Commit Graph

55 Commits

Author SHA1 Message Date
Catalin Marinas 44ca0e00b6 Merge branch 'for-next/kernel-ptrauth' into for-next/core
* for-next/kernel-ptrauth:
  : Return address signing - in-kernel support
  arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
  lkdtm: arm64: test kernel pointer authentication
  arm64: compile the kernel with ptrauth return address signing
  kconfig: Add support for 'as-option'
  arm64: suspend: restore the kernel ptrauth keys
  arm64: __show_regs: strip PAC from lr in printk
  arm64: unwind: strip PAC from kernel addresses
  arm64: mask PAC bits of __builtin_return_address
  arm64: initialize ptrauth keys for kernel booting task
  arm64: initialize and switch ptrauth kernel keys
  arm64: enable ptrauth earlier
  arm64: cpufeature: handle conflicts based on capability
  arm64: cpufeature: Move cpu capability helpers inside C file
  arm64: ptrauth: Add bootup/runtime flags for __cpu_setup
  arm64: install user ptrauth keys at kernel exit time
  arm64: rename ptrauth key structures to be user-specific
  arm64: cpufeature: add pointer auth meta-capabilities
  arm64: cpufeature: Fix meta-capability cpufeature check
2020-03-25 11:11:08 +00:00
Kristina Martsenko cfef06bd06 arm64: cpufeature: add pointer auth meta-capabilities
To enable pointer auth for the kernel, we're going to need to check for
the presence of address auth and generic auth using alternative_if. We
currently have two cpucaps for each, but alternative_if needs to check a
single cpucap. So define meta-capabilities that are present when either
of the current two capabilities is present.

Leave the existing four cpucaps in place, as they are still needed to
check for mismatched systems where one CPU has the architected algorithm
but another has the IMP DEF algorithm.

Note, the meta-capabilities were present before but were removed in
commit a56005d321 ("arm64: cpufeature: Reduce number of pointer auth
CPU caps from 6 to 4") and commit 1e013d0612 ("arm64: cpufeature: Rework
ptr auth hwcaps using multi_entry_cap_matches"), as they were not needed
then. Note, unlike before, the current patch checks the cpucap values
directly, instead of reading the CPU ID register value.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: commit message and macro rebase, use __system_matches_cap]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-18 09:50:18 +00:00
Ionela Voinescu 2c9d45b43c arm64: add support for the AMU extension v1
The activity monitors extension is an optional extension introduced
by the ARMv8.4 CPU architecture. This implements basic support for
version 1 of the activity monitors architecture, AMUv1.

This support includes:
- Extension detection on each CPU (boot, secondary, hotplugged)
- Register interface for AMU aarch64 registers

Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-06 16:02:49 +00:00
Will Deacon bc20606594 Merge branch 'for-next/rng' into for-next/core
* for-next/rng: (2 commits)
  arm64: Use v8.5-RNG entropy for KASLR seed
  ...
2020-01-22 11:38:53 +00:00
Will Deacon ab3906c531 Merge branch 'for-next/errata' into for-next/core
* for-next/errata: (3 commits)
  arm64: Workaround for Cortex-A55 erratum 1530923
  ...
2020-01-22 11:35:05 +00:00
Richard Henderson 1a50ec0b3b arm64: Implement archrandom.h for ARMv8.5-RNG
Expose the ID_AA64ISAR0.RNDR field to userspace, as the RNG system
registers are always available at EL0.

Implement arch_get_random_seed_long using RNDR.  Given that the
TRNG is likely to be a shared resource between cores, and VMs,
do not explicitly force re-seeding with RNDRRS.  In order to avoid
code complexity and potential issues with hetrogenous systems only
provide values after cpufeature has finalized the system capabilities.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
[Modified to only function after cpufeature has finalized the system
capabilities and move all the code into the header -- broonie]
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
[will: Advertise HWCAP via /proc/cpuinfo]
Signed-off-by: Will Deacon <will@kernel.org>
2020-01-22 09:54:18 +00:00
Steven Price db0d46a58d arm64: Rename WORKAROUND_1319367 to SPECULATIVE_AT_NVHE
To match SPECULATIVE_AT_VHE let's also have a generic name for the NVHE
variant.

Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-01-16 10:44:11 +00:00
Steven Price e85d68faed arm64: Rename WORKAROUND_1165522 to SPECULATIVE_AT_VHE
Cortex-A55 is affected by a similar erratum, so rename the existing
workaround for errarum 1165522 so it can be used for both errata.

Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-01-16 10:43:53 +00:00
Mark Brown 3e6c69a058 arm64: Add initial support for E0PD
Kernel Page Table Isolation (KPTI) is used to mitigate some speculation
based security issues by ensuring that the kernel is not mapped when
userspace is running but this approach is expensive and is incompatible
with SPE.  E0PD, introduced in the ARMv8.5 extensions, provides an
alternative to this which ensures that accesses from userspace to the
kernel's half of the memory map to always fault with constant time,
preventing timing attacks without requiring constant unmapping and
remapping or preventing legitimate accesses.

Currently this feature will only be enabled if all CPUs in the system
support E0PD, if some CPUs do not support the feature at boot time then
the feature will not be enabled and in the unlikely event that a late
CPU is the first CPU to lack the feature then we will reject that CPU.

This initial patch does not yet integrate with KPTI, this will be dealt
with in followup patches.  Ideally we could ensure that by default we
don't use KPTI on CPUs where E0PD is present.

Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: Fixed typo in Kconfig text]
Signed-off-by: Will Deacon <will@kernel.org>
2020-01-15 14:11:02 +00:00
Catalin Marinas 346f6a4636 Merge branch 'kvm-arm64/erratum-1319367' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into for-next/core
Similarly to erratum 1165522 that affects Cortex-A76, A57 and A72
respectively suffer from errata 1319537 and 1319367, potentially
resulting in TLB corruption if the CPU speculates an AT instruction
while switching guests.

The fix is slightly more involved since we don't have VHE to help us
here, but the idea is the same: when switching a guest in, we must
prevent any speculated AT from being able to parse the page tables
until S2 is up and running. Only at this stage can we allow AT to take
place.

For this, we always restore the guest sysregs first, except for its
SCTLR and TCR registers, which must be set with SCTLR.M=1 and
TCR.EPD{0,1} = {1, 1}, effectively disabling the PTW and TLB
allocation. Once S2 is setup, we restore the guest's SCTLR and
TCR. Similar things must be done on TLB invalidation...

* 'kvm-arm64/erratum-1319367' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms:
  arm64: Enable and document ARM errata 1319367 and 1319537
  arm64: KVM: Prevent speculative S1 PTW when restoring vcpu context
  arm64: KVM: Disable EL1 PTW when invalidating S2 TLBs
  arm64: KVM: Reorder system register restoration and stage-2 activation
  arm64: Add ARM64_WORKAROUND_1319367 for all A57 and A72 versions
2019-10-28 16:22:49 +00:00
Catalin Marinas 6a036afb55 Merge branch 'for-next/neoverse-n1-stale-instr' into for-next/core
Neoverse-N1 cores with the 'COHERENT_ICACHE' feature may fetch stale
instructions when software depends on prefetch-speculation-protection
instead of explicit synchronization. [0]

The workaround is to trap I-Cache maintenance and issue an
inner-shareable TLBI. The affected cores have a Coherent I-Cache, so the
I-Cache maintenance isn't necessary. The core tells user-space it can
skip it with CTR_EL0.DIC. We also have to trap this register to hide the
bit forcing DIC-aware user-space to perform the maintenance.

To avoid trapping all cache-maintenance, this workaround depends on
a firmware component that only traps I-cache maintenance from EL0 and
performs the workaround.

For user-space, the kernel's work is to trap CTR_EL0 to hide DIC, and
produce a fake IminLine. EL3 traps the now-necessary I-Cache maintenance
and performs the inner-shareable-TLBI that makes everything better.

