Originally, the eb and start were passed separately in case eb is NULL.
Since the readahead has been refactored in 4.6, this is not true anymore
and we can get rid of the parameter.
Signed-off-by: David Sterba <dsterba@suse.com>
Tickets_id's name may result in some misunderstandings, it just indicates
the next ticket will be handled and is not stored per ticket.
Fixes: ce12965 ("btrfs: introduce tickets_id to determine whether
asynchronous metadata reclaim work makes progress")
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_map_block supports different types of mappings, which to a large
extent resemble block layer operations. But they don't always do, and
currently btrfs dangerously overlays it's own flag over the block layer
flags. This is just asking for a conflict, so introduce a different
map flags enum inside of btrfs instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"Some fixes from Omar and Dave Sterba for our new free space tree.
This isn't heavily used yet, but as we move toward making it the new
default we wanted to nail down an endian bug"
* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: tests: uninline member definitions in free_space_extent
btrfs: tests: constify free space extent specs
Btrfs: expand free space tree sanity tests to catch endianness bug
Btrfs: fix extent buffer bitmap tests on big-endian systems
Btrfs: catch invalid free space trees
Btrfs: fix mount -o clear_cache,space_cache=v2
Btrfs: fix free space tree bitmaps on big-endian systems
Pull btrfs updates from Chris Mason:
"This is a big variety of fixes and cleanups.
Liu Bo continues to fixup fuzzer related problems, and some of Josef's
cleanups are prep for his bigger extent buffer changes (slated for
v4.10)"
* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (39 commits)
Revert "btrfs: let btrfs_delete_unused_bgs() to clean relocated bgs"
Btrfs: remove unnecessary btrfs_mark_buffer_dirty in split_leaf
Btrfs: don't BUG() during drop snapshot
btrfs: fix btrfs_no_printk stub helper
Btrfs: memset to avoid stale content in btree leaf
btrfs: parent_start initialization cleanup
btrfs: Remove already completed TODO comment
btrfs: Do not reassign count in btrfs_run_delayed_refs
btrfs: fix a possible umount deadlock
Btrfs: fix memory leak in do_walk_down
btrfs: btrfs_debug should consume fs_info when DEBUG is not defined
btrfs: convert send's verbose_printk to btrfs_debug
btrfs: convert pr_* to btrfs_* where possible
btrfs: convert printk(KERN_* to use pr_* calls
btrfs: unsplit printed strings
btrfs: clean the old superblocks before freeing the device
Btrfs: kill BUG_ON in run_delayed_tree_ref
Btrfs: don't leak reloc root nodes on error
btrfs: squash lines for simple wrapper functions
Btrfs: improve check_node to avoid reading corrupted nodes
...
There are two separate issues that can lead to corrupted free space
trees.
1. The free space tree bitmaps had an endianness issue on big-endian
systems which is fixed by an earlier patch in this series.
2. btrfs-progs before v4.7.3 modified filesystems without updating the
free space tree.
To catch both of these issues at once, we need to force the free space
tree to be rebuilt. To do so, add a FREE_SPACE_TREE_VALID compat_ro bit.
If the bit isn't set, we know that it was either produced by a broken
big-endian kernel or may have been corrupted by btrfs-progs.
This also provides us with a way to add rudimentary read-write support
for the free space tree to btrfs-progs: it can just clear this bit and
have the kernel rebuild the free space tree.
Cc: stable@vger.kernel.org # 4.5+
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The addition of btrfs_no_printk() caused a build failure when
CONFIG_PRINTK is disabled:
fs/btrfs/send.c: In function 'send_rename':
fs/btrfs/ctree.h:3367:2: error: implicit declaration of function 'btrfs_no_printk' [-Werror=implicit-function-declaration]
This moves the helper outside of that #ifdef so it is always
defined, and changes the existing #ifdef to refer to that
helper as well for consistency.
Fixes: 47c57058ff2c ("btrfs: btrfs_debug should consume fs_info when DEBUG is not defined")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is an additional patch to
"Btrfs: memset to avoid stale content in btree node block".
This uses memset to initialize the unused space in a leaf to avoid
potential stale content, which may be incurred by pushing items
between sibling leaves.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can hit unused variable warnings when btrfs_debug and friends are
just aliases for no_printk. This is due to the fs_info not getting
consumed by the function call, which can happen if convenenience
variables are used. This patch adds a new btrfs_no_printk static inline
that consumes the convenience variable and does nothing else. It
silences the unused variable warning and has no impact on the generated
code:
$ size fs/btrfs/extent_io.o*
text data bss dec hex filename
44072 152 32 44256 ace0 fs/btrfs/extent_io.o.btrfs_no_printk
44072 152 32 44256 ace0 fs/btrfs/extent_io.o.no_printk
Fixes: 27a0dd61a5 (Btrfs: make btrfs_debug match pr_debug handling related to DEBUG)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For many printks, we want to know which file system issued the message.
This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.
fs/btrfs/check-integrity.c is left alone for another day.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch converts printk(KERN_* style messages to use the pr_* versions.
One side effect is that anything that was KERN_DEBUG is now automatically
a dynamic debug message.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of random ints in btrfs_fs_info that can be put into flags. This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extend btrfs_set_extent_delalloc() and extent_clear_unlock_delalloc()
parameters for both in-band dedupe and subpage sector size patchset.
This should reduce conflict of both patchset and the effort to rebase
them.
Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can re-use the dynamic debugging descriptor to make use of the dynamic
debugging mechanism but still use our own printk interface.
