We can use clockevents_calc_mult_shift instead of doing all
the work ourselves.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When re-enabling interrupts we have code to handle edge sensitive
decrementers by resetting the decrementer to 1 whenever it is negative.
If interrupts were disabled long enough that the decrementer wrapped to
positive we do nothing. This means interrupts can be delayed for a long
time until it finally goes negative again.
While we hope interrupts are never be disabled long enough for the
decrementer to go positive, we have a very good test team that can
drive any kernel into the ground. The softlockup data we get back
from these fails could be seconds in the future, completely missing
the cause of the lockup.
We already keep track of the timebase of the next event so use that
to work out if we should trigger a decrementer exception.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
All these files were including module.h just for the basic
EXPORT_SYMBOL infrastructure. We can shift them off to the
export.h header which is a way smaller footprint and thus
realize some compile time gains.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Commit e360adbe29 ("irq_work: Add generic hardirq context
callbacks") fouled up the ppc bit, not properly naming the
arch specific function that raises the 'self-IPI'.
Cc: Huang Ying <ying.huang@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: stable@kernel.org # 37+
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-eg0aqien8p1aqvzu9dft6dtv@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We currently enable interrupts before the dispatch log for the boot
cpu is setup. If a timer interrupt comes in early enough we oops in
scan_dispatch_log:
Unable to handle kernel paging request for data at address 0x00000010
...
.scan_dispatch_log+0xb0/0x170
.account_system_vtime+0xa0/0x220
.irq_enter+0x88/0xc0
.do_IRQ+0x48/0x230
The patch below adds a check to scan_dispatch_log to ensure the
dispatch log has been allocated.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: <stable@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With some implementations, it is possible that a timer interrupt
occurs every few seconds on an offline CPU. In this case, just
re-arm the decrementer and return immediately
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
commit cf9efce0ce (powerpc: Account time using timebase rather
than PURR) used in_irq() to detect if the time was spent in
interrupt processing. This only catches hardirq context so if we
are in softirq context and in the idle loop we end up accounting it
as idle time. If we instead use in_interrupt() we catch both softirq
and hardirq time.
The issue was found when running a network intensive workload. top
showed the following:
0.0%us, 1.1%sy, 0.0%ni, 85.7%id, 0.0%wa, 9.9%hi, 3.3%si, 0.0%st
85.7% idle. But this was wildly different to the perf events data.
To confirm the suspicion I ran something to keep the core busy:
# yes > /dev/null &
8.2%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 10.3%hi, 81.4%si, 0.0%st
We only got 8.2% of the CPU for the userspace task and softirq has
shot up to 81.4%.
With the patch below top shows the correct stats:
0.0%us, 0.0%sy, 0.0%ni, 5.3%id, 0.0%wa, 13.3%hi, 81.3%si, 0.0%st
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With cmwq, there's no reason to use a separate workqueue in
cpufreq_spudemand. Use system_wq instead. The work items are already
sync canceled on stop, so it's already guaranteed that no work is
running when spu_gov_exit() is entered.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Dave Jones <davej@redhat.com>
Cc: cpufreq@vger.kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
problem:
I see sometimes on my mpc5200 based board such printk timing
information:
[ 0.000000] NR_IRQS:512 nr_irqs:512 16
[ 0.000000] MPC52xx PIC is up and running!
[ 0.000000] clocksource: timebase mult[79364d9] shift[22] registered
[ 0.000000] console [ttyPSC0] enabled
[ 130.300633] pid_max: default: 32768 minimum: 301
[ 130.305647] Mount-cache hash table entries: 512
[ 130.315818] NET: Registered protocol family 16
reason:
if the tbu not starts from 0 when linux boots, boot_tb
maybe could not store the real 64 bit tbu value, because
boot_tp is only a 32 bit unsigned long.
solution:
change boot_tb to u64
[BenH: Made it u64 instead of unsigned long long]
Signed-off-by: Heiko Schocher <hs@denx.de>
cc: Wolfgang Denk <wd@denx.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (71 commits)
powerpc/44x: Update ppc44x_defconfig
powerpc/watchdog: Make default timeout for Book-E watchdog a Kconfig option
fsl_rio: Add comments for sRIO registers.