[0] https://developer.arm.com/docs/sden885747/latest/arm-neoverse-n1-mp050-software-developer-errata-notice

* for-next/neoverse-n1-stale-instr:
  arm64: Silence clang warning on mismatched value/register sizes
  arm64: compat: Workaround Neoverse-N1 #1542419 for compat user-space
  arm64: Fake the IminLine size on systems affected by Neoverse-N1 #1542419
  arm64: errata: Hide CTR_EL0.DIC on systems affected by Neoverse-N1 #1542419
2019-10-28 16:12:40 +00:00
James Morse 05460849c3 arm64: errata: Hide CTR_EL0.DIC on systems affected by Neoverse-N1 #1542419
Cores affected by Neoverse-N1 #1542419 could execute a stale instruction
when a branch is updated to point to freshly generated instructions.

To workaround this issue we need user-space to issue unnecessary
icache maintenance that we can trap. Start by hiding CTR_EL0.DIC.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-10-25 17:46:40 +01:00
Marc Zyngier f75e2294a4 arm64: Add ARM64_WORKAROUND_1319367 for all A57 and A72 versions
Rework the EL2 vector hardening that is only selected for A57 and A72
so that the table can also be used for ARM64_WORKAROUND_1319367.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-18 12:36:56 +01:00
Marc Zyngier 9405447ef7 arm64: Avoid Cavium TX2 erratum 219 when switching TTBR
As a PRFM instruction racing against a TTBR update can have undesirable
effects on TX2, NOP-out such PRFM on cores that are affected by
the TX2-219 erratum.

Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2019-10-08 12:25:25 +01:00
Marc Zyngier d3ec3a08fa arm64: KVM: Trap VM ops when ARM64_WORKAROUND_CAVIUM_TX2_219_TVM is set
In order to workaround the TX2-219 erratum, it is necessary to trap
TTBRx_EL1 accesses to EL2. This is done by setting HCR_EL2.TVM on
guest entry, which has the side effect of trapping all the other
VM-related sysregs as well.

To minimize the overhead, a fast path is used so that we don't
have to go all the way back to the main sysreg handling code,
unless the rest of the hypervisor expects to see these accesses.

Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2019-10-08 12:25:03 +01:00
Thomas Gleixner caab277b1d treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not see http www gnu org
  licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 503 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:07 +02:00
Marc Zyngier a5325089bd arm64: Handle erratum 1418040 as a superset of erratum 1188873
We already mitigate erratum 1188873 affecting Cortex-A76 and
Neoverse-N1 r0p0 to r2p0. It turns out that revisions r0p0 to
r3p1 of the same cores are affected by erratum 1418040, which
has the same workaround as 1188873.

Let's expand the range of affected revisions to match 1418040,
and repaint all occurences of 1188873 to 1418040. Whilst we're
there, do a bit of reformating in silicon-errata.txt and drop
a now unnecessary dependency on ARM_ARCH_TIMER_OOL_WORKAROUND.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-05-23 15:40:30 +01:00
Will Deacon 969f5ea627 arm64: errata: Add workaround for Cortex-A76 erratum #1463225
Revisions of the Cortex-A76 CPU prior to r4p0 are affected by an erratum
that can prevent interrupts from being taken when single-stepping.

This patch implements a software workaround to prevent userspace from
effectively being able to disable interrupts.

Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-05-23 11:38:10 +01:00
Andrew Murray b9585f53bc arm64: Advertise ARM64_HAS_DCPODP cpu feature
Advertise ARM64_HAS_DCPODP when both DC CVAP and DC CVADP are supported.

Even though we don't use this feature now, we provide it for consistency
with DCPOP and anticipate it being used in the future.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-16 16:27:59 +01:00
Julien Thierry b90d2b22af arm64: cpufeature: Add cpufeature for IRQ priority masking
Add a cpufeature indicating whether a cpu supports masking interrupts
by priority.