Defining the DEBUG macro works as it did before. When it's defined,
all of the messages default to print. We can also enable all debug
messages at boot or module-load time using the 'dyndbg' and
'btrfs.dyndbg' options.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"I'm not proud of how long it took me to track down that one liner in
btrfs_sync_log(), but the good news is the patches I was trying to
blame for these problems were actually fine (sorry Filipe)"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: introduce tickets_id to determine whether asynchronous metadata reclaim work makes progress
btrfs: remove root_log_ctx from ctx list before btrfs_sync_log returns
btrfs: do not decrease bytes_may_use when replaying extents
In btrfs_async_reclaim_metadata_space(), we use ticket's address to
determine whether asynchronous metadata reclaim work is making progress.
ticket = list_first_entry(&space_info->tickets,
struct reserve_ticket, list);
if (last_ticket == ticket) {
flush_state++;
} else {
last_ticket = ticket;
flush_state = FLUSH_DELAYED_ITEMS_NR;
if (commit_cycles)
commit_cycles--;
}
But indeed it's wrong, we should not rely on local variable's address to
do this check, because addresses may be same. In my test environment, I
dd one 168MB file in a 256MB fs, found that for this file, every time
wait_reserve_ticket() called, local variable ticket's address is same,
For above codes, assume a previous ticket's address is addrA, last_ticket
is addrA. Btrfs_async_reclaim_metadata_space() finished this ticket and
wake up it, then another ticket is added, but with the same address addrA,
now last_ticket will be same to current ticket, then current ticket's flush
work will start from current flush_state, not initial FLUSH_DELAYED_ITEMS_NR,
which may result in some enospc issues(I have seen this in my test machine).
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"We've queued up a few different fixes in here. These range from
enospc corners to fsync and quota fixes, and a few targeted at error
handling for corrupt metadata/fuzzing"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix lockdep warning on deadlock against an inode's log mutex
Btrfs: detect corruption when non-root leaf has zero item
Btrfs: check btree node's nritems
btrfs: don't create or leak aliased root while cleaning up orphans
Btrfs: fix em leak in find_first_block_group
btrfs: do not background blkdev_put()
Btrfs: clarify do_chunk_alloc()'s return value
btrfs: fix fsfreeze hang caused by delayed iputs deal
btrfs: update btrfs_space_info's bytes_may_use timely
btrfs: divide btrfs_update_reserved_bytes() into two functions
btrfs: use correct offset for reloc_inode in prealloc_file_extent_cluster()
btrfs: qgroup: Fix qgroup incorrectness caused by log replay
btrfs: relocation: Fix leaking qgroups numbers on data extents
btrfs: qgroup: Refactor btrfs_qgroup_insert_dirty_extent()
btrfs: waiting on qgroup rescan should not always be interruptible
btrfs: properly track when rescan worker is running
btrfs: flush_space: treat return value of do_chunk_alloc properly
Btrfs: add ASSERT for block group's memory leak
btrfs: backref: Fix soft lockup in __merge_refs function
Btrfs: fix memory leak of reloc_root
When running fstests generic/068, sometimes we got below deadlock:
xfs_io D ffff8800331dbb20 0 6697 6693 0x00000080
ffff8800331dbb20 ffff88007acfc140 ffff880034d895c0 ffff8800331dc000
ffff880032d243e8 fffffffeffffffff ffff880032d24400 0000000000000001
ffff8800331dbb38 ffffffff816a9045 ffff880034d895c0 ffff8800331dbba8
Call Trace:
[<ffffffff816a9045>] schedule+0x35/0x80
[<ffffffff816abab2>] rwsem_down_read_failed+0xf2/0x140
[<ffffffff8118f5e1>] ? __filemap_fdatawrite_range+0xd1/0x100
[<ffffffff8134f978>] call_rwsem_down_read_failed+0x18/0x30
[<ffffffffa06631fc>] ? btrfs_alloc_block_rsv+0x2c/0xb0 [btrfs]
[<ffffffff810d32b5>] percpu_down_read+0x35/0x50
[<ffffffff81217dfc>] __sb_start_write+0x2c/0x40
[<ffffffffa067f5d5>] start_transaction+0x2a5/0x4d0 [btrfs]
[<ffffffffa067f857>] btrfs_join_transaction+0x17/0x20 [btrfs]
[<ffffffffa068ba34>] btrfs_evict_inode+0x3c4/0x5d0 [btrfs]
[<ffffffff81230a1a>] evict+0xba/0x1a0
[<ffffffff812316b6>] iput+0x196/0x200
[<ffffffffa06851d0>] btrfs_run_delayed_iputs+0x70/0xc0 [btrfs]
[<ffffffffa067f1d8>] btrfs_commit_transaction+0x928/0xa80 [btrfs]
[<ffffffffa0646df0>] btrfs_freeze+0x30/0x40 [btrfs]
[<ffffffff81218040>] freeze_super+0xf0/0x190
[<ffffffff81229275>] do_vfs_ioctl+0x4a5/0x5c0
[<ffffffff81003176>] ? do_audit_syscall_entry+0x66/0x70
[<ffffffff810038cf>] ? syscall_trace_enter_phase1+0x11f/0x140
[<ffffffff81229409>] SyS_ioctl+0x79/0x90
[<ffffffff81003c12>] do_syscall_64+0x62/0x110
[<ffffffff816acbe1>] entry_SYSCALL64_slow_path+0x25/0x25
>From this warning, freeze_super() already holds SB_FREEZE_FS, but
btrfs_freeze() will call btrfs_commit_transaction() again, if
btrfs_commit_transaction() finds that it has delayed iputs to handle,
it'll start_transaction(), which will try to get SB_FREEZE_FS lock
again, then deadlock occurs.
