misnamed. It doesn't just flush the old executable
environment, it also starts up the new one.
Which is very inconvenient for things like setting up the new
personality, because we want the new personality to affect the starting
of the new environment, but at the same time we do _not_ want the new
personality to take effect if flushing the old one fails.
As a result, the x86-64 '32-bit' personality is actually done using this
insane "I'm going to change the ABI, but I haven't done it yet" bit
(TIF_ABI_PENDING), with SET_PERSONALITY() not actually setting the
personality, but just the "pending" bit, so that "flush_thread()" can do
the actual personality magic.
This patch in no way changes any of that insanity, but it does split the
'flush_old_exec()' function up into a preparatory part that can fail
(still called flush_old_exec()), and a new part that will actually set
up the new exec environment (setup_new_exec()). All callers are changed
to trivially comply with the new world order.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Newer SH parts are now commonly shipping with multiple controllers, so
we wire up PCI domain support to deal with them. Shamelessly cloned from
the MIPS implementation.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently we just call in to request_resource() for the ioport and iomem
resources without checking for errors. This has already hidden a couple
of bugs, so add some error handling in for good measure.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This consolidates the PCI initialization code for all of the pci-sh7780
users, and sets up the memory window dynamically as opposed to using
hardcoded window positions.
A number of bugs were fixed at the same time, including the PIO handling
and master abort timeout settings being incorrect.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This kills off the deprected fixed memory range accessors for
the cases of non-translatable ioremapping.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
When running perf across all cpus with backtracing (-a -g), sometimes we
get samples without associated backtraces:
23.44% init [kernel] [k] restore
11.46% init eeba0c [k] 0x00000000eeba0c
6.77% swapper [kernel] [k] .perf_ctx_adjust_freq
5.73% init [kernel] [k] .__trace_hcall_entry
4.69% perf libc-2.9.so [.] 0x0000000006bb8c
|
|--11.11%-- 0xfffa941bbbc
It turns out the backtrace code has a check for the idle task and the IP
sampling does not. This creates problems when profiling an interrupt
heavy workload (in my case 10Gbit ethernet) since we get no backtraces
for interrupts received while idle (ie most of the workload).
Right now x86 and sh check that current is not NULL, which should never
happen so remove that too.
Idle task's exclusion must be performed from the core code, on top
of perf_event_attr:exclude_idle.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
LKML-Reference: <20100118054707.GT12666@kryten>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The VBR value needs to be initialized in order for any of the bios
trapping to work, and as we don't do that until slightly later in the
boot process, this has no real chance of working.
The only reason for using this in the past was due to the fact that early
serial initialization wasn't possible, but now that early sh-sci is
supported by everyone, there's no longer any reason to support the
sh_bios hacks in the first place. Given that, we just kill off the
references completely.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
IRQs are re-enabled at a later stage when doing the unmapping on R2D via
the sm501 USB coherent DMA, resulting in the irqs_disabled() check
producing considerable noise for this configuration. Just kill off the
check, which was blindly copied from x86 anyways.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Nothing is using this, kill it off. Fixing up access sizes can be done
with trapped I/O for anyone wanting to make use of this for devices that
need it, everything else is already pure MMIO.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch fixes a bug within the cmpxchg GRB version.
A problem was notices while running some tests to stress
the priority inheritance, for example pi_stress
(http://rt.wiki.kernel.org/index.php/PI_Mutex_Test).
Also, without this patch, after applying the latest work to
consolidate atomic_cmpxchg() definitions (commit:
8c0b8139c8)
the Kernel doesn't boot at all.
Signed-off-by: Giuseppe Cavallaro <peppe.cavallaro@st.com>
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently trapped I/O is only registered if it's not explicitly disabled
for the platforms that select it openly. From the fault path this runs
through an address lookup before figuring out that nothing matches and
falls back through the error path, but we can forego the lookup
completely by testing if it's been explicitly disabled. This provides a
measurable speedup for things like qemu that rely on runtime disabling.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
These routines are unsuitable for cross-platform use and no new code
should be using them, flag them as deprecated in order to give drivers
sufficient time to migrate over.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The old ctrl in/out routines are non-portable and unsuitable for
cross-platform use. While drivers/sh has already been sanitized, there
is still quite a lot of code that is not. This converts the arch/sh/ bits
over, which permits us to flag the routines as deprecated whilst still
building with -Werror for the architecture code, and to ensure that
future users are not added.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the IOREMAP_FIXED fixmaps are always defined, even if the
platform isn't capable of supporting it. Since we already have an ifdef
for it, ifdef the entries, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that cached_to_uncached works as advertized in 32-bit mode and we're
never going to be able to map < 16MB anyways, there's no need for the
special uncached section. Kill it off.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a variable for tracking the uncached mapping size, and uses
it for pretty printing the uncached lowmem range. Beyond this, we'll also
be building on top of this for figuring out from where the remainder of
P2 becomes usable when constructing unrelated mappings.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This effectively neutralizes P2 by getting rid of P1 identity mapping
for all available memory and instead only establishes a single unbuffered
PMB entry (16MB -- the smallest available) that covers the kernel.
