Fix some whitespace problems that trip up my libxfs-diff script.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The userspace version of _dinode_verify takes a raw inode number
instead of an inode itself. Since neither version actually needs
the inode, port the changes to the kernel. This will also reduce
the libxfs diff noise.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since xfsprogs dropped ushort in favor of unsigned short, do that
here too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the deferred ops transaction roll fails, we need to abort the intent
items if we haven't already logged a done item for it, regardless of
whether or not the deferred ops has had a transaction committed. Dave
found this while running generic/388.
Move the tracepoint to make it easier to track object lifetimes.
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since no one uses it anymore.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Split out two helpers for deleting delayed or real extents from the COW fork.
This allows to call them directly from xfs_reflink_cow_end_io once that
function is refactored to iterate the extent tree. It will also allow
to reuse the delalloc deletion from xfs_bunmapi in the future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This helpers allows to trim an extent to a subset of it's original range
while making sure the block numbers in it remain valid,
In the future xfs_trim_extent and xfs_bmapi_trim_map should probably be
merged in some form.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: split from a previous patch from Darrick, moved around and added
support for "raw" delayed extents"]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_repair was not detecting that version 3 inodes are invalid for
for non-CRC filesystems. The result is specific inode corruptions go
undetected and hence aren't repaired if only the version number is
out of range.
The core of the problem is that the XFS_DINODE_GOOD_VERSION() macro
doesn't know that valid inode versions are dependent on a superblock
version number. Fix this in libxfs, and propagate the new function
out into the rest of xfsprogs to fix the issue.
[Darrick: port to kernel from xfsprogs]
Reported-by: Leslie Rhorer <lrhorer@mygrande.net>
Signed-off-by: Roger Willcocks <roger@filmlight.ltd.uk>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The function xfs_calc_dquots_per_chunk takes a parameter in units
of basic blocks. The kernel seems to get the units wrong, but
userspace got 'fixed' by commenting out the unnecessary conversion.
Fix both.
cc: <stable@vger.kernel.org>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The commit:
f65306ea xfs: map an inode's offset to an exact physical block
added a pointless error0: target; remove it.
Addresses-Coverity-Id: 1373865
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
sparse reported that several variables and a function were not
forward-declared anywhere and therefore should be 'static'.
Found with sparse by running 'make C=2 CF=-D__CHECK_ENDIAN__ fs/xfs/'
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove redundant ifp = ifp statement, it does nothing. Found with
static analysis by CoverityScan.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The error handling in xfs_refcount_recover_cow_leftovers is confused
and can potentially leak memory, so rework it to release resources
correctly on error.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Implement swapext for filesystems that have reverse mapping. Back in
the reflink patches, we augmented the bmap code with a 'REMAP' flag
that updates only the bmbt and doesn't touch the allocator and
implemented log redo items for those two operations. Now we can
rewrite extent swapping as a (looong) series of remap operations.
This is far less efficient than the fork swapping method implemented
in the past, so we only switch this on for rmap.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add the reflink feature flag to the set of recognized feature flags.
This enables users to write to reflink filesystems.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create an error injection point that enables us to simulate being
critically low on per-AG block reservations. This should enable us to
simulate this specific ENOSPC condition so that we can test falling back
to a regular file copy.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since we don't have a strategy for handling both DAX and reflink,
for now we'll just prohibit both being set at the same time.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We don't support sharing blocks on the realtime device. Flag inodes
with the reflink or cowextsize flags set when the reflink feature is
disabled.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide a function to convert an unwritten extent to a real one and
vice versa when shared extents are possible.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When it's possible for reverse mappings to overlap (data fork extents
of files on reflink filesystems), use the interval query function to
find the left neighbor of an extent we're trying to add; and be
careful to use the lookup functions to update the neighbors and/or
add new extents.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Wire up some rmap log redo item type codes to map, unmap, or convert
shared data block extents. The actual log item recovery comes in a
later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Increase the log reservations to handle the increased rolling that
happens at the end of copy-on-write operations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Prior to the introduction of reflink, allocating a block and mapping
it into a file was performed in a single transaction with a single
block reservation, and the allocator was supposed to find enough
blocks to allocate the extent and any BMBT blocks that might be
necessary (unless we're low on space).
However, due to the way copy on write works, allocation and mapping
have been split into two transactions, which means that we must be
able to handle the case where we allocate an extent for CoW but that
AG runs out of free space before the blocks can be mapped into a file,
and the mapping requires a new BMBT block. When this happens, look in
one of the other AGs for a BMBT block instead of taking the FS down.
The same applies to the functions that convert a data fork to extents
and later btree format.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
To gracefully handle the situation where a CoW operation turns a
single refcount extent into a lot of tiny ones and then run out of
space when a tree split has to happen, use the per-AG reserved block
pool to pre-allocate all the space we'll ever need for a maximal
btree. For a 4K block size, this only costs an overhead of 0.3% of
available disk space.
When reflink is enabled, we have an unfortunate problem with rmap --
since we can share a block billions of times, this means that the
reverse mapping btree can expand basically infinitely. When an AG is
so full that there are no free blocks with which to expand the rmapbt,
the filesystem will shut down hard.
This is rather annoying to the user, so use the AG reservation code to
reserve a "reasonable" amount of space for rmap. We'll prevent
reflinks and CoW operations if we think we're getting close to
exhausting an AG's free space rather than shutting down, but this
permanent reservation should be enough for "most" users. Hopefully.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch@lst.de: ensure that we invalidate the freed btree buffer]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Create a per-inode extent size allocator hint for copy-on-write. This
hint is separate from the existing extent size hint so that CoW can
take advantage of the fragmentation-reducing properties of extent size
hints without disabling delalloc for regular writes.
The extent size hint that's fed to the allocator during a copy on
write operation is the greater of the cowextsize and regular extsize
hint.
During reflink, if we're sharing the entire source file to the entire
destination file and the destination file doesn't already have a
cowextsize hint, propagate the source file's cowextsize hint to the
destination file.
Furthermore, zero the bulkstat buffer prior to setting the fields
so that we don't copy kernel memory contents into userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Teach xfs_getbmapx how to report shared extents and CoW fork contents
accurately in the bmap output by querying the refcount btree
appropriately.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way the CoW algorithm in XFS works, there's an interval
during which blocks allocated to handle a CoW can be lost -- if the FS
goes down after the blocks are allocated but before the block
remapping takes place. This is exacerbated by the cowextsz hint --
allocated reservations can sit around for a while, waiting to get
used.
Since the refcount btree doesn't normally store records with refcount
of 1, we can use it to record these in-progress extents. In-progress
blocks cannot be shared because they're not user-visible, so there
shouldn't be any conflicts with other programs. This is a better
solution than holding EFIs during writeback because (a) EFIs can't be
relogged currently, (b) even if they could, EFIs are bound by
available log space, which puts an unnecessary upper bound on how much
CoW we can have in flight, and (c) we already have a mechanism to
track blocks.
At mount time, read the refcount records and free anything we find
with a refcount of 1 because those were in-progress when the FS went
down.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper method to remove extents from the CoW fork without
any of the side effects (rmapbt/bmbt updates) of the regular extent
deletion routine. We'll eventually use this to clear out the CoW fork
during ioend processing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Modify xfs_bmap_add_extent_delay_real() so that we can convert delayed
allocation extents in the CoW fork to real allocations, and wire this
up all the way back to xfs_iomap_write_allocate(). In a subsequent
patch, we'll modify the writepage handler to call this.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Allow the creation of delayed allocation extents in the CoW fork. In
a subsequent patch we'll wire up iomap_begin to actually do this via
reflink helper functions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Introduce a new in-core fork for storing copy-on-write delalloc
reservations and allocated extents that are in the process of being
written out.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Only non-rt files can be reflinked, so check that when we load an
inode. Also, don't leak the attr fork if there's a failure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Report the reflink feature in the XFS geometry so that xfs_info and
friends know the filesystem has this feature.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Return the range of file blocks that bunmapi didn't free. This hint
is used by CoW and reflink to figure out what part of an extent
actually got freed so that it can set up the appropriate atomic
remapping of just the freed range.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Implement deferred versions of the inode block map/unmap functions.
These will be used in subsequent patches to make reflink operations
atomic.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Pass BMAPI_ flags from bunmapi into bmap_del_extent and extend
BMAPI_REMAP (which means "don't touch the allocator or the quota
accounting") to apply to bunmapi as well. This will be used to
implement the unmap operation, which will be used by swapext.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Teach the bmap routine to know how to map a range of file blocks to a
specific range of physical blocks, instead of simply allocating fresh
blocks. This enables reflink to map a file to blocks that are already
in use.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide a mechanism for higher levels to create BUI/BUD items, submit
them to the log, and a stub function to deal with recovered BUI items.
These parts will be connected to the rmapbt in a later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create bmbt update intent/done log items to record redo information in
the log. Because we roll transactions multiple times for reflink
operations, we also have to track the status of the metadata updates
that will be recorded in the post-roll transactions in case we crash
before committing the final transaction. This mechanism enables log
recovery to finish what was already started.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
These functions will be used by the other reflink functions to find
the maximum length of a range of shared blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.coM>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reduce the max AG usable space size so that we always have space for
the refcount btree root.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When we're unmapping blocks from a reflinked file, decrease the
refcount of the affected blocks and free the extents that are no
longer in use.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Plumb in the upper level interface to schedule and finish deferred
refcount operations via the deferred ops mechanism.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide functions to adjust the reference counts for an extent of
physical blocks stored in the refcount btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Provide a mechanism for higher levels to create CUI/CUD items, submit
them to the log, and a stub function to deal with recovered CUI items.
These parts will be connected to the refcountbt in a later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create refcount update intent/done log items to record redo
information in the log. Because we need to roll transactions between
updating the bmbt mapping and updating the reverse mapping, we also
have to track the status of the metadata updates that will be recorded
in the post-roll transactions, just in case we crash before committing
the final transaction. This mechanism enables log recovery to finish
what was already started.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Implement the generic btree operations required to manipulate refcount
btree blocks. The implementation is similar to the bmapbt, though it
will only allocate and free blocks from the AG.
Since the refcount root and level fields are separate from the
existing roots and levels array, they need a separate logging flag.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: fix logging of AGF refcount btree fields]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Every time we allocate or free a data extent, we might need to split
the refcount btree. Reserve some blocks in the transaction to handle
this possibility. Even though the deferred refcount code can roll a
transaction to avoid overloading the transaction, we can still exceed
the reservation.
Certain pathological workloads (1k blocks, no cowextsize hint, random
directio writes), cause a perfect storm wherein a refcount adjustment
of a large range of blocks causes full tree splits in two separate
extents in two separate refcount tree blocks; allocating new refcount
tree blocks causes rmap btree splits; and all the allocation activity
causes the freespace btrees to split, blowing the reservation.
(Reproduced by generic/167 over NFS atop XFS)
Signed-off-by: Christoph Hellwig <hch@lst.de>
[darrick.wong@oracle.com: add commit message]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Start constructing the refcount btree implementation by establishing
the on-disk format and everything needed to read, write, and
manipulate the refcount btree blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since XFS reserves a small amount of space in each AG as the minimum
free space needed for an operation, save some more space in case we
touch the refcount btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add new per-AG refcount btree definitions to the per-AG structures.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When adding a new remote attribute, we write the attribute to the
new extent before the allocation transaction is committed. This
means we cannot reuse busy extents as that violates crash
consistency semantics. Hence we currently treat remote attribute
extent allocation like userdata because it has the same overwrite
ordering constraints as userdata.
Unfortunately, this also allows the allocator to incorrectly apply
extent size hints to the remote attribute extent allocation. This
results in interesting failures, such as transaction block
reservation overruns and in-memory inode attribute fork corruption.
To fix this, we need to separate the busy extent reuse configuration
from the userdata configuration. This changes the definition of
XFS_BMAPI_METADATA slightly - it now means that allocation is
metadata and reuse of busy extents is acceptible due to the metadata
ordering semantics of the journal. If this flag is not set, it
means the allocation is that has unordered data writeback, and hence
busy extent reuse is not allowed. It no longer implies the
allocation is for user data, just that the data write will not be
strictly ordered. This matches the semantics for both user data
and remote attribute block allocation.
As such, This patch changes the "userdata" field to a "datatype"
field, and adds a "no busy reuse" flag to the field.
When we detect an unordered data extent allocation, we immediately set
the no reuse flag. We then set the "user data" flags based on the
inode fork we are allocating the extent to. Hence we only set
userdata flags on data fork allocations now and consider attribute
fork remote extents to be an unordered metadata extent.
The result is that remote attribute extents now have the expected
allocation semantics, and the data fork allocation behaviour is
completely unchanged.
It should be noted that there may be other ways to fix this (e.g.
use ordered metadata buffers for the remote attribute extent data
write) but they are more invasive and difficult to validate both
from a design and implementation POV. Hence this patch takes the
simple, obvious route to fixing the problem...
Reported-and-tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently xfs_iomap_write_delay does up to lookups in the inode
extent tree, which is rather costly especially with the new iomap
based write path and small write sizes.
But it turns out that the low-level xfs_bmap_search_extents gives us
all the information we need in the regular delalloc buffered write
path:
- it will return us an extent covering the block we are looking up
if it exists. In that case we can simply return that extent to
the caller and are done
- it will tell us if we are beyoned the last current allocated
block with an eof return parameter. In that case we can create a
delalloc reservation and use the also returned information about
the last extent in the file as the hint to size our delalloc
reservation.
- it can tell us that we are writing into a hole, but that there is
an extent beyoned this hole. In this case we can create a
delalloc reservation that covers the requested size (possible
capped to the next existing allocation).
