Introducing metadata reseravtion contexts has two major advantages.
First, it makes metadata reseravtion more traceable. Second, it can
reclaim freed space and re-add them to the itself after transaction
committed.
Besides add btrfs_block_rsv structure and related helper functions,
This patch contains following changes:
Move code that decides if freed tree block should be pinned into
btrfs_free_tree_block().
Make space accounting more accurate, mainly for handling read only
block groups.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This patch just goes through and fixes everybody that does
lock_extent()
blah
unlock_extent()
to use
lock_extent_bits()
blah
unlock_extent_cached()
and pass around a extent_state so we only have to do the searches once per
function. This gives me about a 3 mb/s boots on my random write test. I have
not converted some things, like the relocation and ioctl's, since they aren't
heavily used and the relocation stuff is in the middle of being re-written. I
also changed the clear_extent_bit() to only unset the cached state if we are
clearing EXTENT_LOCKED and related stuff, so we can do things like this
lock_extent_bits()
clear delalloc bits
unlock_extent_cached()
without losing our cached state. I tested this thoroughly and turned on
LEAK_DEBUG to make sure we weren't leaking extent states, everything worked out
fine.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This work is in preperation for being able to set a different root as the
default mounting root.
There is currently a problem with how we mount subvolumes. We cannot currently
mount a subvolume of a subvolume, you can only mount subvolumes/snapshots of the
default subvolume. So say you take a snapshot of the default subvolume and call
it snap1, and then take a snapshot of snap1 and call it snap2, so now you have
/
/snap1
/snap1/snap2
as your available volumes. Currently you can only mount / and /snap1,
you cannot mount /snap1/snap2. To fix this problem instead of passing
subvolid=<name> you must pass in subvolid=<treeid>, where <treeid> is
the tree id that gets spit out via the subvolume listing you get from
the subvolume listing patches (btrfs filesystem list). This allows us
to mount /, /snap1 and /snap1/snap2 as the root volume.
In addition to the above, we also now read the default dir item in the
tree root to get the root key that it points to. For now this just
points at what has always been the default subvolme, but later on I plan
to change it to point at whatever root you want to be the new default
root, so you can just set the default mount and not have to mount with
-o subvolid=<treeid>. I tested this out with the above scenario and it
worked perfectly. Thanks,
mount -o subvol operates inside the selected subvolid. For example:
mount -o subvol=snap1,subvolid=256 /dev/xxx /mnt
/mnt will have the snap1 directory for the subvolume with id
256.
mount -o subvol=snap /dev/xxx /mnt
/mnt will be the snap directory of whatever the default subvolume
is.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs inialize rb trees in quite a number of places by settin rb_node =
NULL; The problem with this is that 17d9ddc72f in the
linux-next tree adds a new field to that struct which needs to be NULL for
the new rbtree library code to work properly. This patch uses RB_ROOT as
the intializer so all of the relevant fields will be NULL'd. Without the
patch I get a panic.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Mounting a bad filesystem caused a BUG_ON(). The following is steps to
reproduce it.
# mkfs.btrfs /dev/sda2
# mount /dev/sda2 /mnt
# mkfs.btrfs /dev/sda1 /dev/sda2
(the program says that /dev/sda2 was mounted, and then exits. )
# umount /mnt
# mount /dev/sda1 /mnt
At the third step, mkfs.btrfs exited in the way of make filesystem. So the
initialization of the filesystem didn't finish. So the filesystem was bad, and
it caused BUG_ON() when mounting it. But BUG_ON() should be called by the wrong
code, not user's operation, so I think it is a bug of btrfs.
This patch fixes it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Stanse found 2 memory leaks in relocate_block_group and
__btrfs_map_block. cluster and multi are not freed/assigned on all
paths. Fix that.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <chris.mason@oracle.com>
iput() can trigger new transactions if we are dropping the
final reference, so calling it in btrfs_commit_transaction
may end up deadlock. This patch adds delayed iput to avoid
the issue.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
truncating and deleting regular files are unbound operations,
so it's not good to do them in a single transaction. This
patch makes btrfs_truncate and btrfs_delete_inode start a
new transaction after all items in a tree leaf are deleted.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We do log replay in a single transaction, so it's not good to do unbound
operations. This patch cleans up orphan inodes cleanup after replaying
the log. It also avoids doing other unbound operations such as truncating
a file during replaying log. These unbound operations are postponed to
the orphan inode cleanup stage.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs async worker threads are used for a wide variety of things,
including processing bio end_io functions. This means that when
the endio threads aren't running, the rest of the FS isn't
able to do the final processing required to clear PageWriteback.
The endio threads also try to exit as they become idle and
start more as the work piles up. The problem is that starting more
threads means kthreadd may need to allocate ram, and that allocation
may wait until the global number of writeback pages on the system is
below a certain limit.
The result of that throttling is that end IO threads wait on
kthreadd, who is waiting on IO to end, which will never happen.
This commit fixes the deadlock by handing off thread startup to a
dedicated thread. It also fixes a bug where the on-demand thread
creation was creating far too many threads because it didn't take into
account threads being started by other procs.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent relocation code copy file extents one by one when
relocating data block group. This is inefficient if file
extents are small. This patch makes the relocation code copy
file extents in clusters. So we can can make better use of
read-ahead.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds snapshot/subvolume destroy ioctl. A subvolume that isn't being
used and doesn't contains links to other subvolumes can be destroyed.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This changes the btrfs code to find delalloc ranges in the extent state
tree to use the new state caching code from set/test bit. It reduces
one of the biggest causes of rbtree searches in the writeback path.
test_range_bit is also modified to take the cached state as a starting
point while searching.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There are two main users of the extent_map tree. The
first is regular file inodes, where it is evenly spread
between readers and writers.
The second is the chunk allocation tree, which maps blocks from
logical addresses to phyiscal ones, and it is 99.99% reads.
The mapping tree is a point of lock contention during heavy IO
workloads, so this commit switches things to a rw lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
invalidate_inode_pages2_range may return -EBUSY occasionally
which results Oops. This patch fixes the issue by moving
invalidate_inode_pages2_range into a loop and keeping calling
it until the return value is not -EBUSY.
The EBUSY return is temporary, and can happen when the btrfs release page
function is unable to release a page because the EXTENT_LOCK
bit is set.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When walking up the tree, btrfs_find_next_key assumes the upper level tree
block is properly locked. This isn't always true even path->keep_locks is 1.
This is because btrfs_find_next_key may advance path->slots[] several times
instead of only once.
When 'path->slots[level] >= btrfs_header_nritems(path->nodes[level])' is found,
we can't guarantee the original value of 'path->slots[level]' is
'btrfs_header_nritems(path->nodes[level]) - 1'. If it's not, the tree block at
'level + 1' isn't locked.
This patch fixes the issue by explicitly checking the locking state,
re-searching the tree if it's not locked.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The new backref format has restriction on type of backref item. If a tree
block isn't referenced by its owner tree, full backrefs must be used for the
pointers in it. When a tree block loses its owner tree's reference, backrefs
for the pointers in it should be updated to full backrefs. Current
btrfs_drop_snapshot misses the code that updates backrefs, so it's unsafe for
general use.
This patch adds backrefs update code to btrfs_drop_snapshot. It isn't a
problem in the restricted form btrfs_drop_snapshot is used today, but for
general snapshot deletion this update is required.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one. At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.
The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root. This commit reduces the
transaction overhead by avoiding the need for dead root records.
When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.
This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.
We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.
This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.
This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.
The improved balancing code scales significantly better with a large
number of snapshots.
This is a very large commit and was written in a number of
pieces. But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>