As using segmentation for abusing caching attributes in drivers is no
longer supported (and there are no drivers that can be enabled in 32-bit
mode that do this), this provides us with all of the uncached access
needs by the kernel itself.
Drivers and their ilk need to specify their caching attributes when
remapping through page tables, as usual.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
All of the cached/uncached mapping setup is duplicated for each size, and
also misses out on the 16MB case. Rather than duplicating the same iter
code for that we just consolidate it in to a helper macro that builds an
iter for each size. The 16MB case is then trivially bolted on at the end.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This cribs the pretty printing from arch/x86/mm/init_32.c to dump the
virtual memory layout on boot. This is primarily intended as a debugging
aid, given that the newer CPUs have full control over their address space
and as such have little to nothing in common with the legacy layout.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This implements dynamic probing for the system FPGA. The system reset
controller contains a fixed magic read word in order to identify the
FPGA. This just utilizes a simple loop that scans across all of the fixed
physical areas (area 0 through area 6) to locate the FPGA.
The FPGA also contains register information detailing the area mappings
and chip select settings for all of the other blocks, so this needs to be
done before we can set up anything else.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
iounmap_fixed() had a couple of bugs in it that caused it to effectively
fail at life. The total number of pages to unmap factored in the mapping
offset and aligned up to the next page boundary, which doesn't match the
ioremap_fixed() behaviour.
When ioremap_fixed() pegs a slot, the address in the mapping data already
contains the offset displacement, and the size is recorded verbatim given
that we're only interested in total number of pages required. As such, we
need to calculate the total number from the original size in the unmap
path as well.
At the same time, there was also an off-by-1 problem in the fixmap index
calculation which has also been corrected.
Previously subsequent remaps of an identical fixmap index would trigger
the pte_ERROR() in set_pte_phys():
arch/sh/mm/init.c:77: bad pte 8053ffb0(0000781003fff506).
arch/sh/mm/init.c:77: bad pte 8053ffb0(0000781003fff506).
arch/sh/mm/init.c:77: bad pte 8053ffb0(0000781003fff506).
arch/sh/mm/init.c:77: bad pte 8053ffb0(0000781003fff506).
arch/sh/mm/init.c:77: bad pte 8053ffb0(0000781003fff506).
arch/sh/mm/init.c:77: bad pte 8053ffb0(0000781003fff506).
With this patch in place, the iounmap-driven fixmap teardown actually
does what it's supposed to do.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a machine_ops-based reboot interface loosely cloned from
x86, and converts the native sh32 and sh64 cases over to it.
Necessary both for tying in SMP support and also enabling platforms like
SDK7786 to add support for their microcontroller-based power managers.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently __in_29bit_mode() is only defined for the PMB case, but
it's also easily derived from the CONFIG_29BIT and CONFIG_32BIT &&
CONFIG_PMB=n cases.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This moves out the FPGA IRQ controller setup code to its own file, in
preparation for switching off of IRL mode and having it provide its own
irq_chip.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This does a bit of refactoring of the FPGA management code. The primary
FPGA initialization is moved out to its own file in preparation for
implementing some of the more complex capabilities, a complete set of
register definitions is provided, and all of the existing users in the
board code are moved over to use the new interface instead of setting up
overlapping mappings. This also corrects the FPGA size, which previously
was chomped off at the SDIF control register.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Usually we can look to the CVR to work out whether we have an FPU or not.
Unfortunately not all parts comply with this, so just set the flag
manually for all SH-4 parts and clear it on the only SH-4 that doesn't
have one (SH4-501).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Implement .set_rate() for all SH "div4 clocks," .enable(), .disable(), and
.set_parent() for those, that support them. This allows, among other uses,
reparenting of SIU clocks to the external source, and enabling and
disabling of the IrDA clock on sh7722.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This uses the mode pins exposed through the FPGA to work out whether
we're driven from EXTAL or not and does the appropriate setup and
propagation through the clock framework.
This will also -EINVAL out for anyone adding in their own oscillators,
forcing proper configuration with the clock framework instead of
proceeding on with bogus clock values.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This rewrites the SH7786 clock framework support completely. It's
reworked to provide all of the DIV4 and MSTP function clocks. This brings
it in line with the current clock framework code and lets us drop SH7786
from the list of CPUs that require legacy CPG handling.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
sh64 on the other hand provides both direct broken out syscalls as well
as socketcall access. As there are binaries that use both socketcall has
to stay around. The current ABI prefers direct syscalls.