All that can be done in one single routine instead of bouncing up
and down a few layers. This reduced the CPU overhead of the block
mapping routines and also simplified the code a lot.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
One unfortunate quirk of the reference count and reverse mapping
btrees -- they can expand in size when blocks are written to *other*
allocation groups if, say, one large extent becomes a lot of tiny
extents. Since we don't want to start throwing errors in the middle
of CoWing, we need to reserve some blocks to handle future expansion.
The transaction block reservation counters aren't sufficient here
because we have to have a reserve of blocks in every AG, not just
somewhere in the filesystem.
Therefore, create two per-AG block reservation pools. One feeds the
AGFL so that rmapbt expansion always succeeds, and the other feeds all
other metadata so that refcountbt expansion never fails.
Use the count of how many reserved blocks we need to have on hand to
create a virtual reservation in the AG. Through selective clamping of
the maximum length of allocation requests and of the length of the
longest free extent, we can make it look like there's less free space
in the AG unless the reservation owner is asking for blocks.
In other words, play some accounting tricks in-core to make sure that
we always have blocks available. On the plus side, there's nothing to
clean up if we crash, which is contrast to the strategy that the rough
draft used (actually removing extents from the freespace btrees).
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When xfs_defer_finish calls ->finish_item, it's possible that
(refcount) won't be able to finish all the work in a single
transaction. When this happens, the ->finish_item handler should
shorten the log done item's list count, update the work item to
reflect where work should continue, and return -EAGAIN so that
defer_finish knows to retain the pending item on the pending list,
roll the transaction, and restart processing where we left off.
Plumb in the code and document how this mechanism is supposed to work.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Provide a helper method to count the number of blocks in a short form
btree. The refcount and rmap btrees need to know the number of blocks
already in use to set up their per-AG block reservations during mount.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create a helper to generate AG btree height calculator functions.
This will be used (much) later when we get to the refcount btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove the xfs_btree_bigkey mess and simply make xfs_btree_key big enough
to hold both keys in-core.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use variable length array declarations for RUI log items,
and replace the open coded sizeof formulae with a single function.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Christoph reports slab corruption when a deferred refcount update
aborts during _defer_finish(). The cause of this was broken log item
state tracking in xfs_defer_pending -- upon an abort,
_defer_trans_abort() will call abort_intent on all intent items,
including the ones that have already had a done item attached.
This is incorrect because each intent item has 2 refcount: the first
is released when the intent item is committed to the log; and the
second is released when the _done_ item is committed to the log, or
by the intent creator if there is no done item. In other words, once
we log the done item, responsibility for releasing the intent item's
second refcount is transferred to the done item and /must not/ be
performed by anything else.
The dfp_committed flag should have been tracking whether or not we had
a done item so that _defer_trans_abort could decide if it needs to
abort the intent item, but due to a thinko this was not the case. Rip
it out and track the done item directly so that we do the right thing
w.r.t. intent item freeing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
From inspection, the superblock sb_inprogress check is done in the
verifier and triggered only for the primary superblock via a
"bp->b_bn == XFS_SB_DADDR" check.
Unfortunately, the primary superblock is an uncached buffer, and
hence it is configured by xfs_buf_read_uncached() with:
bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
And so this check never triggers. Fix it.
cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the initial LOOKUP_LE in the simple query range fails to find
anything, we should attempt to increment the btree cursor to see
if there actually /are/ records for what we're trying to find.
Without this patch, a bnobt range query of (0, $agsize) returns
no results because the leftmost record never has a startblock
of zero.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We only need the record's high key for the first record that we look
at; for all records, we /definitely/ need the regular record key.
Therefore, fix how the simple range query function gets its keys.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're logging the last non-spare field in the AGF, we don't
need to log the spare fields, so plumb in a new AGF logging flag
to help us avoid that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the caller passes in a cursor to a zero-height btree (which is
impossible), we never set block to anything but NULL, which causes the
later dereference of it to crash. Instead, just return -EFSCORRUPTED.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're really tight on space, xfs_alloc_ag_vextent_small() can
allocate a block from the AGFL and give it to the caller. Since the
caller is never the AGFL-fixing method, we must remove the OWN_AG
reverse mapping because it will clash with whatever rmap the caller
wants to set up. This bug was discovered by running generic/299
repeatedly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Track the number of blocks used for the rmapbt in the AGF. When we
get to the AG reservation code we need this counter to quickly
make our reservation during mount.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rename the deferred bmap-free to extent_free and make them only
trigger when we're really running deferred ops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Nothing ever uses the extent array in the rmap update done redo
item, so remove it before it is fixed in the on-disk log format.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We only need the temporary cursor in _btree_lshift if we're shifting
in an overlapped btree. Therefore, factor that into a single block
of code so we avoid unnecessary cursor duplication.
Also fix use of the wrong cursor when checking for corruption in
xfs_btree_rshift().
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In the lshift/rshift functions we don't use the key variable for
anything now, so remove the variable and its initializer. The
update_keys functions figure out the key for a block on their own.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These are internal btree functions; we don't need them to be
dispatched via function pointers. Make them static again and
just check the overlapped flag to figure out what we need to
do. The strategy behind this patch was suggested by Christoph.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Add the feature flag to the supported matrix so that the kernel can
mount and use rmap btree enabled filesystems
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[darrick.wong@oracle.com: move the experimental tag]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Allow a caller of xfs_alloc_fix_freelist to disable rmapbt updates
when fixing the AG freelist. xfs_repair needs this during phase 5
to be able to adjust the freelist while it's reconstructing the rmap
btree; the missing entries will be added back at the very end of
phase 5 once the AGFL contents settle down.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
So xfs_info and other userspace utilities know the filesystem is
using this feature.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we map, unmap, or convert an extent in a file's data or attr
fork, schedule a respective update in the rmapbt. Previous versions
of this patch required a 1:1 correspondence between bmap and rmap,
but this is no longer true as we now have ability to make interval
queries against the rmapbt.
We use the deferred operations code to handle redo operations
atomically and deadlock free. This plumbs in all five rmap actions
(map, unmap, convert extent, alloc, free); we'll use the first three
now for file data, and reflink will want the last two. We also add
an error injection site to test log recovery.
Finally, we need to fix the bmap shift extent code to adjust the
rmaps correctly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Connect the xfs_defer mechanism with the pieces that we'll need to
handle deferred rmap updates. We'll wire up the existing code to
our new deferred mechanism later.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create rmap update intent/done log items to record redo information in
the log. Because we need to roll transactions between updating the
bmbt mapping and updating the reverse mapping, we also have to track
the status of the metadata updates that will be recorded in the
post-roll transactions, just in case we crash before committing the
final transaction. This mechanism enables log recovery to finish what
was already started.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a couple of helper functions to encapsulate rmap btree insert and
delete operations. Add tracepoints to the update function.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Provide a function to convert an unwritten rmap extent to a real one
and vice versa.
[ dchinner: Note that this algorithm and code was derived from the
existing bmapbt unwritten extent conversion code in
xfs_bmap_add_extent_unwritten_real(). ]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Now that we have records in the rmap btree, we need to remove them
when extents are freed. This needs to find the relevant record in
the btree and remove/trim/split it accordingly.
[darrick.wong@oracle.com: make rmap routines handle the enlarged keyspace]
[dchinner: remove remaining unused debug printks]
[darrick: fix a bug when growfs in an AG with an rmap ending at EOFS]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Now all the btree, free space and transaction infrastructure is in
place, we can finally add the code to insert reverse mappings to the
rmap btree. Freeing will be done in a separate patch, so just the
addition operation can be focussed on here.
[darrick: handle owner offsets when adding rmaps]
[dchinner: remove remaining debug printk statements]
[darrick: move unwritten bit to rm_offset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the generic btree code supports querying all records within a
range of keys, use that functionality to allow us to ask for all the
extents mapped to a range of physical blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the generic btree code supports overlapping intervals, plug
in the rmap btree to this functionality. We will need it to find
potential left neighbors in xfs_rmap_{alloc,free} later in the patch
set.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Implement the generic btree operations needed to manipulate rmap
btree blocks. This is very similar to the per-ag freespace btree
implementation, and uses the AGFL for allocation and freeing of
blocks.
Adapt the rmap btree to store owner offsets within each rmap record,
and to handle the primary key being redefined as the tuple
[agblk, owner, offset]. The expansion of the primary key is crucial
to allowing multiple owners per extent.
[darrick: adapt the btree ops to deal with offsets]
[darrick: remove init_rec_from_key]
[darrick: move unwritten bit to rm_offset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
The rmap btree is allocated from the AGFL, which means we have to
ensure ENOSPC is reported to userspace before we run out of free
space in each AG. The last allocation in an AG can cause a full
height rmap btree split, and that means we have to reserve at least
this many blocks *in each AG* to be placed on the AGFL at ENOSPC.
Update the various space calculation functions to handle this.
Also, because the macros are now executing conditional code and are
called quite frequently, convert them to functions that initialise
variables in the struct xfs_mount, use the new variables everywhere
and document the calculations better.
[darrick.wong@oracle.com: don't reserve blocks if !rmap]
[dchinner@redhat.com: update m_ag_max_usable after growfs]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The rmap btrees will use the AGFL as the block allocation source, so
we need to ensure that the transaction reservations reflect the fact
this tree is modified by allocation and freeing. Hence we need to
extend all the extent allocation/free reservations used in
transactions to handle this.
Note that this also gets rid of the unused XFS_ALLOCFREE_LOG_RES
macro, as we now do buffer reservations based on the number of
buffers logged via xfs_calc_buf_res(). Hence we only need the buffer
count calculation now.
[darrick: use rmap_maxlevels when calculating log block resv]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Now we have all the surrounding call infrastructure in place, we can
start filling out the rmap btree implementation. Start with the
on-disk btree format; add everything needed to read, write and
manipulate rmap btree blocks. This prepares the way for adding the
btree operations implementation.
[darrick: record owner and offset info in rmap btree]
[darrick: fork, bmbt and unwritten state in rmap btree]
[darrick: flags are a separate field in xfs_rmap_irec]
[darrick: calculate maxlevels separately]
[darrick: move the 'unwritten' bit into unused parts of rm_offset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Add the stubs into the extent allocation and freeing paths that the
rmap btree implementation will hook into. While doing this, add the
trace points that will be used to track rmap btree extent
manipulations.
[darrick.wong@oracle.com: Extend the stubs to take full owner info.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For the rmap btree to work, we have to feed the extent owner
information to the the allocation and freeing functions. This
information is what will end up in the rmap btree that tracks
allocated extents. While we technically don't need the owner
information when freeing extents, passing it allows us to validate
that the extent we are removing from the rmap btree actually
belonged to the owner we expected it to belong to.
We also define a special set of owner values for internal metadata
that would otherwise have no owner. This allows us to tell the
difference between metadata owned by different per-ag btrees, as
well as static fs metadata (e.g. AG headers) and internal journal
blocks.
There are also a couple of special cases we need to take care of -
during EFI recovery, we don't actually know who the original owner
was, so we need to pass a wildcard to indicate that we aren't
checking the owner for validity. We also need special handling in
growfs, as we "free" the space in the last AG when extending it, but
because it's new space it has no actual owner...
While touching the xfs_bmap_add_free() function, re-order the
parameters to put the struct xfs_mount first.
Extend the owner field to include both the owner type and some sort
of index within the owner. The index field will be used to support
reverse mappings when reflink is enabled.
When we're freeing extents from an EFI, we don't have the owner
information available (rmap updates have their own redo items).
xfs_free_extent therefore doesn't need to do an rmap update. Make
sure that the log replay code signals this correctly.
This is based upon a patch originally from Dave Chinner. It has been
extended to add more owner information with the intent of helping
recovery operations when things go wrong (e.g. offset of user data
block in a file).
[dchinner: de-shout the xfs_rmap_*_owner helpers]
[darrick: minor style fixes suggested by Christoph Hellwig]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
XFS reserves a small amount of space in each AG for the minimum
number of free blocks needed for operation. Adding the rmap btree
increases the number of reserved blocks, but it also increases the
complexity of the calculation as the free inode btree is optional
(like the rmbt).
Rather than calculate the prealloc blocks every time we need to
check it, add a function to calculate it at mount time and store it
in the struct xfs_mount, and convert the XFS_PREALLOC_BLOCKS macro
just to use the xfs-mount variable directly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
The rmap btree will require the same stats as all the other generic
btrees, so add all the code for that now.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Add new per-ag rmap btree definitions to the per-ag structures. The
rmap btree will sit in the empty slots on disk after the free space
btrees, and hence form a part of the array of space management
btrees. This requires the definition of the btree to be contiguous
with the free space btrees.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
By my calculations, a 1,073,741,824 block AG with a 1k block size
can attain a maximum height of 9. Assuming a record size of 24
bytes, a key/ptr size of 44 bytes, and half-full btree nodes, we'd
need 53,687,092 blocks for the records and ~6 million blocks for the
keys. That requires a btree of height 9 based on the following
derivation:
Block size = 1024b
sblock CRC header = 56b
== 1024-56 = 968 bytes for tree data
rmapbt record = 24b
== 40 records per leaf block
rmapbt ptr/key = 44b
== 22 ptr/keys per block
Worst case, each block is half full, so 20 records and 11 ptrs per block.