powerpc/fsl-booke: Add e55xx (64-bit) smp defconfig
powerpc/fsl-booke: Add p5020 DS board support
powerpc/fsl-booke64: Use TLB CAMs to cover linear mapping on FSL 64-bit chips
powerpc/fsl-booke: Add support for FSL Arch v1.0 MMU in setup_page_sizes
powerpc/fsl-booke: Add support for FSL 64-bit e5500 core
powerpc/85xx: add cache-sram support
powerpc/85xx: add ngPIXIS FPGA device tree node to the P1022DS board
powerpc: Fix compile error with paca code on ppc64e
powerpc/fsl-booke: Add p3041 DS board support
oprofile/fsl emb: Don't set MSR[PMM] until after clearing the interrupt.
powerpc/fsl-booke: Add PCI device ids for P2040/P3041/P5010/P5020 QoirQ chips
powerpc/mpc8xxx_gpio: Add support for 'qoriq-gpio' controllers
powerpc/fsl_booke: Add support to boot from core other than 0
powerpc/p1022: Add probing for individual DMA channels
powerpc/fsl_soc: Search all global-utilities nodes for rstccr
powerpc: Fix invalid page flags in create TLB CAM path for PTE_64BIT
powerpc/mpc83xx: Support for MPC8308 P1M board
...
Fix up conflict with the generic irq_work changes in arch/powerpc/kernel/time.c
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Export the global variable 'ppc_tb_freq', so that modules (like the Book-E
watchdog driver) can use it. To maintain consistency, ppc_proc_freq is
changed to a GPL-only export. This is okay, because any module that needs
this symbol should be an actual Linux driver, which must be GPL-licensed.
Signed-off-by: Timur Tabi <timur@freescale.com>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Since the cpu accounting code uses the hypervisor dispatch trace log
now when CONFIG_VIRT_CPU_ACCOUNTING = y, the previous commit disabled
access to it via files in the /sys/kernel/debug/powerpc/dtl/ directory
in that case. This restores those files.
To do this, we now have a hook that the cpu accounting code will call
as it processes each entry from the hypervisor dispatch trace log.
The code in dtl.c now uses that to fill up its ring buffer, rather
than having the hypervisor fill the ring buffer directly.
This also fixes dtl_file_read() to handle overflow conditions a bit
better and adds a spinlock to ensure that race conditions (multiple
processes opening or reading the file concurrently) are handled
correctly.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit 0fe1ac48 ("powerpc/perf_event: Fix oops due to
perf_event_do_pending call") moved the call to perf_event_do_pending
in timer_interrupt() down so that it was after the irq_enter() call.
Unfortunately this moved it after the code that checks whether it
is time for the next decrementer clock event. The result is that
the call to perf_event_do_pending() won't happen until the next
decrementer clock event is due. This was pointed out by Milton
Miller.
This fixes it by moving the check for whether it's time for the
next decrementer clock event down to the point where we're about
to call the event handler, after we've called perf_event_do_pending.
This has the side effect that on old pre-Core99 Powermacs where we
use the ppc_n_lost_interrupts mechanism to replay interrupts, a
replayed interrupt will incur a little more latency since it will
now do the code from the irq_enter down to the irq_exit, that it
used to skip. However, these machines are now old and rare enough
that this doesn't matter. To make it clear that ppc_n_lost_interrupts
is only used on Powermacs, and to speed up the code slightly on
non-Powermac ppc32 machines, the code that tests ppc_n_lost_interrupts
is now conditional on CONFIG_PMAC as well as CONFIG_PPC32.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Conflicts:
arch/powerpc/kernel/time.c
Reason: The powerpc next tree contains two commits which conflict with
the timekeeping changes:
8fd63a9e powerpc: Rework VDSO gettimeofday to prevent time going backwards
c1aa687d powerpc: Clean up obsolete code relating to decrementer and timebase
John Stultz identified them and provided the conflict resolution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since the decrementer and timekeeping code was moved over to using
the generic clockevents and timekeeping infrastructure, several
variables and functions have been obsolete and effectively unused.
This deletes them.
In particular, wakeup_decrementer() is no longer needed since the
generic code reprograms the decrementer as part of the process of
resuming the timekeeping code, which happens during sysdev resume.
Thus the wakeup_decrementer calls in the suspend_enter methods for
52xx platforms have been removed. The call in the powermac cpu
frequency change code has been replaced by set_dec(1), which will
cause a timer interrupt as soon as interrupts are enabled, and the
generic code will then reprogram the decrementer with the correct
value.