The root cause is that in btrfs, sync_filesystem(sb) does not make
sure all metadata is updated. There still maybe some codes adding
delayed iputs, see below sample race window:
CPU1 | CPU2
|-> freeze_super() |
|-> sync_filesystem(sb); |
| |-> cleaner_kthread()
| | |-> btrfs_delete_unused_bgs()
| | |-> btrfs_remove_chunk()
| | |-> btrfs_remove_block_group()
| | |-> btrfs_add_delayed_iput()
| |
|-> sb->s_writers.frozen = SB_FREEZE_FS; |
|-> sb_wait_write(sb, SB_FREEZE_FS); |
| acquire SB_FREEZE_FS lock. |
| |
|-> btrfs_freeze() |
|-> btrfs_commit_transaction() |
|-> btrfs_run_delayed_iputs() |
| will handle delayed iputs, |
| that means start_transaction() |
| will be called, which will try |
| to get SB_FREEZE_FS lock. |
To fix this issue, introduce a "int fs_frozen" to record internally whether
fs has been frozen. If fs has been frozen, we can not handle delayed iputs.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment to btrfs_freeze ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch can fix some false ENOSPC errors, below test script can
reproduce one false ENOSPC error:
#!/bin/bash
dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
dev=$(losetup --show -f fs.img)
mkfs.btrfs -f -M $dev
mkdir /tmp/mntpoint
mount $dev /tmp/mntpoint
cd /tmp/mntpoint
xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile
Above script will fail for ENOSPC reason, but indeed fs still has free
space to satisfy this request. Please see call graph:
btrfs_fallocate()
|-> btrfs_alloc_data_chunk_ondemand()
| bytes_may_use += 64M
|-> btrfs_prealloc_file_range()
|-> btrfs_reserve_extent()
|-> btrfs_add_reserved_bytes()
| alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
| change bytes_may_use, and bytes_reserved += 64M. Now
| bytes_may_use + bytes_reserved == 128M, which is greater
| than btrfs_space_info's total_bytes, false enospc occurs.
| Note, the bytes_may_use decrease operation will be done in
| end of btrfs_fallocate(), which is too late.
Here is another simple case for buffered write:
CPU 1 | CPU 2
|
|-> cow_file_range() |-> __btrfs_buffered_write()
|-> btrfs_reserve_extent() | |
| | |
| | |
| ..... | |-> btrfs_check_data_free_space()
| |
| |
|-> extent_clear_unlock_delalloc() |
In CPU 1, btrfs_reserve_extent()->find_free_extent()->
btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
operation will be delayed to be done in extent_clear_unlock_delalloc().
Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
btrfs_check_data_free_space() tries to reserve 100MB data space.
If
100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
btrfs_check_data_free_space() will try to allcate new data chunk or call
btrfs_start_delalloc_roots(), or commit current transaction in order to
reserve some free space, obviously a lot of work. But indeed it's not
necessary as long as decreasing bytes_may_use timely, we still have
free space, decreasing 128M from bytes_may_use.
To fix this issue, this patch chooses to update bytes_may_use for both
data and metadata in btrfs_add_reserved_bytes(). For compress path, real
extent length may not be equal to file content length, so introduce a
ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
file content length. Then compress path can update bytes_may_use
correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
and RESERVE_FREE.
As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
PREALLOC, we also need to update bytes_may_use, but can not pass
EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
to update btrfs_space_info's bytes_may_use.
Meanwhile __btrfs_prealloc_file_range() will call
btrfs_free_reserved_data_space() internally for both sucessful and failed
path, btrfs_prealloc_file_range()'s callers does not need to call
btrfs_free_reserved_data_space() any more.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The qgroup_flags field is overloaded such that it reflects the on-disk
status of qgroups and the runtime state. The BTRFS_QGROUP_STATUS_FLAG_RESCAN
flag is used to indicate that a rescan operation is in progress, but if
the file system is unmounted while a rescan is running, the rescan
operation is paused. If the file system is then mounted read-only,
the flag will still be present but the rescan operation will not have
been resumed. When we go to umount, btrfs_qgroup_wait_for_completion
will see the flag and interpret it to mean that the rescan worker is
still running and will wait for a completion that will never come.
This patch uses a separate flag to indicate when the worker is
running. The locking and state surrounding the qgroup rescan worker
needs a lot of attention beyond this patch but this is enough to
avoid a hung umount.
Cc: <stable@vger.kernel.org> # v4.4+
Signed-off-by; Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull more btrfs updates from Chris Mason:
"This is part two of my btrfs pull, which is some cleanups and a batch
of fixes.
Most of the code here is from Jeff Mahoney, making the pointers we
pass around internally more consistent and less confusing overall. I
noticed a small problem right before I sent this out yesterday, so I
fixed it up and re-tested overnight"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (40 commits)
Btrfs: fix __MAX_CSUM_ITEMS
btrfs: btrfs_abort_transaction, drop root parameter
btrfs: add btrfs_trans_handle->fs_info pointer
btrfs: btrfs_relocate_chunk pass extent_root to btrfs_end_transaction
btrfs: convert nodesize macros to static inlines
btrfs: introduce BTRFS_MAX_ITEM_SIZE
btrfs: cleanup, remove prototype for btrfs_find_root_ref
btrfs: copy_to_sk drop unused root parameter
btrfs: simpilify btrfs_subvol_inherit_props
btrfs: tests, use BTRFS_FS_STATE_DUMMY_FS_INFO instead of dummy root
btrfs: tests, require fs_info for root
btrfs: tests, move initialization into tests/
btrfs: btrfs_test_opt and friends should take a btrfs_fs_info
btrfs: prefix fsid to all trace events
btrfs: plumb fs_info into btrfs_work
btrfs: remove obsolete part of comment in statfs
btrfs: hide test-only member under ifdef
btrfs: Ratelimit "no csum found" info message
btrfs: Add ratelimit to btrfs printing
Btrfs: fix unexpected balance crash due to BUG_ON
...