1073741824 rmap records / 20 records per block
== 53687092 leaf blocks
53687092 leaves / 11 ptrs per block
== 4880645 level 1 blocks
== 443695 level 2 blocks
== 40336 level 3 blocks
== 3667 level 4 blocks
== 334 level 5 blocks
== 31 level 6 blocks
== 3 level 7 blocks
== 1 level 8 block
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a couple of tracepoints for the deferred extent free operation and
a site for injecting errors while finishing the operation. This makes
it easier to debug deferred ops and test log redo.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Mechanical change of flist/free_list to dfops, since they're now
deferred ops, not just a freeing list.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Drop the compatibility shims that we were using to integrate the new
deferred operation mechanism into the existing code. No new code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Restructure everything that used xfs_bmap_free to use xfs_defer_ops
instead. For now we'll just remove the old symbols and play some
cpp magic to make it work; in the next patch we'll actually rename
everything.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Connect the xfs_defer mechanism with the pieces that we'll need to
handle deferred extent freeing. We'll wire up the existing code to
our new deferred mechanism later.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add tracepoints for the internals of the deferred ops mechanism
and tracepoint classes for clients of the dops, to make debugging
easier.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
All the code around struct xfs_bmap_free basically implements a
deferred operation framework through which we can roll transactions
(to unlock buffers and avoid violating lock order rules) while
managing all the necessary log redo items. Previously we only used
this code to free extents after some sort of mapping operation, but
with the advent of rmap and reflink, we suddenly need to do more than
that.
With that in mind, xfs_bmap_free really becomes a deferred ops control
structure. Rename the structure and move the deferred ops into their
own file to avoid further bloating of the bmap code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Refactor the btree_change_owner function into a more generic apparatus
which visits all blocks in a btree. We'll use this in a subsequent
patch for counting btree blocks for AG reservations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create a function to enable querying of btree records mapping to a
range of keys. This will be used in subsequent patches to allow
querying the reverse mapping btree to find the extents mapped to a
range of physical blocks, though the generic code can be used for
any range query.
The overlapped query range function needs to use the btree get_block
helper because the root block could be an inode, in which case
bc_bufs[nlevels-1] will be NULL.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On a filesystem with both reflink and reverse mapping enabled, it's
possible to have multiple rmap records referring to the same blocks on
disk. When overlapping intervals are possible, querying a classic
btree to find all records intersecting a given interval is inefficient
because we cannot use the left side of the search interval to filter
out non-matching records the same way that we can use the existing
btree key to filter out records coming after the right side of the
search interval. This will become important once we want to use the
rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl.
(For the non-overlapping case, we can perform such queries trivially
by starting at the left side of the interval and walking the tree
until we pass the right side.)
Therefore, extend the btree code to come closer to supporting
intervals as a first-class record attribute. This involves widening
the btree node's key space to store both the lowest key reachable via
the node pointer (as the btree does now) and the highest key reachable
via the same pointer and teaching the btree modifying functions to
keep the highest-key records up to date.
This behavior can be turned on via a new btree ops flag so that btrees
that cannot store overlapping intervals don't pay the overhead costs
in terms of extra code and disk format changes.
When we're deleting a record in a btree that supports overlapped
interval records and the deletion results in two btree blocks being
joined, we defer updating the high/low keys until after all possible
joining (at higher levels in the tree) have finished. At this point,
the btree pointers at all levels have been updated to remove the empty
blocks and we can update the low and high keys.
When we're doing this, we must be careful to update the keys of all
node pointers up to the root instead of stopping at the first set of
keys that don't need updating. This is because it's possible for a
single deletion to cause joining of multiple levels of tree, and so
we need to update everything going back to the root.
The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than,
equal to, or greater than key2, respectively. This is consistent
with the rest of the kernel and the C library.
In btree_updkeys(), we need to evaluate the force_all parameter before
running the key diff to avoid reading uninitialized memory when we're
forcing a key update. This happens when we've allocated an empty slot
at level N + 1 to point to a new block at level N and we're in the
process of filling out the new keys.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add some function pointers to bc_ops to get the btree keys for
leaf and node blocks, and to update parent keys of a block.
Convert the _btree_updkey calls to use our new pointer, and
modify the tree shape changing code to call the appropriate
get_*_keys pointer instead of _btree_copy_keys because the
overlapping btree has to calculate high key values.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When a btree block has to be split, we pass the new block's ptr from
xfs_btree_split() back to xfs_btree_insert() via a pointer parameter;
however, we pass the block's key through the cursor's record. It is a
little weird to "initialize" a record from a key since the non-key
attributes will have garbage values.
When we go to add support for interval queries, we have to be able to
pass the lowest and highest keys accessible via a pointer. There's no
clean way to pass this back through the cursor's record field.
Therefore, pass the key directly back to xfs_btree_insert() the same
way that we pass the btree_ptr.
As a bonus, we no longer need init_rec_from_key and can drop it from the
codebase.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If we make the inode root block of a btree unfull by expanding the
root, we must set *stat to 1 to signal success, rather than leaving
it uninitialized.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're deleting realtime extents, we need to lock the summary
inode in case we need to update the summary info to prevent an assert
on the rsumip inode lock on a debug kernel. While we're at it, fix
the locking annotations so that we avoid triggering lockdep warnings.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Apparently cris doesn't require structure stride to align with the
largest type in the struct, so list[0] isn't at offset 4 like it is
everywhere else. Fix this... insofar as existing XFSes on cris are
screwed.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfsprogs source commit 4280e59dcbc4cd8e01585efe788a68eb378048e8
xfs_da3_split() has to handle all three versions of the
directory/attribute btree structure. The attr tree is v1, the dir
tre is v2 or v3. The main difference between the v1 and v2/3 trees
is the way tree nodes are split - in the v1 tree we can require a
double split to occur because the object to be inserted may be
larger than the space made by splitting a leaf. In this case we need
to do a double split - one to split the full leaf, then another to
allocate an empty leaf block in the correct location for the new
entry. This does not happen with dir (v2/v3) formats as the objects
being inserted are always guaranteed to fit into the new space in
the split blocks.
Indeed, for directories they *may* be an extra block on this buffer
pointer. However, it's guaranteed not to be a leaf block (i.e. a
directory data block) - the directory code only ever places hash
index or free space blocks in this pointer (as a cursor of
sorts), and so to use it as a directory data block will immediately
corrupt the directory.
The problem is that the code assumes that there may be extra blocks
that we need to link into the tree once we've split the root, but
this is not true for either dir or attr trees, because the extra
attr block is always consumed by the last node split before we split
the root. Hence the linking in an extra block is always wrong at the
root split level, and this manifests itself in repair as a directory
corruption in a repaired directory, leaving the directory rebuild
incomplete.
This is a dir v2 zero-day bug - it was in the initial dir v2 commit
that was made back in February 1998.
Fix this by ensuring the linking of the blocks after the root split
never tries to make use of the extra blocks that may be held in the
cursor. They are held there for other purposes and should never be
touched by the root splitting code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead we always declare struct xfs_dir2_sf_hdr as packed. That's
the expected layout, and while most major architectures do the packing
by default the new structure size and offset checker showed that not
only the ARM old ABI got this wrong, but various minor embedded
architectures did as well.
[Verified that no code change on x86-64 results from this change]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And use an array of unsigned char values directly to avoid problems
with architectures that pad the size of structures. This also gets
rid of the xfs_dir2_ino4_t and xfs_dir2_ino8_t types, and introduces
new constants for the size of 4 and 8 bytes as well as the size
difference between the two.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use an array of two unsigned chars directly to avoid problems
with architectures that pad the size of structures.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
replace the magic numbers by offsetof(...) and sizeof(...), and add two
extra checks on xfs_check_ondisk_structs()
[dchinner: renamed header structures to be more descriptive]
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The indentation in this function is different from the other functions.
Those spacebars are converted to tabs to improve readability.
Signed-off-by: Kaho Ng <ngkaho1234@gmail.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create a common function to calculate the maximum height of a per-AG
btree. This will eventually be used by the rmapbt and refcountbt
code to calculate appropriate maxlevels values for each. This is
important because the verifiers and the transaction block
reservations depend on accurate estimates of how many blocks are
needed to satisfy a btree split.
We were mistakenly using the max bnobt height for all the btrees,
which creates a dangerous situation since the larger records and
keys in an rmapbt make it very possible that the rmapbt will be
taller than the bnobt and so we can run out of transaction block
reservation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In struct xfs_bmap_free, convert the open-coded free extent list to
a regular list, then use list_sort to sort it prior to processing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Break up xfs_free_extent() into a helper that fixes the freelist.
This helper will be used subsequently to ensure the freelist during
deferred rmap processing.
[darrick: refactor to put this at the head of the patchset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This is already in xfsprogs' libxfs, so port it to the kernel.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And the same for XFS_IOC_THAW. Just because we now have a common
version of the ioctl we still need to provide the old name for it
for anyone using those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Al Viro noticed that xfs_lock_inodes should be static, and
that led to ... a few more.
These are just the easy ones, others require moving functions
higher in source files, so that's not done here to keep
this review simple.
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Changes in this update:
o fixes for mount line parsing, sparse warnings, read-only compat
feature remount behaviour
o allow fast path symlink lookups for inline symlinks.
o attribute listing cleanups
o writeback goes direct to bios rather than indirecting through
bufferheads
o transaction allocation cleanup
o optimised kmem_realloc
o added configurable error handling for metadata write errors,
changed default error handling behaviour from "retry forever" to
"retry until unmount then fail"
o fixed several inode cluster writeback lookup vs reclaim race
conditions
o fixed inode cluster writeback checking wrong inode after lookup
o fixed bugs where struct xfs_inode freeing wasn't actually RCU safe
o cleaned up inode reclaim tagging
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRo8LAAoJEK3oKUf0dfodxLgP+wQMd46i/nCncr6jMcdoVXfL
rE6cL1LJWWVOWzax/bmdlV1VNXqqW7n0ABAVMqikzqSEd+fBQe/HOkdBeVUywu7o
bmqgNxuofMqHaiYhiTvUijHLHWLFxIgd/jNT7L5oGRzZdmP260VGf3EPipN7aA9U
Y3KVhFQCqohpeIUeSV4Z/eIDdHN5LyUI1s+7zMLquHKCWyO4aO4GBX8YlyXdRRVe
cwCZb4TBryS0PBCIra31MZ5wBRwLx8PBXqcNsnTQSR5Uu+WeuwxofXz5q3kdmNOU
XGTWiabQbcvaC4twrzqnErHEX41PAs43tWxsI/qJH49QIFdfOYM+t8ERhEa2Q3DW
Ihl+Q/2qiOuZZterG/t5MrxhybrmQhEFVJT6Ib8b/CnwpRm+K8kWTead1YJL8Xzd
F9k8e57BCgTbDA7jWxWDbp7eQ1/4KglBD4sefFPpsuFgO882mmo5GmymALGjmitw
JH1v3HL3PeTkQoHfcay8ZM/zNjX643CXHwCWYEOAgD+e77TPiOs/cHLZaXbrBkLK
PpSJNfYiBe31eeSOEGsxivMapLpus+cHZyK3uR+XU+naJhjOdaBDTTo8RsAD9jS5
C/dzxc4l7o+gYT+UjV5KtyfEeVwtGo5mtR9XozPbNDjNQor8Vo6NQMZXMXpFYDZI
2XgzVNpkEf/74kexdEzV
=0tYo
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"A pretty average collection of fixes, cleanups and improvements in
this request.
Summary:
- fixes for mount line parsing, sparse warnings, read-only compat
feature remount behaviour
- allow fast path symlink lookups for inline symlinks.
- attribute listing cleanups
- writeback goes direct to bios rather than indirecting through
bufferheads
- transaction allocation cleanup
- optimised kmem_realloc
- added configurable error handling for metadata write errors,
changed default error handling behaviour from "retry forever" to
"retry until unmount then fail"
- fixed several inode cluster writeback lookup vs reclaim race
conditions
- fixed inode cluster writeback checking wrong inode after lookup
- fixed bugs where struct xfs_inode freeing wasn't actually RCU safe
- cleaned up inode reclaim tagging"
* tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: fix warning in xfs_finish_page_writeback for non-debug builds
xfs: move reclaim tagging functions
xfs: simplify inode reclaim tagging interfaces
xfs: rename variables in xfs_iflush_cluster for clarity
xfs: xfs_iflush_cluster has range issues
xfs: mark reclaimed inodes invalid earlier
xfs: xfs_inode_free() isn't RCU safe
xfs: optimise xfs_iext_destroy
xfs: skip stale inodes in xfs_iflush_cluster
xfs: fix inode validity check in xfs_iflush_cluster
xfs: xfs_iflush_cluster fails to abort on error
xfs: remove xfs_fs_evict_inode()
xfs: add "fail at unmount" error handling configuration
xfs: add configuration handlers for specific errors
xfs: add configuration of error failure speed
xfs: introduce table-based init for error behaviors
xfs: add configurable error support to metadata buffers
xfs: introduce metadata IO error class
xfs: configurable error behavior via sysfs
xfs: buffer ->bi_end_io function requires irq-safe lock
...