This also simplifies the generic_suspend_en/disable_irqs functions
and makes them static since they are not referenced outside time.c.
The preempt_enable/disable calls are removed because the generic
code has disabled all but the boot cpu at the point where these
functions are called, so we can't be moved to another cpu.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
update_vsyscall() did not provide the wall_to_monotoinc offset,
so arch specific implementations tend to reference wall_to_monotonic
directly. This limits future cleanups in the timekeeping core, so
this patch fixes the update_vsyscall interface to provide
wall_to_monotonic, allowing wall_to_monotonic to be made static
as planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Tony Luck <tony.luck@intel.com>
LKML-Reference: <1279068988-21864-7-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This removes powerpc's direct xtime usage, allowing for further
generic timeekeping cleanups
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Anton Blanchard <anton@samba.org>
LKML-Reference: <1279068988-21864-6-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently powerpc's update_vsyscall calls an inline update_gtod.
However, both are straightforward, and there are no other users,
so this patch merges update_gtod into update_vsyscall.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1279068988-21864-5-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Anton Blanchard found that large POWER systems would occasionally
crash in the exception exit path when profiling with perf_events.
The symptom was that an interrupt would occur late in the exit path
when the MSR[RI] (recoverable interrupt) bit was clear. Interrupts
should be hard-disabled at this point but they were enabled. Because
the interrupt was not recoverable the system panicked.
The reason is that the exception exit path was calling
perf_event_do_pending after hard-disabling interrupts, and
perf_event_do_pending will re-enable interrupts.
The simplest and cleanest fix for this is to use the same mechanism
that 32-bit powerpc does, namely to cause a self-IPI by setting the
decrementer to 1. This means we can remove the tests in the exception
exit path and raw_local_irq_restore.
This also makes sure that the call to perf_event_do_pending from
timer_interrupt() happens within irq_enter/irq_exit. (Note that
calling perf_event_do_pending from timer_interrupt does not mean that
there is a possible 1/HZ latency; setting the decrementer to 1 ensures
that the timer interrupt will happen immediately, i.e. within one
timebase tick, which is a few nanoseconds or 10s of nanoseconds.)
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With NO_HZ it is useful to know how often the decrementer is going off. The
patch below adds an entry for it and also adds it into the /proc/stat
summaries.
While here, I added performance monitoring and machine check exceptions.
I found it useful to keep an eye on the PMU exception rate
when using the perf tool. Since it's possible to take a completely
handled machine check on a System p box it also sounds like a good idea to
keep a machine check summary.
The event naming matches x86 to keep gratuitous differences to a minimum.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The clockevent multiplier and shift is useful information, but we
only need to print it once.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The cputime code has a few places that do per_cpu(, smp_processor_id()).
Replace them with __get_cpu_var().
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We noticed that recent kernels didn't boot on our 1GHz Canyonlands 460EX
boards anymore. As it seems, patch 8d165db1 [powerpc: Improve
decrementer accuracy] introduced this problem. The routine div_sc()
overflows with shift = 32 resulting in this incorrect setup:
time_init: decrementer frequency = 1000.000012 MHz
time_init: processor frequency = 1000.000012 MHz
clocksource: timebase mult[400000] shift[22] registered
clockevent: decrementer mult[33] shift[32] cpu[0]
This patch now introduces a local div_dc64() version of this function
so that this overflow doesn't happen anymore.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Detlev Zundel <dzu@denx.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (151 commits)
powerpc: Fix usage of 64-bit instruction in 32-bit altivec code
MAINTAINERS: Add PowerPC patterns
powerpc/pseries: Track previous CPPR values to correctly EOI interrupts
powerpc/pseries: Correct pseries/dlpar.c build break without CONFIG_SMP
powerpc: Make "intspec" pointers in irq_host->xlate() const
powerpc/8xx: DTLB Miss cleanup
powerpc/8xx: Remove DIRTY pte handling in DTLB Error.
powerpc/8xx: Start using dcbX instructions in various copy routines
powerpc/8xx: Restore _PAGE_WRITETHRU
powerpc/8xx: Add missing Guarded setting in DTLB Error.
powerpc/8xx: Fixup DAR from buggy dcbX instructions.
powerpc/8xx: Tag DAR with 0x00f0 to catch buggy instructions.
powerpc/8xx: Update TLB asm so it behaves as linux mm expects.
powerpc/8xx: Invalidate non present TLBs
powerpc/pseries: Serialize cpu hotplug operations during deactivate Vs deallocate
pseries/pseries: Add code to online/offline CPUs of a DLPAR node
powerpc: stop_this_cpu: remove the cpu from the online map.
powerpc/pseries: Add kernel based CPU DLPAR handling
sysfs/cpu: Add probe/release files
powerpc/pseries: Kernel DLPAR Infrastructure
...