The feature will be properly enabled in a later patch.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:17 +00:00
Will Deacon a56005d321 arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
We can easily avoid defining the two meta-capabilities for the address
and generic keys, so remove them and instead just check both of the
architected and impdef capabilities when determining the level of system
support.

Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:47 +00:00
Mark Rutland 6984eb47d5 arm64/cpufeature: detect pointer authentication
So that we can dynamically handle the presence of pointer authentication
functionality, wire up probing code in cpufeature.c.

From ARMv8.3 onwards, ID_AA64ISAR1 is no longer entirely RES0, and now
has four fields describing the presence of pointer authentication
functionality:

* APA - address authentication present, using an architected algorithm
* API - address authentication present, using an IMP DEF algorithm
* GPA - generic authentication present, using an architected algorithm
* GPI - generic authentication present, using an IMP DEF algorithm

This patch checks for both address and generic authentication,
separately. It is assumed that if all CPUs support an IMP DEF algorithm,
the same algorithm is used across all CPUs.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:46 +00:00
Will Deacon bc84a2d106 Merge branch 'kvm/cortex-a76-erratum-1165522' into aarch64/for-next/core
Pull in KVM workaround for A76 erratum #116522.

Conflicts:
	arch/arm64/include/asm/cpucaps.h
2018-12-10 18:53:52 +00:00
Marc Zyngier 8b2cca9ade arm64: KVM: Force VHE for systems affected by erratum 1165522
In order to easily mitigate ARM erratum 1165522, we need to force
affected CPUs to run in VHE mode if using KVM.

Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-10 11:59:07 +00:00
Will Deacon bd4fb6d270 arm64: Add support for SB barrier and patch in over DSB; ISB sequences
We currently use a DSB; ISB sequence to inhibit speculation in set_fs().
Whilst this works for current CPUs, future CPUs may implement a new SB
barrier instruction which acts as an architected speculation barrier.

On CPUs that support it, patch in an SB; NOP sequence over the DSB; ISB
sequence and advertise the presence of the new instruction to userspace.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06 16:47:04 +00:00
Marc Zyngier 95b861a4a6 arm64: arch_timer: Add workaround for ARM erratum 1188873
When running on Cortex-A76, a timer access from an AArch32 EL0
task may end up with a corrupted value or register. The workaround for
this is to trap these accesses at EL1/EL2 and execute them there.

This only affects versions r0p0, r1p0 and r2p0 of the CPU.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-01 13:38:47 +01:00
Will Deacon 880f7cc472 arm64: cpu_errata: Remove ARM64_MISMATCHED_CACHE_LINE_SIZE
There's no need to treat mismatched cache-line sizes reported by CTR_EL0
differently to any other mismatched fields that we treat as "STRICT" in
the cpufeature code. In both cases we need to trap and emulate EL0
accesses to the register, so drop ARM64_MISMATCHED_CACHE_LINE_SIZE and
rely on ARM64_MISMATCHED_CACHE_TYPE instead.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[catalin.marinas@arm.com: move ARM64_HAS_CNP in the empty cpucaps.h slot]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-19 18:21:49 +01:00
Vladimir Murzin 5ffdfaedfa arm64: mm: Support Common Not Private translations
Common Not Private (CNP) is a feature of ARMv8.2 extension which
allows translation table entries to be shared between different PEs in
the same inner shareable domain, so the hardware can use this fact to
optimise the caching of such entries in the TLB.

CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to
the hardware that the translation table entries pointed to by this
TTBR are the same as every PE in the same inner shareable domain for
which the equivalent TTBR also has CNP bit set. In case CNP bit is set
but TTBR does not point at the same translation table entries for a
given ASID and VMID, then the system is mis-configured, so the results
of translations are UNPREDICTABLE.

For kernel we postpone setting CNP till all cpus are up and rely on
cpufeature framework to 1) patch the code which is sensitive to CNP
and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be
reprogrammed as result of hibernation or cpuidle (via __enable_mmu).
For these two cases we restore CnP bit via __cpu_suspend_exit().