When unmounting XFS, we call:
xfs_inode_free => xfs_idestroy_fork => xfs_iext_destroy
This goes over the whole indirection array and calls
xfs_iext_irec_remove for each one of the erps (from the last one to
the first one). As a result, we keep shrinking (reallocating
actually) the indirection array until we shrink out all of its
elements. When we have files with huge numbers of extents, umount
takes 30-80 sec, depending on the amount of files that XFS loaded
and the amount of indirection entries of each file. The unmount
stack looks like:
[<ffffffffc0b6d200>] xfs_iext_realloc_indirect+0x40/0x60 [xfs]
[<ffffffffc0b6cd8e>] xfs_iext_irec_remove+0xee/0xf0 [xfs]
[<ffffffffc0b6cdcd>] xfs_iext_destroy+0x3d/0xb0 [xfs]
[<ffffffffc0b6cef6>] xfs_idestroy_fork+0xb6/0xf0 [xfs]
[<ffffffffc0b87002>] xfs_inode_free+0xb2/0xc0 [xfs]
[<ffffffffc0b87260>] xfs_reclaim_inode+0x250/0x340 [xfs]
[<ffffffffc0b87583>] xfs_reclaim_inodes_ag+0x233/0x370 [xfs]
[<ffffffffc0b8823d>] xfs_reclaim_inodes+0x1d/0x20 [xfs]
[<ffffffffc0b96feb>] xfs_unmountfs+0x7b/0x1a0 [xfs]
[<ffffffffc0b98e4d>] xfs_fs_put_super+0x2d/0x70 [xfs]
[<ffffffff811e9e36>] generic_shutdown_super+0x76/0x100
[<ffffffff811ea207>] kill_block_super+0x27/0x70
[<ffffffff811ea519>] deactivate_locked_super+0x49/0x60
[<ffffffff811eaaee>] deactivate_super+0x4e/0x70
[<ffffffff81207593>] cleanup_mnt+0x43/0x90
[<ffffffff81207632>] __cleanup_mnt+0x12/0x20
[<ffffffff8108f8e7>] task_work_run+0xa7/0xe0
[<ffffffff81014ff7>] do_notify_resume+0x97/0xb0
[<ffffffff81717c6f>] int_signal+0x12/0x17
Further, this reallocation prevents us from freeing the extent list
from a RCU callback as allocation can block. Hence if the extent
list is in indirect format, optimise the freeing of the extent list
to only use kmem_free calls by freeing entire extent buffer pages at
a time, rather than extent by extent.
[dchinner: simplified freeing loop based on Christoph's suggestion]
Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use krealloc to implement our realloc function. This helps to avoid
new allocations if we are still in the slab bucket. At least for the
bmap btree root that's actually the common case.
This also allows removing the now unused oldsize argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These aren't used for CIL-style logging and can be dropped.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Merge xfs_trans_reserve and xfs_trans_alloc into a single function call
that returns a transaction with all the required log and block reservations,
and which allows passing transaction flags directly to avoid the cumbersome
_xfs_trans_alloc interface.
While we're at it we also get rid of the transaction type argument that has
been superflous since we stopped supporting the non-CIL logging mode. The
guts of it will be removed in another patch.
[dchinner: fixed transaction leak in error path in xfs_setattr_nonsize]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
By overallocating the in-core inode fork data buffer and zero
terminating the link target in xfs_init_local_fork we can avoid
the memory allocation in ->follow_link.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfs_dir2_node_trim_free can return with setting the rvalp argument
pointer. Initialize it to 0 at the beginning of the function and
only update it to 1 if we succeeded trimming a freespace block.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bmap_del_extent() handles extent removal from the in-core and
on-disk extent lists. When removing a delalloc range, it updates the
indirect block reservation appropriately based on the removal. It
currently enforces that the new indirect block reservation is less than
or equal to the original. This is normally the case in all situations
except for in certain cases when the removed range creates a hole in a
single delalloc extent, thus splitting a single delalloc extent in two.
It is possible with small enough extents to split an indlen==1 extent
into two such slightly smaller extents. This leaves one extent with 0
indirect blocks and leads to assert failures in other areas (e.g.,
xfs_bunmapi() if the extent happens to be removed).
Update the indlen distribution code to steal blocks from the deleted
extent, if necessary, to satisfy the worst case total indirect
reservation for the new extents. This is safe as the caller does not
update the fdblocks counters until the extent is removed. Blocks stolen
in this manner simply remain accounted as allocated, having ownership
transferred from the data extent to an indirect reservation.
As a precaution, fall back to the original reservation algorithm if the
new indlen requirement is not met and warn if we end up with extents
without any reservation at all to detect this more easily in the future.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The delayed allocation indirect reservation splitting code is not
sufficient in some cases where a delalloc extent is split in two. In
preparation for enhancements to this code, refactor the current indlen
distribution algorithm into a new helper function.
[dchinner: rename temp, temp2 variables]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bunmapi() currently updates the fdblocks counter, unreserves quota,
etc. before the extent is deleted by xfs_bmap_del_extent(). The function
has problems dividing up the indirect reserved blocks for scenarios
where a single delalloc extent is split in two. Particularly, there
aren't always enough blocks reserved for multiple extents in a single
extent reservation.
The solution to this problem is to allow the extent removal code to
steal from the deleted extent to meet indirect reservation requirements.
Move the block of code in xfs_bmapi() that updates the fdblocks counter
to after the call to xfs_bmap_del_extent() to allow the codepath to
update the extent record before the free blocks are accounted. Also,
reshuffle the code slightly so the delalloc accounting occurs near the
xfs_bmap_del_extent() call to provide context for the comments.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
bp_release is set to 0 just before the breakpoint of the for loop before
the conditional check (in line 458). The other breakpoint is a goto that
skips the dead code.
Addresses-Coverity-Id: 102338
Signed-off-by: Luis de Bethencourt <luisbg@osg.samsung.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit 88740da18[1] introduced a function to compute the maximum
height of the inode btree back in 1994. Back then, apparently, the
freespace and inode btrees shared the same geometry; however, it has
long since been the case that the inode and freespace btrees have
different record and key sizes. Therefore, we must use m_inobt_mnr if
we want a correct calculation/log reservation/etc.
(Yes, this bug has been around for 21 years and ten months.)
(Yes, I was in middle school when this bug was committed.)
[1] http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=88740da18ddd9d7ba3ebaa9502fefc6ef2fd19cd
Historical-research-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use the t_blk_res field directly instead of obsfucating the reference
by a macro.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing
the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole
in the structure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can store the di_changecount in the i_version field of the VFS
inode and remove another 8 bytes from the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull another 4 bytes out of the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS tracks the inode nlink just like the xfs_icdinode. We can
remove the variable from the icdinode and use the VFS inode variable
everywhere, reducing the size of the xfs_icdinode by a further 4
bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
So we don't have to carry an di_onlink variable around anymore, move
the inode conversion from v1 inode format to v2 inode format into
xfs_inode_from_disk(). This means we can remove the di_onlink fields
from the struct xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the struct xfs_icdinode is not directly related to the
on-disk format, we can cull things in it we really don't need to
store:
- magic number never changes
- padding is not necessary
- next_unlinked is never used
- inode number is redundant
- uuid is redundant
- lsn is accessed directly from dinode
- inode CRC is only accessed directly from dinode
Hence we can remove these from the struct xfs_icdinode and redirect
the code that uses them to the xfs_dinode appripriately. This
reduces the size of the struct icdinode from 152 bytes to 88 bytes,
and removes a fair chunk of unnecessary code, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The struct xfs_inode has two copies of the current timestamps in it,
one in the vfs inode and one in the struct xfs_icdinode. Now that we
no longer log the struct xfs_icdinode directly, we don't need to
keep the timestamps in this structure. instead we can copy them
straight out of the VFS inode when formatting the inode log item or
the on-disk inode.
This reduces the struct xfs_inode in size by 24 bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently carry around and log an entire inode core in the
struct xfs_inode. A lot of the information in the inode core is
duplicated in the VFS inode, but we cannot remove this duplication
of infomration because the inode core is logged directly in
xfs_inode_item_format().
Add a new function xfs_inode_item_format_core() that copies the
inode core data into a struct xfs_icdinode that is pulled directly
from the log vector buffer. This means we no longer directly
copy the inode core, but copy the structures one member at a time.
This will be slightly less efficient than copying, but will allow us
to remove duplicate and unnecessary items from the struct xfs_inode.
To enable us to do this, call the new structure a xfs_log_dinode,
so that we know it's different to the physical xfs_dinode and the
in-core xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Buffers without verifiers issue runtime warnings on XFS. We don't
have anything we can actually verify in the RT buffers (no CRCs, not
magic numbers, etc), but we still need verifiers to avoid the
warnings.
Add a set of dummy verifier operations for the realtime buffers and
apply them in the appropriate places.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When logging buffers, we attach a type to them that follows the
buffer all the way into the log and is used to identify the buffer
contents in log recovery. Both the realtime summary buffers and the
bitmap buffers do not have types defined or set, so when we try to
log them we see assert failure:
XFS: Assertion failed: (bip->bli_flags & XFS_BLI_STALE) || (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF), file: fs/xfs/xfs_buf_item.c, line: 294
Fix this by adding buffer log format types for these buffers, and
add identification support into log recovery for them. Only build the log
recovery support if CONFIG_XFS_RT=y - we can't get into log recovery for real
time filesystems if support is not built into the kernel, and this avoids
potential build problems.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the shortform attr structure definition to the same place as the
other attribute structure definitions for consistency and also so that
xfs/122 verifies the structure size.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Old leftovers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
... instead of leaving it in the methods.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add code to allow the Q_XGETNEXTQUOTA quotactl to quickly find
all active quotas by examining the quota inode, and skipping
over unallocated or uninitialized regions.
Userspace can then use this interface rather than i.e. a
getpwent() loop when asked to report all active quotas.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we do dquot readahead in log recovery, we do not use a verifier
as the underlying buffer may not have dquots in it. e.g. the
allocation operation hasn't yet been replayed. Hence we do not want
to fail recovery because we detect an operation to be replayed has
not been run yet. This problem was addressed for inodes in commit
d891400 ("xfs: inode buffers may not be valid during recovery
readahead") but the problem was not recognised to exist for dquots
and their buffers as the dquot readahead did not have a verifier.
The result of not using a verifier is that when the buffer is then
next read to replay a dquot modification, the dquot buffer verifier
will only be attached to the buffer if *readahead is not complete*.
Hence we can read the buffer, replay the dquot changes and then add
it to the delwri submission list without it having a verifier
attached to it. This then generates warnings in xfs_buf_ioapply(),
which catches and warns about this case.
Fix this and make it handle the same readahead verifier error cases
as for inode buffers by adding a new readahead verifier that has a
write operation as well as a read operation that marks the buffer as
not done if any corruption is detected. Also make sure we don't run
readahead if the dquot buffer has been marked as cancelled by
recovery.
This will result in readahead either succeeding and the buffer
having a valid write verifier, or readahead failing and the buffer
state requiring the subsequent read to resubmit the IO with the new
verifier. In either case, this will result in the buffer always
ending up with a valid write verifier on it.
Note: we also need to fix the inode buffer readahead error handling
to mark the buffer with EIO. Brian noticed the code I copied from
there wrong during review, so fix it at the same time. Add comments
linking the two functions that handle readahead verifier errors
together so we don't forget this behavioural link in future.
cc: <stable@vger.kernel.org> # 3.12 - current
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we do inode readahead in log recovery, we do can do the
readahead before we've replayed the icreate transaction that stamps
the buffer with inode cores. The inode readahead verifier catches
this and marks the buffer as !done to indicate that it doesn't yet
contain valid inodes.
In adding buffer error notification (i.e. setting b_error = -EIO at
the same time as as we clear the done flag) to such a readahead
verifier failure, we can then get subsequent inode recovery failing
with this error:
XFS (dm-0): metadata I/O error: block 0xa00060 ("xlog_recover_do..(read#2)") error 5 numblks 32
This occurs when readahead completion races with icreate item replay
such as:
inode readahead
find buffer
lock buffer
submit RA io
....
icreate recovery
xfs_trans_get_buffer
find buffer
lock buffer
<blocks on RA completion>
.....
<ra completion>
fails verifier
clear XBF_DONE
set bp->b_error = -EIO
release and unlock buffer
<icreate gains lock>
icreate initialises buffer
marks buffer as done
adds buffer to delayed write queue
releases buffer
At this point, we have an initialised inode buffer that is up to
date but has an -EIO state registered against it. When we finally
get to recovering an inode in that buffer:
inode item recovery
xfs_trans_read_buffer
find buffer
lock buffer
sees XBF_DONE is set, returns buffer
sees bp->b_error is set
fail log recovery!
Essentially, we need xfs_trans_get_buf_map() to clear the error status of
the buffer when doing a lookup. This function returns uninitialised
buffers, so the buffer returned can not be in an error state and
none of the code that uses this function expects b_error to be set
on return. Indeed, there is an ASSERT(!bp->b_error); in the
transaction case in xfs_trans_get_buf_map() that would have caught
this if log recovery used transactions....
This patch firstly changes the inode readahead failure to set -EIO
on the buffer, and secondly changes xfs_buf_get_map() to never
return a buffer with an error state set so this first change doesn't
cause unexpected log recovery failures.
cc: <stable@vger.kernel.org> # 3.12 - current
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Calls to xfs_bmap_finish() and xfs_trans_ijoin(), and the
associated comments were replicated several times across
the attribute code, all dealing with what to do if the
transaction was or wasn't committed.
And in that replicated code, an ASSERT() test of an
uninitialized variable occurs in several locations:
error = xfs_attr_thing(&args);
if (!error) {
error = xfs_bmap_finish(&args.trans, args.flist,
&committed);
}
if (error) {
ASSERT(committed);
If the first xfs_attr_thing() failed, we'd skip the xfs_bmap_finish,
never set "committed", and then test it in the ASSERT.
Fix this up by moving the committed state internal to xfs_bmap_finish,
and add a new inode argument. If an inode is passed in, it is passed
through to __xfs_trans_roll() and joined to the transaction there if
the transaction was committed.
xfs_qm_dqalloc() was a little unique in that it called bjoin rather
than ijoin, but as Dave points out we can detect the committed state
but checking whether (*tpp != tp).