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers, init: Limit the number of per cpu calibration bootup messages
posix-cpu-timers: optimize and document timer_create callback
clockevents: Add missing include to pacify sparse
x86: vmiclock: Fix printk format
x86: Fix printk format due to variable type change
sparc: fix printk for change of variable type
clocksource/events: Fix fallout of generic code changes
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds
nohz: Track last do_timer() cpu
nohz: Prevent clocksource wrapping during idle
nohz: Type cast printk argument
mips: Use generic mult/shift factor calculation for clocks
clocksource: Provide a generic mult/shift factor calculation
clockevents: Use u32 for mult and shift factors
nohz: Introduce arch_needs_cpu
nohz: Reuse ktime in sub-functions of tick_check_idle.
time: Remove xtime_cache
time: Implement logarithmic time accumulation
Since commit 0a544198 "timekeeping: Move NTP adjusted clock multiplier
to struct timekeeper" the clock multiplier of vsyscall is updated with
the unmodified clock multiplier of the clock source and not with the
NTP adjusted multiplier of the timekeeper.
This causes user space observerable time warps:
new CLOCK-warp maximum: 120 nsecs, 00000025c337c537 -> 00000025c337c4bf
Add a new argument "mult" to update_vsyscall() and hand in the
timekeeping internal NTP adjusted multiplier.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: "Zhang Yanmin" <yanmin_zhang@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
LKML-Reference: <1258436990.17765.83.camel@minggr.sh.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
powerpc grew a new warning due to the type change of clockevent->mult.
The architectures which use parts of the generic time keeping
infrastructure tripped over my wrong assumption that
clocksource_register is only used when GENERIC_TIME=y.
I should have looked and also I should have known better. These
renitent Gaul villages are racking my nerves. Some serious deprecating
is due.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Doing so causes xtime to be negative which crashes the timekeeping
code in funny ways when doing suspend/resume
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We want to be able to build KVM as a module. To enable us doing so, we
need some more exports from core Linux parts.
This patch exports all functions and variables that are required for KVM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We can monitor the effectiveness of our power management of both the
kernel and hypervisor by probing the timer interrupt. For example, on
this box we see 10.37s timer interrupts on an idle core:
<idle>-0 [010] 3900.671297: timer_interrupt_entry: pt_regs=c0000000ce1e7b10
<idle>-0 [010] 3900.671302: timer_interrupt_exit: pt_regs=c0000000ce1e7b10
<idle>-0 [010] 3911.042963: timer_interrupt_entry: pt_regs=c0000000ce1e7b10
<idle>-0 [010] 3911.042968: timer_interrupt_exit: pt_regs=c0000000ce1e7b10
<idle>-0 [010] 3921.414630: timer_interrupt_entry: pt_regs=c0000000ce1e7b10
<idle>-0 [010] 3921.414635: timer_interrupt_exit: pt_regs=c0000000ce1e7b10
Since we have a 207MHz decrementer it will go negative and fire every 10.37s
even if Linux is completely idle.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (34 commits)
time: Prevent 32 bit overflow with set_normalized_timespec()
clocksource: Delay clocksource down rating to late boot
clocksource: clocksource_select must be called with mutex locked
clocksource: Resolve cpu hotplug dead lock with TSC unstable, fix crash
timers: Drop a function prototype
clocksource: Resolve cpu hotplug dead lock with TSC unstable
timer.c: Fix S/390 comments
timekeeping: Fix invalid getboottime() value
timekeeping: Fix up read_persistent_clock() breakage on sh
timekeeping: Increase granularity of read_persistent_clock(), build fix
time: Introduce CLOCK_REALTIME_COARSE
x86: Do not unregister PIT clocksource on PIT oneshot setup/shutdown
clocksource: Avoid clocksource watchdog circular locking dependency
clocksource: Protect the watchdog rating changes with clocksource_mutex
clocksource: Call clocksource_change_rating() outside of watchdog_lock
timekeeping: Introduce read_boot_clock
timekeeping: Increase granularity of read_persistent_clock()
timekeeping: Update clocksource with stop_machine
timekeeping: Add timekeeper read_clock helper functions
timekeeping: Move NTP adjusted clock multiplier to struct timekeeper
...