There are a few cases we need to care of changes in TTBR0_EL1:
  - a switch to idmap
  - software emulated PAN

we rule out latter via Kconfig options and for the former we make
sure that CNP is set for non-zero ASIDs only.

Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-18 12:02:27 +01:00
Will Deacon d71be2b6c0 arm64: cpufeature: Detect SSBS and advertise to userspace
Armv8.5 introduces a new PSTATE bit known as Speculative Store Bypass
Safe (SSBS) which can be used as a mitigation against Spectre variant 4.

Additionally, a CPU may provide instructions to manipulate PSTATE.SSBS
directly, so that userspace can toggle the SSBS control without trapping
to the kernel.

This patch probes for the existence of SSBS and advertise the new instructions
to userspace if they exist.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-14 17:46:01 +01:00
Ard Biesheuvel 86d0dd34ea arm64: cpufeature: add feature for CRC32 instructions
Add a CRC32 feature bit and wire it up to the CPU id register so we
will be able to use alternatives patching for CRC32 operations.

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-10 16:10:09 +01:00
Paolo Bonzini 631989303b KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
 - Cache management optimizations for ARMv8.4 systems
 - Userspace interface for RAS, allowing error retrival and injection
 - Fault path optimization
 - Emulated physical timer fixes
 - Random cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
 Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
 ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
 JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
 zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
 7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
 GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
 8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
 NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
 WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
 TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
 AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
 cWKsrQUYcLGKZPRN
 =b6+A
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for 4.19

- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
2018-08-22 14:07:56 +02:00
Marc Zyngier e48d53a91f arm64: KVM: Add support for Stage-2 control of memory types and cacheability
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages.  This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.

ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.

On such a system, we can then safely sidestep any form of dcache
management.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09 11:37:41 +01:00
Suzuki K Poulose 314d53d297 arm64: Handle mismatched cache type
Track mismatches in the cache type register (CTR_EL0), other
than the D/I min line sizes and trap user accesses if there are any.

Fixes: be68a8aaf9 ("arm64: cpufeature: Fix CTR_EL0 field definitions")
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-05 10:20:59 +01:00
Marc Zyngier a725e3dda1 arm64: Add ARCH_WORKAROUND_2 probing
As for Spectre variant-2, we rely on SMCCC 1.1 to provide the
discovery mechanism for detecting the SSBD mitigation.

A new capability is also allocated for that purpose, and a
config option.

Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-05-31 17:34:38 +01:00
Shanker Donthineni 4bc352ffb3 arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.

Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[maz: reworked errata framework integration]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-04-11 18:49:30 +01:00
Linus Torvalds d8312a3f61 ARM:
- VHE optimizations
 - EL2 address space randomization
 - speculative execution mitigations ("variant 3a", aka execution past invalid
 privilege register access)
 - bugfixes and cleanups
 
 PPC:
 - improvements for the radix page fault handler for HV KVM on POWER9
 
 s390:
 - more kvm stat counters
 - virtio gpu plumbing
 - documentation
 - facilities improvements
 
 x86:
 - support for VMware magic I/O port and pseudo-PMCs
 - AMD pause loop exiting
 - support for AMD core performance extensions
 - support for synchronous register access
 - expose nVMX capabilities to userspace
 - support for Hyper-V signaling via eventfd
 - use Enlightened VMCS when running on Hyper-V
 - allow userspace to disable MWAIT/HLT/PAUSE vmexits
 - usual roundup of optimizations and nested virtualization bugfixes
 
 Generic:
 - API selftest infrastructure (though the only tests are for x86 as of now)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
 rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
 N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
 kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
 UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
 Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
 =bPlD
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - VHE optimizations

   - EL2 address space randomization

   - speculative execution mitigations ("variant 3a", aka execution past
     invalid privilege register access)