Addresses-Coverity-Id: 102360
Addresses-Coverity-Id: 102361
Addresses-Coverity-Id: 102363
Addresses-Coverity-Id: 102364
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For large sparse or fragmented files, checking every single entry in
the bmapbt on every operation is prohibitively expensive. Especially
as such checks rarely discover problems during normal operations on
high extent coutn files. Our regression tests don't tend to exercise
files with hundreds of thousands to millions of extents, so mostly
this isn't noticed.
However, trying to run things like xfs_mdrestore of large filesystem
dumps on a debug kernel quickly becomes impossible as the CPU is
completely burnt up repeatedly walking the sparse file bmapbt that
is generated for every allocation that is made.
Hence, if the file has more than 10,000 extents, just don't bother
with walking the tree to check it exhaustively. The btree code has
checks that ensure that the newly inserted/removed/modified record
is correctly ordered, so the entrie tree walk in thses cases has
limited additional value.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rather than just being able to turn DAX on and off via a mount
option, some applications may only want to enable DAX for certain
performance critical files in a filesystem.
This patch introduces a new inode flag to enable DAX in the v3 inode
di_flags2 field. It adds support for setting and clearing flags in
the di_flags2 field via the XFS_IOC_FSSETXATTR ioctl, and sets the
S_DAX inode flag appropriately when it is seen.
When this flag is set on a directory, it acts as an "inherit flag".
That is, inodes created in the directory will automatically inherit
the on-disk inode DAX flag, enabling administrators to set up
directory heirarchies that automatically use DAX. Setting this flag
on an empty root directory will make the entire filesystem use DAX
by default.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Now that the ioctls have been hoisted up to the VFS level, use
the VFs definitions directly and remove the XFS specific definitions
completely. Userspace is going to have to handle the change of this
interface separately, so removing the definitions from xfs_fs.h is
not an issue here at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Hoist the ioctl definitions for the XFS_IOC_FS[SG]SETXATTR API from
fs/xfs/libxfs/xfs_fs.h to include/uapi/linux/fs.h so that the ioctls
can be used by all filesystems, not just XFS. This enables
(initially) ext4 to use the ioctl to set project IDs on inodes.
Based-on-patch-from: Li Xi <lixi@ddn.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Create xfs_btree_sblock_verify() to verify short-format btree blocks
(i.e. the per-AG btrees with 32-bit block pointers) instead of
open-coding them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Because struct xfs_agfl is 36 bytes long and has a 64-bit integer
inside it, gcc will quietly round the structure size up to the nearest
64 bits -- in this case, 40 bytes. This results in the XFS_AGFL_SIZE
macro returning incorrect results for v5 filesystems on 64-bit
machines (118 items instead of 119). As a result, a 32-bit xfs_repair
will see garbage in AGFL item 119 and complain.
Therefore, tell gcc not to pad the structure so that the AGFL size
calculation is correct.
cc: <stable@vger.kernel.org> # 3.10 - 4.4
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use a convenience variable instead of open-coding the inode fork.
This isn't really needed for now, but will become important when we
add the copy-on-write fork later.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since xfs_repair wants to use xfs_alloc_fix_freelist, remove the
static designation. xfsprogs already has this; this simply brings
the kernel up to date.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In my earlier commit
c29aad4 xfs: pass mp to XFS_WANT_CORRUPTED_GOTO
I added some local mp variables with code which indicates that
mp might be NULL. Coverity doesn't like this now, because the
updated per-fs XFS_STATS macros dereference mp.
I don't think this is actually a problem; from what I can tell,
we cannot get to these functions with a null bma->tp, so my NULL
check was probably pointless. Still, it's not super obvious.
So switch this code to get mp from the inode on the xfs_bmalloca
structure, with no conditional, because the functions are already
using bmap->ip directly.
Addresses-Coverity-Id: 1339552
Addresses-Coverity-Id: 1339553
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This adds a name to each buf_ops structure, so that if
a verifier fails we can print the type of verifier that
failed it. Should be a slight debugging aid, I hope.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If there is any non zero bit in a long bitmap, it can jump out of the
loop and finish the function as soon as possible.
Signed-off-by: Jia He <hejianet@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Log recovery torn write detection uses CRC verification over a range of
the active log to identify torn writes. Since the generic log recovery
pass code implements a superset of the functionality required for CRC
verification, it can be easily modified to support a CRC verification
only pass.
Create a new CRC pass type and update the log record processing helper
to skip everything beyond CRC verification when in this mode. This pass
will be invoked in subsequent patches to implement torn write detection.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In xfs_acl_from_disk, instead of trusting that xfs_acl.acl_cnt is correct,
make sure that the length of the attributes is correct as well. Also, turn
the aclp parameter into a const pointer.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To enable DAX to do atomic allocation of zeroed extents, we need to
drive the block zeroing deep into the allocator. Because
xfs_bmapi_write() can return merged extents on allocation that were
only partially allocated (i.e. requested range spans allocated and
hole regions, allocation into the hole was contiguous), we cannot
zero the extent returned from xfs_bmapi_write() as that can
overwrite existing data with zeros.
Hence we have to drive the extent zeroing into the allocation code,
prior to where we merge the extents into the BMBT and return the
resultant map. This means we need to propagate this need down to
the xfs_alloc_vextent() and issue the block zeroing at this point.
While this functionality is being introduced for DAX, there is no
reason why it is specific to DAX - we can per-zero blocks during the
allocation transaction on any type of device. It's just slow (and
usually slower than unwritten allocation and conversion) on
traditional block devices so doesn't tend to get used. We can,
however, hook hardware zeroing optimisations via sb_issue_zeroout()
to this operation, so it may be useful in future and hence the
"allocate zeroed blocks" API needs to be implementation neutral.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch modifies the stats counting macros and the callers
to those macros to properly increment, decrement, and add-to
the xfs stats counts. The counts for global and per-fs stats
are correctly advanced, and cleared by writing a "1" to the
corresponding clear file.
global counts: /sys/fs/xfs/stats/stats
per-fs counts: /sys/fs/xfs/sda*/stats/stats
global clear: /sys/fs/xfs/stats/stats_clear
per-fs clear: /sys/fs/xfs/sda*/stats/stats_clear
[dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around
stats structures and macros. ]
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently, we depends on Linux XATTR value for on disk
definition. Which causes trouble on other platforms and
maybe also if this value was to change.
Fix it by creating a custom definition independent from
those in Linux (although with the same values), so it is OK
with the be16 fields used for holding these attributes.
This patch reflects a change in xfsprogs.
Signed-off-by: Jan Tulak <jtulak@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove a hard dependency of Linux XATTR_LIST_MAX value by using
a prefixed version. This patch reflects the same change in xfsprogs.
Signed-off-by: Jan Tulak <jtulak@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just fix two typos in code comments.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since the onset of v5 superblocks, the LSN of the last modification has
been included in a variety of on-disk data structures. This LSN is used
to provide log recovery ordering guarantees (e.g., to ensure an older
log recovery item is not replayed over a newer target data structure).
While this works correctly from the point a filesystem is formatted and
mounted, userspace tools have some problematic behaviors that defeat
this mechanism. For example, xfs_repair historically zeroes out the log
unconditionally (regardless of whether corruption is detected). If this
occurs, the LSN of the filesystem is reset and the log is now in a
problematic state with respect to on-disk metadata structures that might
have a larger LSN. Until either the log catches up to the highest
previously used metadata LSN or each affected data structure is modified
and written out without incident (which resets the metadata LSN), log
recovery is susceptible to filesystem corruption.
This problem is ultimately addressed and repaired in the associated
userspace tools. The kernel is still responsible to detect the problem
and notify the user that something is wrong. Check the superblock LSN at
mount time and fail the mount if it is invalid. From that point on,
trigger verifier failure on any metadata I/O where an invalid LSN is
detected. This results in a filesystem shutdown and guarantees that we
do not log metadata changes with invalid LSNs on disk. Since this is a
known issue with a known recovery path, present a warning to instruct
the user how to recover.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
A local format symlink inode is converted to extent format when an
extended attribute is set on an inode as part of the attribute fork
creation. This means a block is allocated, the local symlink target name
is copied to the block and the block is logged. Currently,
xfs_bmap_local_to_extents() handles logging the remote block data based
on the size of the data fork prior to the conversion. This is not
correct on v5 superblock filesystems, which add an additional header to
remote symlink blocks that is nonexistent in local format inodes.
As a result, the full length of the remote symlink block content is not
logged. This can lead to corruption should a crash occur and log
recovery replay this transaction.
Since a callout is already used to initialize the new remote symlink
block, update the local-to-extents conversion mechanism to make the
callout also responsible for logging the block. It is already required
to set the log buffer type and format the block appropriately based on
the superblock version. This ensures the remote symlink is always logged
correctly. Note that xfs_bmap_local_to_extents() is only called for
symlinks so there are no other callouts that require modification.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If xfs_da3_node_read_verify() doesn't recognize the magic number of a
buffer it's just read, set the buffer error to -EFSCORRUPTED so that
the error can be sent up to userspace. Without this patch we'll
notice the bad magic eventually while trying to traverse or change
the block, but we really ought to fail early in the verifier.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Users have occasionally reported that file type for some directory
entries is wrong. This mostly happened after updating libraries some
libraries. After some debugging the problem was traced down to
xfs_dir2_node_replace(). The function uses args->filetype as a file type
to store in the replaced directory entry however it also calls
xfs_da3_node_lookup_int() which will store file type of the current
directory entry in args->filetype. Thus we fail to change file type of a
directory entry to a proper type.
Fix the problem by storing new file type in a local variable before
calling xfs_da3_node_lookup_int().
cc: <stable@vger.kernel.org> # 3.16 - 4.x
Reported-by: Giacomo Comes <comes@naic.edu>
Signed-off-by: Jan Kara <jack@suse.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_alloc_fix_freelist() can sometimes jump to out_agbp_relse
without ever setting value of 'error' variable which is then
returned. This can happen e.g. when pag->pagf_init is set but AG is
for metadata and we want to allocate user data.
Fix the problem by initializing 'error' to 0, which is the desired
return value when we decide to skip this group.
CC: xfs@oss.sgi.com
Coverity-id: 1309714
Signed-off-by: Jan Kara <jack@suse.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
struct xfs_attr_leafblock contains 'entries' array which is declared
with size 1 altough it can in fact contain much more entries. Since this
array is followed by further struct members, gcc (at least in version
4.8.3) thinks that the array has the fixed size of 1 element and thus
may optimize away all accesses beyond the end of array resulting in
non-working code. This problem was only observed with userspace code in
xfsprogs, however it's better to be safe in kernel as well and have
matching kernel and xfsprogs definitions.
cc: <stable@vger.kernel.org>
Signed-off-by: Jan Kara <jack@suse.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In the dir3 data block readahead function, use the regular read
verifier to check the block's CRC and spot-check the block contents
instead of directly calling only the spot-checking routine. This
prevents corrupted directory data blocks from being read into the
kernel, which can lead to garbage ls output and directory loops (if
say one of the entries contains slashes and other junk).
cc: <stable@vger.kernel.org> # 3.12 - 4.2
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The recent change to the readdir locking made in 40194ec ("xfs:
reinstate the ilock in xfs_readdir") for CXFS directory sanity was
probably the wrong thing to do. Deep in the readdir code we
can take page faults in the filldir callback, and so taking a page
fault while holding an inode ilock creates a new set of locking
issues that lockdep warns all over the place about.
The locking order for regular inodes w.r.t. page faults is io_lock
-> pagefault -> mmap_sem -> ilock. The directory readdir code now
triggers ilock -> page fault -> mmap_sem. While we cannot deadlock
at this point, it inverts all the locking patterns that lockdep
normally sees on XFS inodes, and so triggers lockdep. We worked
around this with commit 93a8614 ("xfs: fix directory inode iolock
lockdep false positive"), but that then just moved the lockdep
warning to deeper in the page fault path and triggered on security
inode locks. Fixing the shmem issue there just moved the lockdep
reports somewhere else, and now we are getting false positives from
filesystem freezing annotations getting confused.
Further, if we enter memory reclaim in a readdir path, we now get
lockdep warning about potential deadlocks because the ilock is held
when we enter reclaim. This, again, is different to a regular file
in that we never allow memory reclaim to run while holding the ilock
for regular files. Hence lockdep now throws
ilock->kmalloc->reclaim->ilock warnings.
Basically, the problem is that the ilock is being used to protect
the directory data and the inode metadata, whereas for a regular
file the iolock protects the data and the ilock protects the
metadata. From the VFS perspective, the i_mutex serialises all
accesses to the directory data, and so not holding the ilock for
readdir doesn't matter. The issue is that CXFS doesn't access
directory data via the VFS, so it has no "data serialisaton"
mechanism. Hence we need to hold the IOLOCK in the correct places to
provide this low level directory data access serialisation.
The ilock can then be used just when the extent list needs to be
read, just like we do for regular files. The directory modification
code can take the iolock exclusive when the ilock is also taken,
and this then ensures that readdir is correct excluded while
modifications are in progress.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The node directory lookup code uses a state structure that tracks the
path of buffers used to search for the hash of a filename through the
leaf blocks. When the lookup encounters a block that ends with the
requested hash, but the entry has not yet been found, it must shift over
to the next block and continue looking for the entry (i.e., duplicate
hashes could continue over into the next block). This shift mechanism
involves walking back up and down the state structure, replacing buffers
at the appropriate btree levels as necessary.
When a buffer is replaced, the old buffer is released and the new buffer
read into the active slot in the path structure. Because the buffer is
read directly into the path slot, a buffer read failure can result in
setting a NULL buffer pointer in an active slot. This throws off the
state cleanup code in xfs_dir2_node_lookup(), which expects to release a
buffer from each active slot. Instead, a BUG occurs due to a NULL
pointer dereference:
BUG: unable to handle kernel NULL pointer dereference at 00000000000001e8
IP: [<ffffffffa0585063>] xfs_trans_brelse+0x2a3/0x3c0 [xfs]
...