Pull btrfs updates from Chris Mason:
"This pull is dedicated to Josef's enospc rework, which we've been
testing for a few releases now. It fixes some early enospc problems
and is dramatically faster.
This also includes an updated fix for the delalloc accounting that
happens after a fault in copy_from_user. My patch in v4.7 was almost
but not quite enough"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix delalloc accounting after copy_from_user faults
Btrfs: avoid deadlocks during reservations in btrfs_truncate_block
Btrfs: use FLUSH_LIMIT for relocation in reserve_metadata_bytes
Btrfs: fill relocation block rsv after allocation
Btrfs: always use trans->block_rsv for orphans
Btrfs: change how we calculate the global block rsv
Btrfs: use root when checking need_async_flush
Btrfs: don't bother kicking async if there's nothing to reclaim
Btrfs: fix release reserved extents trace points
Btrfs: add fsid to some tracepoints
Btrfs: add tracepoints for flush events
Btrfs: fix delalloc reservation amount tracepoint
Btrfs: trace pinned extents
Btrfs: introduce ticketed enospc infrastructure
Btrfs: add tracepoint for adding block groups
Btrfs: warn_on for unaccounted spaces
Btrfs: change delayed reservation fallback behavior
Btrfs: always reserve metadata for delalloc extents
Btrfs: fix callers of btrfs_block_rsv_migrate
Btrfs: add bytes_readonly to the spaceinfo at once
Pull core block updates from Jens Axboe:
- the big change is the cleanup from Mike Christie, cleaning up our
uses of command types and modified flags. This is what will throw
some merge conflicts
- regression fix for the above for btrfs, from Vincent
- following up to the above, better packing of struct request from
Christoph
- a 2038 fix for blktrace from Arnd
- a few trivial/spelling fixes from Bart Van Assche
- a front merge check fix from Damien, which could cause issues on
SMR drives
- Atari partition fix from Gabriel
- convert cfq to highres timers, since jiffies isn't granular enough
for some devices these days. From Jan and Jeff
- CFQ priority boost fix idle classes, from me
- cleanup series from Ming, improving our bio/bvec iteration
- a direct issue fix for blk-mq from Omar
- fix for plug merging not involving the IO scheduler, like we do for
other types of merges. From Tahsin
- expose DAX type internally and through sysfs. From Toshi and Yigal
* 'for-4.8/core' of git://git.kernel.dk/linux-block: (76 commits)
block: Fix front merge check
block: do not merge requests without consulting with io scheduler
block: Fix spelling in a source code comment
block: expose QUEUE_FLAG_DAX in sysfs
block: add QUEUE_FLAG_DAX for devices to advertise their DAX support
Btrfs: fix comparison in __btrfs_map_block()
block: atari: Return early for unsupported sector size
Doc: block: Fix a typo in queue-sysfs.txt
cfq-iosched: Charge at least 1 jiffie instead of 1 ns
cfq-iosched: Fix regression in bonnie++ rewrite performance
cfq-iosched: Convert slice_resid from u64 to s64
block: Convert fifo_time from ulong to u64
blktrace: avoid using timespec
block/blk-cgroup.c: Declare local symbols static
block/bio-integrity.c: Add #include "blk.h"
block/partition-generic.c: Remove a set-but-not-used variable
block: bio: kill BIO_MAX_SIZE
cfq-iosched: temporarily boost queue priority for idle classes
block: drbd: avoid to use BIO_MAX_SIZE
block: bio: remove BIO_MAX_SECTORS
...
__btrfs_abort_transaction doesn't use its root parameter except to
obtain an fs_info pointer. We can obtain that from trans->root->fs_info
for now and from trans->fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch converts the macros used to calculate various node
size limits to static inlines. That way we get type checking for free.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use BTRFS_LEAF_DATA_SIZE - sizeof(struct btrfs_item) in
several places. This introduces a BTRFS_MAX_ITEM_SIZE macro to do the
same.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a dummy fs_info associated with each test that
uses a root, we don't need the DUMMY_ROOT bit anymore. This lets
us make choices without needing an actual root like in e.g.
btrfs_find_create_tree_block.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This allows the upcoming patchset to push nodesize and sectorsize into
fs_info.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_test_opt and friends only use the root pointer to access
the fs_info. Let's pass the fs_info directly in preparation to
eliminate similar patterns all over btrfs.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We want to track when we're triggering flushing from our reservation code and
what flushing is being done when we start flushing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Our enospc flushing sucks. It is born from a time where we were early
enospc'ing constantly because multiple threads would race in for the same
reservation and randomly starve other ones out. So I came up with this solution
to block any other reservations from happening while one guy tried to flush
stuff to satisfy his reservation. This gives us pretty good correctness, but
completely crap latency.
The solution I've come up with is ticketed reservations. Basically we try to
make our reservation, and if we can't we put a ticket on a list in order and
kick off an async flusher thread. This async flusher thread does the same old
flushing we always did, just asynchronously. As space is freed and added back
to the space_info it checks and sees if we have any tickets that need
satisfying, and adds space to the tickets and wakes up anything we've satisfied.
Once the flusher thread stops making progress it wakes up all the current
tickets and tells them to take a hike.
There is a priority list for things that can't flush, since the async flusher
could do anything we need to avoid deadlocks. These guys get priority for
having their reservation made, and will still do manual flushing themselves in
case the async flusher isn't running.
This patch gives us significantly better latencies. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
So btrfs_block_rsv_migrate just unconditionally calls block_rsv_migrate_bytes.