Fix trivial conflict due to MIPS lemote -> loongson renaming.
This moves the code to start the decrementer on 40x and BookE into
a separate function which is now called from time_init() and
secondary_time_init(), before the respective clock sources are
registered. We also remove the 85xx specific code for doing it
from the platform code.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Fix the following build problem on powerpc:
arch/powerpc/kernel/time.c: In function 'read_persistent_clock':
arch/powerpc/kernel/time.c:788: error: 'return' with a value, in function returning void
arch/powerpc/kernel/time.c:791: error: 'return' with a value, in function returning void
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: dwalker@fifo99.com
Cc: johnstul@us.ibm.com
LKML-Reference: <20090822222313.74b9619c@skybase>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The kernel.h macro DIV_ROUND_CLOSEST performs the computation (x + d/2)/d
but is perhaps more readable.
The semantic patch that makes this change is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@haskernel@
@@
#include <linux/kernel.h>
@depends on haskernel@
expression x,__divisor;
@@
- (((x) + ((__divisor) / 2)) / (__divisor))
+ DIV_ROUND_CLOSEST(x,__divisor)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The persistent clock of some architectures (e.g. s390) have a
better granularity than seconds. To reduce the delta between the
host clock and the guest clock in a virtualized system change the
read_persistent_clock function to return a struct timespec.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134811.013873340@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For powerpc with CONFIG_VIRT_CPU_ACCOUNTING
jiffies_to_cputime(1) is not compile time constant and run time
calculations are quite expensive. To optimize we use
precomputed value. For all other architectures is is
preprocessor definition.
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
LKML-Reference: <1248862529-6063-5-git-send-email-sgruszka@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This enables the perf_counter subsystem on 32-bit powerpc. Since we
don't have any support for hardware counters on 32-bit powerpc yet,
only software counters can be used.
Besides selecting HAVE_PERF_COUNTERS for 32-bit powerpc as well as
64-bit, the main thing this does is add an implementation of
set_perf_counter_pending(). This needs to arrange for
perf_counter_do_pending() to be called when interrupts are enabled.
Rather than add code to local_irq_restore as 64-bit does, the 32-bit
set_perf_counter_pending() generates an interrupt by setting the
decrementer to 1 so that a decrementer interrupt will become pending
in 1 or 2 timebase ticks (if a decrementer interrupt isn't already
pending). When interrupts are enabled, timer_interrupt() will be
called, and some new code in there calls perf_counter_do_pending().
We use a per-cpu array of flags to indicate whether we need to call
perf_counter_do_pending() or not.
This introduces a couple of new Kconfig symbols: PPC_HAVE_PMU_SUPPORT,
which is selected by processor families for which we have hardware PMU
support (currently only PPC64), and PPC_PERF_CTRS, which enables the
powerpc-specific perf_counter back-end.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55404.103840.393470@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently we are wasting time calling the generic calibrate_delay()
function. We don't need it since our implementation of __delay() is
based on the CPU timebase. So instead, we use our own small
implementation that initializes loops_per_jiffy to something sensible
to make the few users like spinlock debug be happy
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
I have been looking at sources of OS jitter and notice that after a long
NO_HZ idle period we wakeup too early:
relative time (us) event
timer irq exit
999946.405 timer irq entry
4.835 timer irq exit
21.685 timer irq entry
3.540 timer (tick_sched_timer) entry
Here we slept for just under a second then took a timer interrupt that did
nothing. 21.685 us later we wake up again and do the work.
We set a rather low shift value of 16 for the decrementer clockevent, which I
think is causing this issue. On this box we have a 207MHz decrementer and see:
clockevent: decrementer mult[3501] shift[16] cpu[0]
For calculations of large intervals this mult/shift combination could be
off by a significant amount. I notice the sparc code has a loop that iterates
to find a mult/shift combination that maximises the shift value while
keeping mult under 32bit. With the patch below we get:
clockevent: decrementer mult[35015c20] shift[32] cpu[15]
And we no longer see the spurious wakeups.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pass clocksource pointer to the read() callback for clocksources. This
allows us to share the callback between multiple instances.
[hugh@veritas.com: fix powerpc build of clocksource pass clocksource mods]
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>