RIP: 0010:[<ffffffffa0585063>] [<ffffffffa0585063>] xfs_trans_brelse+0x2a3/0x3c0 [xfs]
...
Call Trace:
[<ffffffffa05250c6>] xfs_dir2_node_lookup+0xa6/0x2c0 [xfs]
[<ffffffffa0519f7c>] xfs_dir_lookup+0x1ac/0x1c0 [xfs]
[<ffffffffa055d0e1>] xfs_lookup+0x91/0x290 [xfs]
[<ffffffffa05580b3>] xfs_vn_lookup+0x73/0xb0 [xfs]
[<ffffffff8122de8d>] lookup_real+0x1d/0x50
[<ffffffff8123330e>] path_openat+0x91e/0x1490
[<ffffffff81235079>] do_filp_open+0x89/0x100
...
This has been reproduced via a parallel fsstress and filesystem shutdown
workload in a loop. The shutdown triggers the read error in the
aforementioned codepath and causes the BUG in xfs_dir2_node_lookup().
Update xfs_da3_path_shift() to update the active path slot atomically
with respect to the caller when a buffer is replaced. This ensures that
the caller always sees the old or new buffer in the slot and prevents
the NULL pointer dereference.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The sparse inodes feature is currently considered experimental. We warn
at mount time from xfs_mount_validate_sb(). This function is part of the
superblock verifier codepath, however, which means it could be invoked
repeatedly on superblock reads or writes. This is currently only
noticeable from userspace, where mkfs produces multiple warnings at
format time.
As mkfs warnings were not the intent of this change, relocate the mount
time warning to xfs_fs_fill_super(), which is only invoked once and only
in kernel space.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It's entirely possible for userspace to ask for an xattr which
does not exist.
Normally, there is no problem whatsoever when we ask for such
a thing, but when we look at an obfuscated metadump image
on a debug kernel with selinux, we trip over this ASSERT in
xfs_da3_path_shift():
*result = -ENOENT; /* we're out of our tree */
ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
It (more or less) only shows up in the above scenario, because
xfs_metadump obfuscates attr names, but chooses names which
keep the same hash value - and xfs_da3_node_lookup_int does:
if (((retval == -ENOENT) || (retval == -ENOATTR)) &&
(blk->hashval == args->hashval)) {
error = xfs_da3_path_shift(state, &state->path, 1, 1,
&retval);
IOWS, we only get down to the xfs_da3_path_shift() ASSERT
if we are looking for an xattr which doesn't exist, but we
find xattrs on disk which have the same hash, and so might be
a hash collision, so we try the path shift. When *that*
fails to find what we're looking for, we hit the assert about
XFS_DA_OP_OKNOENT.
Simply setting XFS_DA_OP_OKNOENT in xfs_attr_get solves this
rather corner-case problem with no ill side effects. It's
fine for an attr name lookup to fail.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If a failure occurs after the bmap free list is populated and before
xfs_bmap_finish() completes successfully (which returns a partial
list on failure), the bmap free list must be cancelled. Otherwise,
the extent items on the list are never freed and a memory leak
occurs.
Several random error paths throughout the code suffer this problem.
Fix these up such that xfs_bmap_cancel() is always called on error.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The btree cursor cleanup function takes an error parameter that
affects how buffers are released from the cursor. All buffers are
released in the event of error. Several callers do not specify the
XFS_BTREE_ERROR flag in the event of error, however. This can cause
buffers to hang around locked or with an elevated hold count and
thus lead to umount hangs in the event of errors.
Fix up the xfs_btree_del_cursor() callers to pass XFS_BTREE_ERROR if
the cursor is being torn down due to error.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This adds a new superblock field, sb_meta_uuid. If set, along with
a new incompat flag, the code will use that field on a V5 filesystem
to compare to metadata UUIDs, which allows us to change the user-
visible UUID at will. Userspace handles the setting and clearing
of the incompat flag as appropriate, as the UUID gets changed; i.e.
setting the user-visible UUID back to the original UUID (as stored in
the new field) will remove the incompatible feature flag.
If the incompat flag is not set, this copies the user-visible UUID into
into the meta_uuid slot in memory when the superblock is read from disk;
the meta_uuid field is not written back to disk in this case.
The remainder of this patch simply switches verifiers, initializers,
etc to use the new sb_meta_uuid field.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The header side of xfs_bit.c is already in libxfs, and the sparse
inode code requires the xfs_next_bit() function so pull in the
xfs_bit.c file so that a sparse inode enabled libxfs compiles
cleanly in userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The second and subsequent lines of multi-line logging messages
are not prefixed with the same information as the first line.
Separate messages with newlines into multiple calls to ensure
consistent prefixing and allow easier grep use.
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bunmapi() doesn't care what type of extent is being freed and
does not look at the XFS_BMAPI_METADATA flag at all. As such we can
remove the XFS_BMAPI_METADATA from all callers that use it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We don't log remote attribute contents, and instead write them
synchronously before we commit the block allocation and attribute
tree update transaction. As a result we are writing to the allocated
space before the allcoation has been made permanent.
As a result, we cannot consider this allocation to be a metadata
allocation. Metadata allocation can take blocks from the free list
and so reuse them before the transaction that freed the block is
committed to disk. This behaviour is perfectly fine for journalled
metadata changes as log recovery will ensure the free operation is
replayed before the overwrite, but for remote attribute writes this
is not the case.
Hence we have to consider the remote attribute blocks to contain
data and allocate accordingly. We do this by dropping the
XFS_BMAPI_METADATA flag from the block allocation. This means the
allocation will not use blocks that are on the busy list without
first ensuring that the freeing transaction has been committed to
disk and the blocks removed from the busy list. This ensures we will
never overwrite a freed block without first ensuring that it is
really free.
cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In recent testing, a system that crashed failed log recovery on
restart with a bad symlink buffer magic number:
XFS (vda): Starting recovery (logdev: internal)
XFS (vda): Bad symlink block magic!
XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 2060
On examination of the log via xfs_logprint, none of the symlink
buffers in the log had a bad magic number, nor were any other types
of buffer log format headers mis-identified as symlink buffers.
Tracing was used to find the buffer the kernel was tripping over,
and xfs_db identified it's contents as:
000: 5841524d 00000000 00000346 64d82b48 8983e692 d71e4680 a5f49e2c b317576e
020: 00000000 00602038 00000000 006034ce d0020000 00000000 4d4d4d4d 4d4d4d4d
040: 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d
060: 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d
.....
This is a remote attribute buffer, which are notable in that they
are not logged but are instead written synchronously by the remote
attribute code so that they exist on disk before the attribute
transactions are committed to the journal.
The above remote attribute block has an invalid LSN in it - cycle
0xd002000, block 0 - which means when log recovery comes along to
determine if the transaction that writes to the underlying block
should be replayed, it sees a block that has a future LSN and so
does not replay the buffer data in the transaction. Instead, it
validates the buffer magic number and attaches the buffer verifier
to it. It is this buffer magic number check that is failing in the
above assert, indicating that we skipped replay due to the LSN of
the underlying buffer.
The problem here is that the remote attribute buffers cannot have a
valid LSN placed into them, because the transaction that contains
the attribute tree pointer changes and the block allocation that the
attribute data is being written to hasn't yet been committed. Hence
the LSN field in the attribute block is completely unwritten,
thereby leaving the underlying contents of the block in the LSN
field. It could have any value, and hence a future overwrite of the
block by log recovery may or may not work correctly.
Fix this by always writing an invalid LSN to the remote attribute
block, as any buffer in log recovery that needs to write over the
remote attribute should occur. We are protected from having old data
written over the attribute by the fact that freeing the block before
the remote attribute is written will result in the buffer being
marked stale in the log and so all changes prior to the buffer stale
transaction will be cancelled by log recovery.
Hence it is safe to ignore the LSN in the case or synchronously
written, unlogged metadata such as remote attribute blocks, and to
ensure we do that correctly, we need to write an invalid LSN to all
remote attribute blocks to trigger immediate recovery of metadata
that is written over the top.
As a further protection for filesystems that may already have remote
attribute blocks with bad LSNs on disk, change the log recovery code
to always trigger immediate recovery of metadata over remote
attribute blocks.
cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We no longer calculate the minimum freelist size from the on-disk
AGF, so we don't need the macros used for this. That means the
nested macros can be cleaned up, and turn this into an actual
function so the logic is clear and concise. This will make it much
easier to add support for the rmap btree when the time comes.
This also gets rid of the XFS_AG_MAXLEVELS macro used by these
freelist macros as it is simply a wrapper around a single variable.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The error handling is currently an inconsistent mess as every error
condition handles return values and releasing buffers individually.
Clean this up by using gotos and a sane error label stack.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The longest extent length checks in xfs_alloc_fix_freelist() are now
essentially identical. Factor them out into a helper function, so we
know they are checking exactly the same thing before and after we
lock the AGF.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
At the moment, xfs_alloc_fix_freelist() uses a mix of per-ag based
access and agf buffer based access to freelist and space usage
information. However, once the AGF buffer is locked inside this
function, it is guaranteed that both the in-memory and on-disk
values are identical. xfs_alloc_fix_freelist() doesn't modify the
values in the structures directly, so it is a read-only user of the
infomration, and hence can use the per-ag structure exclusively for
determining what it should do.
This opens up an avenue for cleaning up a lot of duplicated logic
whose only difference is the structure it gets the data from, and in
doing so removes a lot of needless byte swapping overhead when
fixing up the free list.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This avoids all kinds of unessecary casts in an envrionment like Linux where
we can assume that pointer arithmetics are support on void pointers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The flags argument to xfs_trans_commit is not useful for most callers, as
a commit of a transaction without a permanent log reservation must pass
0 here, and all callers for a transaction with a permanent log reservation
except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove
the flags argument from the public xfs_trans_commit interfaces, and
introduce low-level __xfs_trans_commit variant just for xfs_trans_roll
that regrants a log reservation instead of releasing it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and
XFS_TRANS_ABORT. Both of them are a direct product of the transaction
state, and can be deducted:
- any dirty transaction needs XFS_TRANS_ABORT to be properly canceled,
and XFS_TRANS_ABORT is a noop for a transaction that is not dirty.
- any transaction with a permanent log reservation needs
XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing
XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent
log reservation is invalid.
So just remove the flags argument and do the right thing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The inode allocator enables random sparse inode chunk allocations in
DEBUG mode to facilitate testing. Sparse inode allocations are not
always possible, however, depending on the fs geometry. For example,
there is no possibility for a sparse inode allocation on filesystems
where the block size is large enough to fit one or more inode chunks
within a single block.
Fix up the DEBUG mode sparse inode allocation logic to trigger random
sparse allocations only when the geometry of the fs allows it.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The commit:
a9273ca5 xfs: convert attr to use unsigned names
added these (unsigned char *) casts, but then the _SIZE macros
return "7" - size of a pointer minus one - not the length of
the string. This is harmless in the kernel, because the _SIZE
macros are not used, but as we sync up with userspace, this will
matter.
I don't think the cast is necessary; i.e. assigning the string
literal to an unsigned char *, or passing it to a function
expecting an unsigned char *, should be ok, right?
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The fsync() requirements for crash consistency on XFS are to flush file
data and force any in-core inode updates to the log. We currently check
whether the inode is pinned to identify whether the log needs to be
forced, since a non-zero pin count generally represents an inode that
has transactions awaiting a flush to the on-disk log.
This is not sufficient in all cases, however. Reports of xfstests test
generic/311 failures on ppc64/s390x hosts have identified failures to
fsync outstanding inode modifications due to the inode not being pinned
at the time of the fsync. This occurs because certain bmap updates can
complete by logging bmapbt buffers but without ever dirtying (and thus
pinning) the core inode. The following is a specific incarnation of this
problem:
$ mount $dev /mnt -o noatime,nobarrier
$ for i in $(seq 0 2 31); do \
xfs_io -f -c "falloc $((i * 32768)) 32k" -c fsync /mnt/file; \
done
$ xfs_io -c "pwrite -S 0 80k 16k" -c fsync -c "pwrite 76k 4k" -c fsync /mnt/file; \
hexdump /mnt/file; \
./xfstests-dev/src/godown /mnt
...
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
0013000 cdcd cdcd cdcd cdcd cdcd cdcd cdcd cdcd
*
0014000 0000 0000 0000 0000 0000 0000 0000 0000
*
00f8000
$ umount /mnt; mount ...
$ hexdump /mnt/file
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
00f8000
In short, the unwritten extent conversion for the last write is lost
despite the fact that an fsync executed before the filesystem was
shutdown. Note that this is impossible to reproduce on v5 supers due to
unconditional time callbacks for di_changecount and highly difficult to
reproduce on CONFIG_HZ=1000 kernels due to those same callbacks
frequently updating cmtime prior to the bmap update. CONFIG_HZ=100
reduces timer granularity enough to increase the odds that time updates
are skipped and allows this to reproduce within a handful of attempts.
To deal with this problem, unconditionally log the core in the unwritten
extent conversion path. Fix up logflags after the extent conversion to
keep the extent update code consistent with the other extent update
helpers. This fixup is not necessary for the other (hole, delay) extent
helpers because they execute in the block allocation codepath, which
already logs the inode for other reasons (e.g., for di_nblocks).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Enable mounting of filesystems with sparse inode support enabled. Add
the incompat. feature bit to the *_ALL mask.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_ifree_cluster() is called to mark all in-memory inodes and inode
buffers as stale. This occurs after we've removed the inobt records and
dropped any references of inobt data. xfs_ifree_cluster() uses the
starting inode number to walk the namespace of inodes expected for a
single chunk a cluster buffer at a time. The cluster buffer disk
addresses are calculated by decoding the sequential inode numbers
expected from the chunk.