It was pointed out that when sys_recvmmsg was added in, sys_accept4 was
overlooked. This takes care of wiring it up.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
sh32 at the moment only uses sys_socketcall to reach these, so unwire
recvmmsg for now. While we're at it, add it to the ignore list, as per
the s390 change.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the build bails with the following:
CC arch/sh/mm/alignment.o
cc1: warnings being treated as errors
arch/sh/mm/alignment.c: In function 'unaligned_fixups_notify':
arch/sh/mm/alignment.c:69: warning: cast to pointer from integer of different size
arch/sh/mm/alignment.c:74: warning: cast to pointer from integer of different size
make[2]: *** [arch/sh/mm/alignment.o] Error 1
This is due to the fact that regs->pc is always 64-bit, while the pointer size
depends on the ABI. Wrapping through instruction_pointer() takes care of the
appropriate casting for both configurations.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This updates the sh64 processor info with the sh32 changes in order to
tie in to the generic task_xstate management code.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The plans for _PAGE_WIRED were detailed in a comment with the fixmap
code, but as it's now all taken care of, we no longer have any reason for
keeping it around, particularly since it's no longer accurate. Kill it
off.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently this is duplicated between tlb-sh4 and tlb-pteaex. Split the
helpers out in to a generic tlb-urb that can be used by any parts
equipped with MMUCR.URB.
At the same time, move the SH-5 code out-of-line, as we require single
global state for DTLB entry wiring.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a dummy value for legacy parts which permits the entry
wiring to be open-coded. The compiler takes care of optimizing the entry
wiring away in these cases.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently ioremap_prot() uses an unsigned long to pass the pgprot value
around. This results in the upper half of the pgprot being chomped when
using 64-bit pgprots on a 32-bit ABI (X2TLB and SH-5).
As the only users of ioremap_prot() are presently legacy parts, this
doesn't cause too much of an issue. In the future when the interface is
converted to use pgprot_t directly this can be re-enabled for the other
parts, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is already taken care of in the top-level ioremap, and now that
no one should be calling ioremap_fixed() directly we can simply throw the
mapping displacement in as an additional argument.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently 'flags' gets passed around a lot between the various ioremap
helpers and implementations, which is only 32-bits. In the X2TLB case
we use 64-bit pgprots which presently results in the upper 32bits being
chopped off (which handily include our read/write/exec permissions).
As such, we convert everything internally to using pgprot_t directly and
simply convert over with pgprot_val() where needed. With this in place,
transparent fixmap utilization for early ioremap works as expected.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The mem_init_done test makes sure that this path is only entered in
__init cases, so leaving ioremap_fixed() as __init and flagging the
caller __init_refok is sufficient.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
iounmap() should balance whatever is done by ioremap(). Presently
ioremap() can do any of fixed mappings, PMB mappings, or page table
mappings. Presently only the latter two are handled through the standard
unmap path, so tie in the fixed unmapping, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This converts iounmap_fixed() to return success/error if it handled the
unmap request or not. At the same time, drop the __init label, as this
can be called in to later.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
There is nothing of interest in the _64 version anymore, so the _32 one
can be renamed and used unconditionally.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the fixed ioremap API is only defined when CONFIG_IOREMAP_FIXED
is set. As we want to call in to it unconditionally, provide a stubbed
out interface.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds in a mem_init_done to work out when a standard ioremap() is
possible, falling back to the fixmap based ioremap otherwise.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This converts the cpu_relax() to a udelay(1), which fixes up issues with
the EEPROM polling occasionally timing out.
Signed-off-by: Kuninori Morimoto <morimoto.kuninori@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This tosses in a local_irq_enable()/disable() pair around the init_fpu()
callsite in the FPU state restore exception handler. Fixes up a slab BUG
triggered by making a slab cache allocation that can sleep whilst
irqs_disabled(). This follows the behaviour undertaken by the x86
implementation.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
More and more boards are going to start shipping that boot with the MMU
in 32BIT mode by default. Previously we relied on the bootloader to
setup PMB mappings for use by the kernel but we also need to cater for
boards whose bootloaders don't set them up.
If CONFIG_PMB_LEGACY is not enabled we have full control over our PMB
mappings and can compress our address space. Usually, the distance
between the the cached and uncached mappings of RAM is always 512MB,
however we can compress the distance to be the amount of RAM on the
board.
pmb_init() now becomes much simpler. It no longer has to calculate any
mappings, it just has to synchronise the software PMB table with the
hardware.
Tested on SDK7786 and SH7785LCR.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This tidies up the iounmap path with consolidated checks for
nontranslatable mappings. This is in preparation of unifying
the implementations.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Use the fixmap-based memory mapping implementation for SH-5's ioremap()
functions and delete the old static allocator that was borrowed from
sparc.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
We need to write to the DRAM config register very early and at such an
early stage ioremap() is not available. So use ioremap_fixed() to map
the register.
The reason that we are avoiding using the legacy P2 mapping is that
there will come a day when the legacy P2 mappings no longer exist.
Signed-off-by: Matt Fleming <matt@console-pimps.org>