Not only this but it unconditionally changes the size of the block_rsv. This
isn't a bug strictly speaking, but it makes truncate block rsv's look funny
because every time we migrate bytes over its size grows, even though we only
want it to be a specific size. So collapse this into one function that takes an
update_size argument and make truncate and evict not update the size for
consistency sake. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using the offwakecputime bpf script I noticed most of our time was spent waiting
on the delayed ref throttling. This is what is supposed to happen, but
sometimes the transaction can commit and then we're waiting for throttling that
doesn't matter anymore. So change this stuff to be a little smarter by tracking
the transid we were in when we initiated the throttling. If the transaction we
get is different then we can just bail out. This resulted in a 50% speedup in
my fs_mark test, and reduced the amount of time spent throttling by 60 seconds
over the entire run (which is about 30 minutes). Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Relocation of a block group waits for all existing tasks flushing
dellaloc, starting direct IO writes and any ordered extents before
starting the relocation process. However for direct IO writes that end
up doing nocow (inode either has the flag nodatacow set or the write is
against a prealloc extent) we have a short time window that allows for a
race that makes relocation proceed without waiting for the direct IO
write to complete first, resulting in data loss after the relocation
finishes. This is illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
direct IO write starts against
an extent in block group X
using nocow mode (inode has the
nodatacow flag or the write is
for a prealloc extent)
btrfs_direct_IO()
btrfs_get_blocks_direct()
--> can_nocow_extent() returns 1
btrfs_inc_block_group_ro(bg X)
--> turns block group into RO mode
btrfs_wait_ordered_roots()
--> returns and does not know about
the DIO write happening at CPU 2
(the task there has not created
yet an ordered extent)
relocate_block_group(bg X)
--> rc->stage == MOVE_DATA_EXTENTS
find_next_extent()
--> returns extent that the DIO
write is going to write to
relocate_data_extent()
relocate_file_extent_cluster()
--> reads the extent from disk into
pages belonging to the relocation
inode and dirties them
--> creates DIO ordered extent
btrfs_submit_direct()
--> submits bio against a location
on disk obtained from an extent
map before the relocation started
btrfs_wait_ordered_range()
--> writes all the pages read before
to disk (belonging to the
relocation inode)
relocation finishes
bio completes and wrote new data
to the old location of the block
group
So fix this by tracking the number of nocow writers for a block group and
make sure relocation waits for that number to go down to 0 before starting
to move the extents.
The same race can also happen with buffered writes in nocow mode since the
patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
when relocating", because we are no longer flushing all delalloc which
served as a synchonization mechanism (due to page locking) and ensured
the ordered extents for nocow buffered writes were created before we
called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
mode existed before that patch (no pages are locked or used during direct
IO) and that fixed only races with direct IO writes that do cow.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Before we start the actual relocation process of a block group, we do
calls to flush delalloc of all inodes and then wait for ordered extents
to complete. However we do these flush calls just to make sure we don't
race with concurrent tasks that have actually already started to run
delalloc and have allocated an extent from the block group we want to
relocate, right before we set it to readonly mode, but have not yet
created the respective ordered extents. The flush calls make us wait
for such concurrent tasks because they end up calling
filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() ->
__start_delalloc_inodes() -> btrfs_alloc_delalloc_work() ->
btrfs_run_delalloc_work()) which ends up serializing us with those tasks
due to attempts to lock the same pages (and the delalloc flush procedure
calls the allocator and creates the ordered extents before unlocking the
pages).
These flushing calls not only make us waste time (cpu, IO) but also reduce
the chances of writing larger extents (applications might be writing to
contiguous ranges and we flush before they finish dirtying the whole
ranges).
So make sure we don't flush delalloc and just wait for concurrent tasks
that have already started flushing delalloc and have allocated an extent
from the block group we are about to relocate.
This change also ends up fixing a race with direct IO writes that makes
relocation not wait for direct IO ordered extents. This race is
illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
starts direct IO write,
target inode currently has no
ordered extents ongoing nor
dirty pages (delalloc regions),
therefore the root for our inode
is not in the list
fs_info->ordered_roots
btrfs_direct_IO()
__blockdev_direct_IO()
btrfs_get_blocks_direct()
btrfs_lock_extent_direct()
locks range in the io tree
btrfs_new_extent_direct()
btrfs_reserve_extent()
--> extent allocated
from bg X
btrfs_inc_block_group_ro(bg X)
btrfs_start_delalloc_roots()
__start_delalloc_inodes()
--> does nothing, no dealloc ranges
in the inode's io tree so the
inode's root is not in the list
fs_info->delalloc_roots
btrfs_wait_ordered_roots()
--> does not find the inode's root in the
list fs_info->ordered_roots
--> ends up not waiting for the direct IO
write started by the task at CPU 2
relocate_block_group(rc->stage ==
MOVE_DATA_EXTENTS)
prepare_to_relocate()
btrfs_commit_transaction()
iterates the extent tree, using its
commit root and moves extents into new
locations
btrfs_add_ordered_extent_dio()
--> now a ordered extent is
created and added to the
list root->ordered_extents
and the root added to the
list fs_info->ordered_roots
--> this is too late and the
task at CPU 1 already
started the relocation
btrfs_commit_transaction()
btrfs_finish_ordered_io()
btrfs_alloc_reserved_file_extent()
--> adds delayed data reference
for the extent allocated
from bg X
relocate_block_group(rc->stage ==
UPDATE_DATA_PTRS)
prepare_to_relocate()
btrfs_commit_transaction()
--> delayed refs are run, so an extent
item for the allocated extent from
bg X is added to extent tree
--> commit roots are switched, so the
next scan in the extent tree will
see the extent item
sees the extent in the extent tree
When this happens the relocation produces the following warning when it
finishes:
[ 7260.832836] ------------[ cut here ]------------
[ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]()
[ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1
[ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7260.852998] 0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000
[ 7260.852998] 0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d
[ 7260.852998] ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000
[ 7260.852998] Call Trace:
[ 7260.852998] [<ffffffff812648b3>] dump_stack+0x67/0x90
[ 7260.852998] [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2
[ 7260.852998] [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c
[ 7260.852998] [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs]
[ 7260.852998] [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs]
[ 7260.852998] [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19
[ 7260.852998] [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs]
[ 7260.852998] [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs]
[ 7260.852998] [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63
[ 7260.852998] [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44
[ 7260.852998] [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc
[ 7260.852998] [<ffffffff811876ab>] vfs_ioctl+0x18/0x34
[ 7260.852998] [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be
[ 7260.852998] [<ffffffff81190c30>] ? __fget_light+0x4d/0x71
[ 7260.852998] [<ffffffff81187d77>] SyS_ioctl+0x57/0x79
[ 7260.852998] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7260.893268] ---[ end trace eb7803b24ebab8ad ]---
This is because at the end of the first stage, in relocate_block_group(),
we commit the current transaction, which makes delayed refs run, the
commit roots are switched and so the second stage will find the extent
item that the ordered extent added to the delayed refs. But this extent
was not moved (ordered extent completed after first stage finished), so
at the end of the relocation our block group item still has a positive
used bytes counter, triggering a warning at the end of
btrfs_relocate_block_group(). Later on when trying to read the extent
contents from disk we hit a BUG_ON() due to the inability to map a block
with a logical address that belongs to the block group we relocated and
is no longer valid, resulting in the following trace:
[ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096
[ 7344.887518] ------------[ cut here ]------------
[ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833!
[ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G W 4.5.0-rc6-btrfs-next-28+ #1
[ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000
[ 7344.888431] RIP: 0010:[<ffffffffa037c88c>] [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP: 0018:ffff8802046878f0 EFLAGS: 00010282
[ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001
[ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff
[ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000
[ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000
[ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0
[ 7344.888431] FS: 00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000
[ 7344.888431] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0
[ 7344.888431] Stack:
[ 7344.888431] 0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950
[ 7344.888431] ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000
[ 7344.888431] ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000
[ 7344.888431] Call Trace:
[ 7344.888431] [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs]
[ 7344.888431] [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs]
[ 7344.888431] [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf
[ 7344.888431] [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs]
[ 7344.888431] [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10
[ 7344.888431] [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd
[ 7344.888431] [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs]
[ 7344.888431] [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc
[ 7344.888431] [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154
[ 7344.888431] [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f
[ 7344.888431] [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1
[ 7344.888431] [<ffffffff8117773a>] __vfs_read+0x79/0x9d
[ 7344.888431] [<ffffffff81178050>] vfs_read+0x8f/0xd2
[ 7344.888431] [<ffffffff81178a38>] SyS_read+0x50/0x7e
[ 7344.888431] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0
[ 7344.888431] RIP [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP <ffff8802046878f0>
[ 7344.970544] ---[ end trace eb7803b24ebab8ae ]---
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
The BTRFS_IOC_SEARCH_TREE ioctl returns file system items directly
to userspace. In order to decode them, full type information is required.
Create a new header, btrfs_tree to contain these since most users won't
need them.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
struct btrfs_ioctl_defrag_range_args is used by the BTRFS_IOC_DEFRAG_RANGE
ioctl.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The compat/compat_ro/incompat feature flags are used by the feature set/get
ioctls.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BTRFS_QGROUP_LIMIT_* flags are required to tell the kernel which
fields are valid when using the BTRFS_IOC_QGROUP_LIMIT ioctl.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS_LABEL_SIZE is required to define the BTRFS_IOC_GET_FSLABEL and
BTRFS_IOC_SET_FSLABEL ioctls.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
32-bit ioctl uses these rather than the regular FS_IOC_* versions. They can
be handled in btrfs using the same code. Without this, 32-bit {ch,ls}attr
fail.
Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Looks like we added the incompatible defines in between the error
handling defines in the file ctree.h. Now group them back.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Apparently looks like ASSERT does the same intended job,
as intended btrfs_assert().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_std_error() handles errors, puts FS into readonly mode
(as of now). So its good idea to rename it to btrfs_handle_fs_error().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
So that its better organized.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Xfstests btrfs/011 complains about a deadlock warning,
[ 1226.649039] =========================================================
[ 1226.649039] [ INFO: possible irq lock inversion dependency detected ]
[ 1226.649039] 4.1.0+ #270 Not tainted
[ 1226.649039] ---------------------------------------------------------
[ 1226.652955] kswapd0/46 just changed the state of lock:
[ 1226.652955] (&delayed_node->mutex){+.+.-.}, at: [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1226.652955] (&fs_info->dev_replace.lock){+.+.+.}
and interrupts could create inverse lock ordering between them.
[ 1226.652955]
other info that might help us debug this:
[ 1226.652955] Chain exists of:
&delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock
[ 1226.652955] Possible interrupt unsafe locking scenario:
[ 1226.652955] CPU0 CPU1
[ 1226.652955] ---- ----
[ 1226.652955] lock(&fs_info->dev_replace.lock);
[ 1226.652955] local_irq_disable();
[ 1226.652955] lock(&delayed_node->mutex);
[ 1226.652955] lock(&found->groups_sem);
[ 1226.652955] <Interrupt>
[ 1226.652955] lock(&delayed_node->mutex);
[ 1226.652955]
*** DEADLOCK ***
Commit 084b6e7c76 ("btrfs: Fix a lockdep warning when running xfstest.") tried
to fix a similar one that has the exactly same warning, but with that, we still
run to this.
The above lock chain comes from
btrfs_commit_transaction
->btrfs_run_delayed_items
...