The problem with this approach is that if the inode chunk being removed
is a sparse chunk, not all of the buffer addresses that are calculated
as part of this sequence may be inode clusters. Attempting to acquire
the buffer based on expected inode characterstics (i.e., cluster length)
can lead to errors and is generally incorrect.
We already use a couple variables to carry requisite state from
xfs_difree() to xfs_ifree_cluster(). Rather than add a third, define a
new internal structure to carry the existing parameters through these
functions. Add an alloc field that represents the physical allocation
bitmap of inodes in the chunk being removed. Modify xfs_ifree_cluster()
to check each inode against the bitmap and skip the clusters that were
never allocated as real inodes on disk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
An inode chunk is currently added to the transaction free list based on
a simple fsb conversion and hardcoded chunk length. The nature of sparse
chunks is such that the physical chunk of inodes on disk may consist of
one or more discontiguous parts. Blocks that reside in the holes of the
inode chunk are not inodes and could be allocated to any other use or
not allocated at all.
Refactor the existing xfs_bmap_add_free() call into the
xfs_difree_inode_chunk() helper. The new helper uses the existing
calculation if a chunk is not sparse. Otherwise, use the inobt record
holemask to free the contiguous regions of the chunk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Inode allocation from an existing record with free inodes traditionally
selects the first inode available according to the ir_free mask. With
sparse inode chunks, the ir_free mask could refer to an unallocated
region. We must mask the unallocated regions out of ir_free before using
it to select a free inode in the chunk.
Update the xfs_inobt_first_free_inode() helper to find the first free
inode available of the allocated regions of the inode chunk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Sparse inode allocations generally only occur when full inode chunk
allocation fails. This requires some level of filesystem space usage and
fragmentation.
For filesystems formatted with sparse inode chunks enabled, do random
sparse inode chunk allocs when compiled in DEBUG mode to increase test
coverage.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_ialloc_ag_alloc() makes several attempts to allocate a full inode
chunk. If all else fails, reduce the allocation to the sparse length and
alignment and attempt to allocate a sparse inode chunk.
If sparse chunk allocation succeeds, check whether an inobt record
already exists that can track the chunk. If so, inherit and update the
existing record. Otherwise, insert a new record for the sparse chunk.
Create helpers to align sparse chunk inode records and insert or update
existing records in the inode btrees. The xfs_inobt_insert_sprec()
helper implements the merge or update semantics required for sparse
inode records with respect to both the inobt and finobt. To update the
inobt, either insert a new record or merge with an existing record. To
update the finobt, use the updated inobt record to either insert or
replace an existing record.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The inobt record holemask field is a condensed data type designed to fit
into the existing on-disk record and is zero based (allocated regions
are set to 0, sparse regions are set to 1) to provide backwards
compatibility. This makes the type somewhat complex for use in higher
level inode manipulations such as individual inode allocation, etc.
Rather than foist the complexity of dealing with this field to every bit
of logic that requires inode granular information, create a helper to
convert the holemask to an inode allocation bitmap. The inode allocation
bitmap is inode granularity similar to the inobt record free mask and
indicates which inodes of the chunk are physically allocated on disk,
irrespective of whether the inode is considered allocated or free by the
filesystem.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
v5 superblocks use an ordered log item for logging the initialization of
inode chunks. The icreate log item is currently hardcoded to an inode
count of 64 inodes.
The agbno and extent length are used to initialize the inode chunk from
log recovery. While an incorrect inode count does not lead to bad inode
chunk initialization, we should pass the correct inode count such that log
recovery has enough data to perform meaningful validity checks on the
chunk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The inode btrees track 64 inodes per record regardless of inode size.
Thus, inode chunks on disk vary in size depending on the size of the
inodes. This creates a contiguous allocation requirement for new inode
chunks that can be difficult to satisfy on an aged and fragmented (free
space) filesystems.
The inode record freecount currently uses 4 bytes on disk to track the
free inode count. With a maximum freecount value of 64, only one byte is
required. Convert the freecount field to a single byte and use two of
the remaining 3 higher order bytes left for the hole mask field. Use the
final leftover byte for the total count field.
The hole mask field tracks holes in the chunks of physical space that
the inode record refers to. This facilitates the sparse allocation of
inode chunks when contiguous chunks are not available and allows the
inode btrees to identify what portions of the chunk contain valid
inodes. The total count field contains the total number of valid inodes
referred to by the record. This can also be deduced from the hole mask.
The count field provides clarity and redundancy for internal record
verification.
Note that neither of the new fields can be written to disk on fs'
without sparse inode support. Doing so writes to the high-order bytes of
freecount and causes corruption from the perspective of older kernels.
The on-disk inobt record data structure is updated with a union to
distinguish between the original, "full" format and the new, "sparse"
format. The conversion routines to get, insert and update records are
updated to translate to and from the on-disk record accordingly such
that freecount remains a 4-byte value on non-supported fs, yet the new
fields of the in-core record are always valid with respect to the
record. This means that higher level code can refer to the current
in-core record format unconditionally and lower level code ensures that
records are translated to/from disk according to the capabilities of the
fs.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Define an fs geometry bit for sparse inode chunks such that the
characteristic of the fs can be identified by userspace.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The sparse inode chunks feature uses the helper function to enable the
allocation of sparse inode chunks. The incompatible feature bit is set
on disk at mkfs time to prevent mount from unsupported kernels.
Also, enforce the inode alignment requirements required for sparse inode
chunks at mount time. When enabled, full inode chunks (and all inode
record) alignment is increased from cluster size to inode chunk size.
Sparse inode alignment must match the cluster size of the fs. Both
superblock alignment fields are set as such by mkfs when sparse inode
support is enabled.
Finally, warn that sparse inode chunks is an experimental feature until
further notice.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_ialloc_ag_select() iterates through the allocation groups looking
for free inodes or free space to determine whether to allow an inode
allocation to proceed. If no free inodes are available, it assumes that
an AG must have an extent longer than mp->m_ialloc_blks.
Sparse inode chunk support currently allows for allocations smaller than
the traditional inode chunk size specified in m_ialloc_blks. The current
minimum sparse allocation is set in the superblock sb_spino_align field
at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use
this to represent the minimum supported allocation size for inode
chunks. Initialize m_ialloc_min_blks at mount time based on whether
sparse inodes are supported.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add sb_spino_align to the superblock to specify sparse inode chunk
alignment. This also currently represents the minimum allowable sparse
chunk allocation size.
Signed-off-by: Brian Foster <bfoster@redhat.com>
The block allocator supports various arguments to tweak block allocation
behavior and set allocation requirements. The sparse inode chunk feature
introduces a new requirement not supported by the current arguments.
Sparse inode allocations must convert or merge into an inode record that
describes a fixed length chunk (64 inodes x inodesize). Full inode chunk
allocations by definition always result in valid inode records. Sparse
chunk allocations are smaller and the associated records can refer to
blocks not owned by the inode chunk. This model can result in invalid
inode records in certain cases.
For example, if a sparse allocation occurs near the start of an AG, the
aligned inode record for that chunk might refer to agbno 0. If an
allocation occurs towards the end of the AG and the AG size is not
aligned, the inode record could refer to blocks beyond the end of the
AG. While neither of these scenarios directly result in corruption, they
both insert invalid inode records and at minimum cause repair to
complain, are unlikely to merge into full chunks over time and set land
mines for other areas of code.
To guarantee sparse inode chunk allocation creates valid inode records,
support the ability to specify an agbno range limit for
XFS_ALLOCTYPE_NEAR_BNO block allocations. The min/max agbno's are
specified in the allocation arguments and limit the block allocation
algorithms to that range. The starting 'agbno' hint is clamped to the
range if the specified agbno is out of range. If no sufficient extent is
available within the range, the allocation fails. For backwards
compatibility, the min/max fields can be initialized to 0 to disable
range limiting (e.g., equivalent to min=0,max=agsize).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_difree_inobt() uses logic in a couple places that assume inobt
records refer to fully allocated chunks. Specifically, the use of
mp->m_ialloc_inos can cause problems for inode chunks that are sparsely
allocated. Sparse inode chunks can, by definition, define a smaller
number of inodes than a full inode chunk.
Fix the logic that determines whether an inode record should be removed
from the inobt to use the ir_free mask rather than ir_freecount. Fix the
agi counters modification to use ir_freecount to add the actual number
of inodes freed rather than assuming a full inode chunk.
Also make sure that we preserve the behavior to not remove inode chunks
if the block size is large enough for multiple inode chunks (e.g.,
bsize=64k, isize=512). This behavior was previously implicit in that in
such configurations, ir.freecount of a single record never matches
m_ialloc_inos. Hence, add some comments as well.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Inode allocation from sparse inode records must filter the ir_free mask
against ir_holemask. In preparation for this requirement, create a
helper to allocate an individual inode from an inode record.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_attr_inactive() is supposed to clean up the attribute fork when
the inode is being freed. While it removes attribute fork extents,
it completely ignores attributes in local format, which means that
there can still be active attributes on the inode after
xfs_attr_inactive() has run.
This leads to problems with concurrent inode writeback - the in-core
inode attribute fork is removed without locking on the assumption
that nothing will be attempting to access the attribute fork after a
call to xfs_attr_inactive() because it isn't supposed to exist on
disk any more.
To fix this, make xfs_attr_inactive() completely remove all traces
of the attribute fork from the inode, regardless of it's state.
Further, also remove the in-core attribute fork structure safely so
that there is nothing further that needs to be done by callers to
clean up the attribute fork. This means we can remove the in-core
and on-disk attribute forks atomically.
Also, on error simply remove the in-memory attribute fork. There's
nothing that can be done with it once we have failed to remove the
on-disk attribute fork, so we may as well just blow it away here
anyway.
cc: <stable@vger.kernel.org> # 3.12 to 4.0
Reported-by: Waiman Long <waiman.long@hp.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This results in BMBT corruption, as seen by this test:
# mkfs.xfs -f -d size=40051712b,agcount=4 /dev/vdc
....
# mount /dev/vdc /mnt/scratch
# xfs_io -ft -c "extsize 16m" -c "falloc 0 30g" -c "bmap -vp" /mnt/scratch/foo
which results in this failure on a debug kernel:
XFS: Assertion failed: (blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0, file: fs/xfs/libxfs/xfs_bmap_btree.c, line: 211
....
Call Trace:
[<ffffffff814cf0ff>] xfs_bmbt_set_allf+0x8f/0x100
[<ffffffff814cf18d>] xfs_bmbt_set_all+0x1d/0x20
[<ffffffff814f2efe>] xfs_iext_insert+0x9e/0x120
[<ffffffff814c7956>] ? xfs_bmap_add_extent_hole_real+0x1c6/0xc70
[<ffffffff814c7956>] xfs_bmap_add_extent_hole_real+0x1c6/0xc70
[<ffffffff814caaab>] xfs_bmapi_write+0x72b/0xed0
[<ffffffff811c72ac>] ? kmem_cache_alloc+0x15c/0x170
[<ffffffff814fe070>] xfs_alloc_file_space+0x160/0x400
[<ffffffff81ddcc29>] ? down_write+0x29/0x60
[<ffffffff815063eb>] xfs_file_fallocate+0x29b/0x310
[<ffffffff811d2bc8>] ? __sb_start_write+0x58/0x120
[<ffffffff811e3e18>] ? do_vfs_ioctl+0x318/0x570
[<ffffffff811cd680>] vfs_fallocate+0x140/0x260
[<ffffffff811ce6f8>] SyS_fallocate+0x48/0x80
[<ffffffff81ddec09>] system_call_fastpath+0x12/0x17
The tracepoint that indicates the extent that triggered the assert
failure is:
xfs_iext_insert: idx 0 offset 0 block 16777224 count 2097152 flag 1
Clearly indicating that the extent length is greater than MAXEXTLEN,
which is 2097151. A prior trace point shows the allocation was an
exact size match and that a length greater than MAXEXTLEN was asked
for:
xfs_alloc_size_done: agno 1 agbno 8 minlen 2097152 maxlen 2097152
^^^^^^^ ^^^^^^^
We don't see this problem with extent size hints through the IO path
because we can't do single IOs large enough to trigger MAXEXTLEN
allocation. fallocate(), OTOH, is not limited in it's allocation
sizes and so needs help here.
The issue is that the extent size hint alignment is rounding up the
extent size past MAXEXTLEN, because xfs_bmapi_write() is not taking
into account extent size hints when calculating the maximum extent
length to allocate. xfs_bmapi_reserve_delalloc() is already doing
this, but direct extent allocation is not.
Unfortunately, the calculation in xfs_bmapi_reserve_delalloc() is
wrong, and it works only because delayed allocation extents are not
limited in size to MAXEXTLEN in the in-core extent tree. hence this
calculation does not work for direct allocation, and the delalloc
code needs fixing. This may, in fact be the underlying bug that
occassionally causes transaction overruns in delayed allocation
extent conversion, so now we know it's wrong we should fix it, too.
Many thanks to Brian Foster for finding this problem during review
of this patch.