->__btrfs_update_delayed_inode
...
->__btrfs_cow_block
...
->find_free_extent
->cache_block_group
->load_free_space_cache
->btrfs_readpages
->submit_one_bio
...
->__btrfs_map_block
->btrfs_dev_replace_lock
However, with high memory pressure, tasks which hold dev_replace.lock can
be interrupted by kswapd and then kswapd is intended to release memory occupied
by superblock, inodes and dentries, where we may call evict_inode, and it comes
to
[ 1226.652955] [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] [<ffffffff81459e74>] btrfs_remove_delayed_node+0x24/0x30
[ 1226.652955] [<ffffffff8140c5fe>] btrfs_evict_inode+0x34e/0x700
delayed_node->mutex may be acquired in __btrfs_release_delayed_node(), and it leads
to a ABBA deadlock.
To fix this, we can use "blocking rwlock" used in the case of extent_buffer, but
things are simpler here since we only needs read's spinlock to blocking lock.
With this, btrfs/011 no more produces warnings in dmesg.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The control device is accessible when no filesystem is mounted and we
may want to query features supported by the module. This is already
possible using the sysfs files, this ioctl is for parity and
convenience.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current practical default is ~4k on x86_64 (the logic is more complex,
simplified for brevity), the inlined files land in the metadata group and
thus consume space that could be needed for the real metadata.
The inlining brings some usability surprises:
1) total space consumption measured on various filesystems and btrfs
with DUP metadata was quite visible because of the duplicated data
within metadata
2) inlined data may exhaust the metadata, which are more precious in case
the entire device space is allocated to chunks (ie. balance cannot
make the space more compact)
3) performance suffers a bit as the inlined blocks are duplicate and
stored far away on the device.
Proposed fix: set the default to 2048
This fixes namely 1), the total filesysystem space consumption will be on
par with other filesystems.
Partially fixes 2), more data are pushed to the data block groups.
The characteristics of 3) are based on actual small file size
distribution.
The change is independent of the metadata blockgroup type (though it's
most visible with DUP) or system page size as these parameters are not
trival to find out, compared to file size.
Signed-off-by: David Sterba <dsterba@suse.com>
Simplify expression in btrfs_calc_trans_metadata_size().
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Reviewed-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Reada creates 2 works for each level of tree recursively.
In case of a tree having many levels, the number of created works
is 2^level_of_tree.
Actually we don't need so many works in parallel, this patch limits
max works to BTRFS_MAX_MIRRORS * 2.
The per-fs works_counter will be also used for btrfs_reada_wait() to
check is there are background workers.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
What __readahead_hook() need exactly is fs_info, no need to convert
fs_info to root in caller and convert back in __readahead_hook()
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new mount option "nologreplay" to co-operate with "ro" mount
option to get real readonly mount, like "norecovery" in ext* and xfs.
Since the new parse_options() need to check new flags at remount time,
so add a new parameter for parse_options().
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Tested-by: Austin S. Hemmelgarn <ahferroin7@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current "recovery" mount option will only try to use backup root.
However the word "recovery" is too generic and may be confusing for some
users.
Here introduce a new and more specific mount option, "usebackuproot" to
replace "recovery" mount option.
"Recovery" will be kept for compatibility reason, but will be
deprecated.
Also, since "usebackuproot" will only affect mount behavior and after
open_ctree() it has nothing to do with the filesystem, so clear the flag
after mount succeeded.
This provides the basis for later unified "norecovery" mount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ dropped usebackuproot from show_mount, added note about 'recovery' to
docs ]
Signed-off-by: David Sterba <dsterba@suse.com>
The number of distinct key types is not that big that we could waste one
for something new we want to store in the tree.
Similar to the temporary items, we'll introduce a new name for an
existing key value and use the objectid for further extension. The
victim is the BTRFS_DEV_STATS_KEY (248).
The device stats are an example of a permanent item.
Signed-off-by: David Sterba <dsterba@suse.com>
The number of distinct key types is not that big that we could waste one
for something new we want to store in the tree. We'll introduce a new
name for an existing key value and use the objectid for further
extension. The victim is the BTRFS_BALANCE_ITEM_KEY (248).
The nature of the balance status item is a good example of the temporary
item. It exists from beginning of the balance, keeps the status until it
finishes.
Signed-off-by: David Sterba <dsterba@suse.com>
While at it, this commit changes btrfs_truncate_page() to truncate sectorsized
blocks instead of pages. Hence the function has been renamed to
btrfs_truncate_block().
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, the code reserves/releases extents in multiples of PAGE_CACHE_SIZE
units. Fix this by doing reservation/releases in block size units.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull more btrfs updates from Chris Mason:
"These are mostly fixes that we've been testing, but also we grabbed
and tested a few small cleanups that had been on the list for a while.
Zhao Lei's patchset also fixes some early ENOSPC buglets"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (21 commits)
btrfs: raid56: Use raid_write_end_io for scrub
btrfs: Remove unnecessary ClearPageUptodate for raid56
btrfs: use rbio->nr_pages to reduce calculation
btrfs: Use unified stripe_page's index calculation
btrfs: Fix calculation of rbio->dbitmap's size calculation
btrfs: Fix no_space in write and rm loop
btrfs: merge functions for wait snapshot creation
btrfs: delete unused argument in btrfs_copy_from_user
btrfs: Use direct way to determine raid56 write/recover mode
btrfs: Small cleanup for get index_srcdev loop
btrfs: Enhance chunk validation check
btrfs: Enhance super validation check
Btrfs: fix deadlock running delayed iputs at transaction commit time
Btrfs: fix typo in log message when starting a balance
btrfs: remove duplicate const specifier
btrfs: initialize the seq counter in struct btrfs_device
Btrfs: clean up an error code in btrfs_init_space_info()
btrfs: fix iterator with update error in backref.c
Btrfs: fix output of compression message in btrfs_parse_options()
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots
...
wait_for_snapshot_creation() is in same group with oher two:
btrfs_start_write_no_snapshoting()
btrfs_end_write_no_snapshoting()
Rename wait_for_snapshot_creation() and move it into same place
with other two.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"This has our usual assortment of fixes and cleanups, but the biggest
change included is Omar Sandoval's free space tree. It's not the
default yet, mounting -o space_cache=v2 enables it and sets a readonly
compat bit. The tree can actually be deleted and regenerated if there
are any problems, but it has held up really well in testing so far.