Hence the fix, after much code reading, is to allow
xfs_bmap_extsize_align() to align partial extents when full
alignment would extend the alignment past MAXEXTLEN. We can safely
do this because all callers have higher layer allocation loops that
already handle short allocations, and so will simply run another
allocation to cover the remainder of the requested allocation range
that we ignored during alignment. The advantage of this approach is
that it also removes the need for callers to do anything other than
limit their requests to MAXEXTLEN - they don't really need to be
aware of extent size hints at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Function percpu_counter_read just return the current counter, which can be
negative. This will cause the checking of "allocated inode
counts <= m_maxicount" false positive. Use percpu_counter_read_positive can
solve this problem, and be consistent with the purpose to introduce percpu
mechanism to xfs.
Signed-off-by: George Wang <xuw2015@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_attr3_leaf_remove() removes an attribute from an attr leaf block. If
the attribute nameval data happens to be at the start of the nameval
region, a new start offset (firstused) for the region is calculated
(since the region grows from the tail of the block to the start). Once
the new firstused is calculated, it is checked for zero in an apparent
overflow check.
Now that the in-core firstused is 32-bit, overflow is not possible and
this check can be removed. Since the purpose for this check is not
documented and appears to exist since the port to Linux, be conservative
and replace it with an assert.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The on-disk xfs_attr3_leaf_hdr structure firstused field is 16-bit and
subject to overflow when fs block size is 64k. The field is typically
initialized to block size when an attr leaf block is initialized. This
problem is demonstrated by assert failures when running xfstests
generic/117 on an fs with 64k blocks.
To support the existing attr leaf block algorithms for insertion,
rebalance and entry movement, increase the size of the in-core firstused
field to 32-bit and handle the potential overflow on conversion to/from
the on-disk structure. If the overflow condition occurs, set a special
value in the firstused field that is translated back on header read. The
special value is only required in the case of an empty 64k attr block. A
value of zero is used because firstused is initialized to the block size
and grows backwards from there. Furthermore, the attribute block header
occupies the first bytes of the block. Thus, a value of zero has no
other legitimate meaning for this structure. Two new conversion helpers
are created to manage the conversion of firstused to and from disk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The firstused field of the xfs_attr3_leaf_hdr structure is subject to an
overflow when fs blocksize is 64k. In preparation to handle this
overflow in the header conversion functions, pass the attribute geometry
to the functions that convert the in-core structure to and from the
on-disk structure.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch implements fallocate's FALLOC_FL_INSERT_RANGE for XFS.
1) Make sure that both offset and len are block size aligned.
2) Update the i_size of inode by len bytes.
3) Compute the file's logical block number against offset. If the computed
block number is not the starting block of the extent, split the extent
such that the block number is the starting block of the extent.
4) Shift all the extents which are lying bewteen [offset, last allocated extent]
towards right by len bytes. This step will make a hole of len bytes
at offset.
Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use icnodehdr for struct xfs_da3_icnode_hdr instead of nodehdr
(already declared above).
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This code is redundant now that we have verifiers that sanity check
the buffers as they are read from disk.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Test generic/224 is failing with a corruption being detected on one
of Michael's test boxes. Debug that Michael added is indicating
that the minleft trimming is resulting in an underflow:
.....
before fixup: rlen 1 args->len 0
after xfs_alloc_fix_len : rlen 1 args->len 1
before goto out_nominleft: rlen 1 args->len 0
before fixup: rlen 1 args->len 0
after xfs_alloc_fix_len : rlen 1 args->len 1
after fixup: rlen 1 args->len 1
before fixup: rlen 1 args->len 0
after xfs_alloc_fix_len : rlen 1 args->len 1
after fixup: rlen 4294967295 args->len 4294967295
XFS: Assertion failed: fs_is_ok, file: fs/xfs/libxfs/xfs_alloc.c, line: 1424
The "goto out_nominleft:" indicates that we are getting close to
ENOSPC in the AG, and a couple of allocations later we underflow
and the corruption check fires in xfs_alloc_ag_vextent_size().
The issue is that the extent length fixups comaprisons are done
with variables of xfs_extlen_t types. These are unsigned so an
underflow looks like a really big value and hence is not detected
as being smaller than the minimum length allowed for the extent.
Hence the corruption check fires as it is noticing that the returned
length is longer than the original extent length passed in.
This can be easily fixed by ensuring we do the underflow test on
signed values, the same way xfs_alloc_fix_len() prevents underflow.
So we realise in future that these casts prevent underflows from
going undetected, add comments to the code indicating this.
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Tested-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The error messages document the reason for the checks better than the comment
and the comments about volume mounts date back to Irix and so aren't relevant
any more. So just remove the old and redundant comment.
Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Today, if we hit an XFS_WANT_CORRUPTED_RETURN we don't print any
information about which filesystem hit it. Passing in the mp allows
us to print the filesystem (device) name, which is a pretty critical
piece of information.
Tested by running fsfuzzer 'til I hit some.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Today, if we hit an XFS_WANT_CORRUPTED_GOTO we don't print any
information about which filesystem hit it. Passing in the mp allows
us to print the filesystem (device) name, which is a pretty critical
piece of information.
Tested by running fsfuzzer 'til I hit some.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that there are no users of the bitfield based incore superblock
modification API, just remove the whole damn lot of it, including
all the bitfield definitions. This finally removes a lot of cruft
that has been around for a long time.
Credit goes to Christoph Hellwig for providing a great patch
connecting all the dots to enale us to do this. This patch is
derived from that work.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a new helper to modify the incore counter of free realtime
extents. This matches the helpers used for inode and data block
counters, and removes a significant users of the xfs_mod_incore_sb()
interface.
Based on a patch originally from Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the in-core superblock infrastructure has been replaced with
generic per-cpu counters, we don't need it anymore. Nuke it from
orbit so we are sure that it won't haunt us again...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free block counter is
special in that it is used for ENOSPC detection outside transaction
contexts for for delayed allocation. This means that the counter
needs to be accurate at zero. The current per-cpu counter code jumps
through lots of hoops to ensure we never run past zero, but we don't
need to make all those jumps with the generic counter
implementation.
The generic counter implementation allows us to pass a "batch"
threshold at which the addition/subtraction to the counter value
will be folded back into global value under lock. We can use this
feature to reduce the batch size as we approach 0 in a very similar
manner to the existing counters and their rebalance algorithm. If we
use a batch size of 1 as we approach 0, then every addition and
subtraction will be done against the global value and hence allow
accurate detection of zero threshold crossing.
Hence we can replace the handrolled, accurate-at-zero counters with
generic percpu counters.
Note: this removes just enough of the icsb infrastructure to compile
without warnings. The rest will go in subsequent commits.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free inode counter is not
used for any limit enforcement - the per-AG free inode counters are
used during allocation to determine if there are inode available for
allocation.
Hence we don't need any of the complexity of the hand-rolled
counters and we can simply replace them with generic per-cpu
counters similar to the inode counter.
This version introduces a xfs_mod_ifree() helper function from
Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. There are some warts around
the use of them for the inode counter as the hand rolled counter is
designed to be accurate at zero, but has no specific accurracy at
any other value. This design causes problems for the maximum inode
count threshold enforcement, as there is no trigger that balances
the counters as they get close tothe maximum threshold.
Instead of designing new triggers for balancing, just replace the
handrolled per-cpu counter with a generic counter. This enables us
to update the counter through the normal superblock modification
funtions, but rather than do that we add a xfs_mod_icount() helper
function (from Christoph Hellwig) and keep the percpu counter
outside the superblock in the struct xfs_mount.
This means we still need to initialise the per-cpu counter
specifically when we read the superblock, and vice versa when we
log/write it, but it does mean that we don't need to change any
other code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Conversion from local to extent format does not set the buffer type
correctly on the new extent buffer when a symlink data is moved out
of line.
Fix the symlink code and leave a comment in the generic bmap code
reminding us that the format-specific data copy needs to set the
destination buffer type appropriately.
cc: <stable@vger.kernel.org> # 3.10 to current
Tested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently have to ensure that every time we update sb_features2
that we update sb_bad_features2. Now that we log and format the
superblock in it's entirety we actually don't have to care because
we can simply update the sb_bad_features2 when we format it into the
buffer. This removes the need for anything but the mount and
superblock formatting code to care about sb_bad_features2, and
hence removes the possibility that we forget to update bad_features2
when necessary in the future.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We now have several superblock loggin functions that are identical
except for the transaction reservation and whether it shoul dbe a
synchronous transaction or not. Consolidate these all into a single
function, a single reserveration and a sync flag and call it
xfs_sync_sb().
Also, xfs_mod_sb() is not really a modification function - it's the
operation of logging the superblock buffer. hence change the name of
it to reflect this.
Note that we have to change the mp->m_update_flags that are passed
around at mount time to a boolean simply to indicate a superblock
update is needed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we log changes to the superblock, we first have to write them
to the on-disk buffer, and then log that. Right now we have a
complex bitfield based arrangement to only write the modified field
to the buffer before we log it.
This used to be necessary as a performance optimisation because we
logged the superblock buffer in every extent or inode allocation or
freeing, and so performance was extremely important. We haven't done
this for years, however, ever since the lazy superblock counters
pulled the superblock logging out of the transaction commit
fast path.
Hence we have a bunch of complexity that is not necessary that makes
writing the in-core superblock to disk much more complex than it
needs to be. We only need to log the superblock now during
management operations (e.g. during mount, unmount or quota control
operations) so it is not a performance critical path anymore.
As such, remove the complex field based logging mechanism and
replace it with a simple conversion function similar to what we use
for all other on-disk structures.
This means we always log the entirity of the superblock, but again
because we rarely modify the superblock this is not an issue for log
bandwidth or CPU time. Indeed, if we do log the superblock
frequently, delayed logging will minimise the impact of this
overhead.
[Fixed gquota/pquota inode sharing regression noticed by bfoster.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This function is used libxfs code, but is implemented separately in
userspace. Move the function prototype to xfs_bmap.h so that the
prototype is shared even if the implementations aren't.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It no long is used for stack splits, so strip the kernel workqueue
bits from it and push it back into libxfs/xfs_bmap.h so that
it can be shared with the userspace code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The types used by the core XFS code are common between kernel and
userspace. xfs_types.h is duplicated in both kernel and userspace,
so move it to libxfs along with all the other shared code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Ioctl API definitions are shared with userspace, so move the header
file that defines them all to libxfs along with all the other code
shared with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently when we modify sb_features2, we store the same value also in
sb_bad_features2. However in most places we forget to mark field
sb_bad_features2 for logging and thus it can happen that a change to it
is lost. This results in an inconsistent sb_features2 and
sb_bad_features2 fields e.g. after xfstests test xfs/187.
Fix the problem by changing XFS_SB_FEATURES2 to actually mean both
sb_features2 and sb_bad_features2 fields since this is always what we
want to log. This isn't ideal because the fact that XFS_SB_FEATURES2
means two fields could cause some problem in future however the code is
hopefully less error prone that it is now.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The kernel compile doesn't turn on these checks by default, so it's
only when I do a kernel-user sync that I find that there are lots of
compiler warnings waiting to be fixed. Fix up these set-but-unused
warnings.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These are currently considered private to libxfs, but they are
widely used by the userspace code to decode, walk and check
directory structures. Hence they really form part of the external
API and as such need to bemoved to xfs_dir2.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These functions are needed in userspace for repair and mkfs to
do the right thing. Move them to libxfs so they can be easily
shared.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
xfs_bmse_merge() has a jump label for return that just returns the
error value. Convert all the code to just return the error directly
and use XFS_WANT_CORRUPTED_RETURN. This also allows the final call
to xfs_bmbt_update() to return directly.
Noticed while reviewing coccinelle return cleanup patches and
wondering why the same return pattern as in xfs_bmse_shift_one()
wasn't picked up by the checker pattern...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bmse_shift_one() jumps around determining whether to shift or
merge, making the code flow difficult to follow. Clean it up and
use direct error returns (including XFS_WANT_CORRUPTED_RETURN) to
make the code flow better and be easier to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
After growing a filesystem, XFS can fail to allocate inodes even
though there is a large amount of space available in the filesystem
for inodes. The issue is caused by a nearly full allocation group
having enough free space in it to be considered for inode
allocation, but not enough contiguous free space to actually
allocation inodes. This situation results in successful selection
of the AG for allocation, then failure of the allocation resulting
in ENOSPC being reported to the caller.
It is caused by two possible issues. Firstly, we only consider the
lognest free extent and whether it would fit an inode chunk. If the
extent is not correctly aligned, then we can't allocate an inode
chunk in it regardless of the fact that it is large enough. This
tends to be a permanent error until space in the AG is freed.
The second issue is that we don't actually lock the AGI or AGF when
we are doing these checks, and so by the time we get to actually
allocating the inode chunk the space we thought we had in the AG may
have been allocated. This tends to be a spurious error as it
requires a race to trigger. Hence this case is ignored in this patch
as the reported problem is for permanent errors.
The first issue could be addressed by simply taking into account the
alignment when checking the longest extent. This, however, would
prevent allocation in AGs that have aligned, exact sized extents
free. However, this case should be fairly rare compared to the
number of allocations that occur near ENOSPC that would trigger this
condition.
Hence, when selecting the inode AG, take into account the inode
cluster alignment when checking the lognest free extent in the AG.
If we can't find any AGs with a contiguous free space large
enough to be aligned, drop the alignment addition and just try for
an AG that has enough contiguous free space available for an inode
chunk. This won't prevent issues from occurring, but should avoid
situations where other AGs have lots of free space but the selected
AG can't allocate due to alignment constraints.
Reported-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
fs/xfs/libxfs/xfs_bmap.c:5591:1-6: WARNING: end returns can be simpified
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
CC: Brian Foster <bfoster@redhat.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
fs/xfs/libxfs/xfs_ialloc.c:1141:1-6: WARNING: end returns can be simpified
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>