For very large filesystems (30T+) our existing free space caching code
can end up taking a huge amount of time during commits. The new tree
based code is faster and less work overall to update as the commit
progresses.
Omar worked on this during the summer and we'll hammer on it in
production here at FB over the next few months"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (73 commits)
Btrfs: fix fitrim discarding device area reserved for boot loader's use
Btrfs: Check metadata redundancy on balance
btrfs: statfs: report zero available if metadata are exhausted
btrfs: preallocate path for snapshot creation at ioctl time
btrfs: allocate root item at snapshot ioctl time
btrfs: do an allocation earlier during snapshot creation
btrfs: use smaller type for btrfs_path locks
btrfs: use smaller type for btrfs_path lowest_level
btrfs: use smaller type for btrfs_path reada
btrfs: cleanup, use enum values for btrfs_path reada
btrfs: constify static arrays
btrfs: constify remaining structs with function pointers
btrfs tests: replace whole ops structure for free space tests
btrfs: use list_for_each_entry* in backref.c
btrfs: use list_for_each_entry_safe in free-space-cache.c
btrfs: use list_for_each_entry* in check-integrity.c
Btrfs: use linux/sizes.h to represent constants
btrfs: cleanup, remove stray return statements
btrfs: zero out delayed node upon allocation
btrfs: pass proper enum type to start_transaction()
...
The values of btrfs_path::locks are 0 to 4, fit into a u8. Let's see:
* overall size of btrfs_path drops down from 136 to 112 (-24 bytes),
* better packing in a slab page +6 objects
* the whole structure now fits to 2 cachelines
* slight decrease in code size:
text data bss dec hex filename
938731 43670 23144 1005545 f57e9 fs/btrfs/btrfs.ko.before
938203 43670 23144 1005017 f55d9 fs/btrfs/btrfs.ko.after
(and the generated assembly does not change much)
The main purpose is to decrease the size of the structure without
affecting performance. The byte access is usually well behaving accross
arches, the locks are not accessed frequently and sometimes just
compared to zero.
Note for further size reduction attempts: the slots could be made u16
but this might generate worse code on some arches (non-byte and non-int
access). Also the range of operations on slots is wider compared to
locks and the potential performance drop should be evaluated first.
Signed-off-by: David Sterba <dsterba@suse.com>
The level is 0..7, we can use smaller type. The size of btrfs_path is now
136 bytes from 144, which is +2 objects that fit into a 4k slab.
Signed-off-by: David Sterba <dsterba@suse.com>
The possible values for reada are all positive and bounded, we can later
save some bytes by storing it in u8.
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few statically initialized arrays that can be made const.
The remaining (like file_system_type, sysfs attributes or prop handlers)
do not allow that due to type mismatch when passed to the APIs or
because the structures are modified through other members.
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Conform to __btrfs_fs_incompat() cast-to-bool (!!) by explicitly
returning boolean not int.
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the VFS encapsulates the dedupe ioctl, wire up btrfs to it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is a short term solution to make sure btrfs_run_delayed_refs()
doesn't change the extent tree while we are scanning it to create the
free space tree.
Longer term we need to synchronize scanning the block groups one by one,
similar to what happens during a balance.
Signed-off-by: Chris Mason <clm@fb.com>
Now we can finally hook up everything so we can actually use free space
tree. The free space tree is enabled by passing the space_cache=v2 mount
option. On the first mount with the this option set, the free space tree
will be created and the FREE_SPACE_TREE read-only compat bit will be
set. Any time the filesystem is mounted from then on, we must use the
free space tree. The clear_cache option will also clear the free space
tree.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The free space cache has turned out to be a scalability bottleneck on
large, busy filesystems. When the cache for a lot of block groups needs
to be written out, we can get extremely long commit times; if this
happens in the critical section, things are especially bad because we
block new transactions from happening.
The main problem with the free space cache is that it has to be written
out in its entirety and is managed in an ad hoc fashion. Using a B-tree
to store free space fixes this: updates can be done as needed and we get
all of the benefits of using a B-tree: checksumming, RAID handling,
well-understood behavior.
With the free space tree, we get commit times that are about the same as
the no cache case with load times slower than the free space cache case
but still much faster than the no cache case. Free space is represented
with extents until it becomes more space-efficient to use bitmaps,
giving us similar space overhead to the free space cache.
The operations on the free space tree are: adding and removing free
space, handling the creation and deletion of block groups, and loading
the free space for a block group. We can also create the free space tree
by walking the extent tree and clear the free space tree.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The on-disk format for the free space tree is straightforward. Each
block group is represented in the free space tree by a free space info
item that stores accounting information: whether the free space for this
block group is stored as bitmaps or extents and how many extents of free
space exist for this block group (regardless of which format is being
used in the tree). Extents are (start, FREE_SPACE_EXTENT, length) keys
with no corresponding item, and bitmaps instead have the
FREE_SPACE_BITMAP type and have a bitmap item attached, which is just an
array of bytes.
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>