   - bugfixes and cleanups

  PPC:
   - improvements for the radix page fault handler for HV KVM on POWER9

  s390:
   - more kvm stat counters

   - virtio gpu plumbing

   - documentation

   - facilities improvements

  x86:
   - support for VMware magic I/O port and pseudo-PMCs

   - AMD pause loop exiting

   - support for AMD core performance extensions

   - support for synchronous register access

   - expose nVMX capabilities to userspace

   - support for Hyper-V signaling via eventfd

   - use Enlightened VMCS when running on Hyper-V

   - allow userspace to disable MWAIT/HLT/PAUSE vmexits

   - usual roundup of optimizations and nested virtualization bugfixes

  Generic:
   - API selftest infrastructure (though the only tests are for x86 as
     of now)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
  kvm: x86: fix a prototype warning
  kvm: selftests: add sync_regs_test
  kvm: selftests: add API testing infrastructure
  kvm: x86: fix a compile warning
  KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
  KVM: X86: Introduce handle_ud()
  KVM: vmx: unify adjacent #ifdefs
  x86: kvm: hide the unused 'cpu' variable
  KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
  Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
  kvm: Add emulation for movups/movupd
  KVM: VMX: raise internal error for exception during invalid protected mode state
  KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
  KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
  KVM: x86: Fix misleading comments on handling pending exceptions
  KVM: x86: Rename interrupt.pending to interrupt.injected
  KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
  x86/kvm: use Enlightened VMCS when running on Hyper-V
  x86/hyper-v: detect nested features
  x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
  ...
2018-04-09 11:42:31 -07:00
Marc Zyngier adc91ab785 Revert "arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening"
Creates far too many conflicts with arm64/for-next/core, to be
resent post -rc1.

This reverts commit f9f5dc1950.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-28 12:00:45 +01:00
Suzuki K Poulose 05abb595bb arm64: Delay enabling hardware DBM feature
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.

The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.

To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:44 +01:00
Shanker Donthineni f9f5dc1950 arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.

Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 18:35:38 +00:00
Marc Zyngier 71dcb8be6d arm64: KVM: Allow far branches from vector slots to the main vectors
So far, the branch from the vector slots to the main vectors can at
most be 4GB from the main vectors (the reach of ADRP), and this
distance is known at compile time. If we were to remap the slots
to an unrelated VA, things would break badly.

A way to achieve VA independence would be to load the absolute
address of the vectors (__kvm_hyp_vector), either using a constant
pool or a series of movs, followed by an indirect branch.

This patches implements the latter solution, using another instance
of a patching callback. Note that since we have to save a register
pair on the stack, we branch to the *second* instruction in the
vectors in order to compensate for it. This also results in having
to adjust this balance in the invalid vector entry point.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:06:01 +00:00
Marc Zyngier a1efdff442 arm64: cpufeatures: Drop the ARM64_HYP_OFFSET_LOW feature flag
Now that we can dynamically compute the kernek/hyp VA mask, there
is no need for a feature flag to trigger the alternative patching.
Let's drop the flag and everything that depends on it.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:31 +00:00
Shanker Donthineni 6ae4b6e057 arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC
The DCache clean & ICache invalidation requirements for instructions
to be data coherence are discoverable through new fields in CTR_EL0.
The following two control bits DIC and IDC were defined for this
purpose. No need to perform point of unification cache maintenance
operations from software on systems where CPU caches are transparent.

This patch optimize the three functions __flush_cache_user_range(),
clean_dcache_area_pou() and invalidate_icache_range() if the hardware
reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two
instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic
in order to avoid the unnecessary overhead.

CTR_EL0.DIC: Instruction cache invalidation requirements for
 instruction to data coherence. The meaning of this bit[29].
  0: Instruction cache invalidation to the point of unification
     is required for instruction to data coherence.
  1: Instruction cache cleaning to the point of unification is
      not required for instruction to data coherence.

CTR_EL0.IDC: Data cache clean requirements for instruction to data
 coherence. The meaning of this bit[28].
  0: Data cache clean to the point of unification is required for
     instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
     or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
  1: Data cache clean to the point of unification is not required
     for instruction to data coherence.

Co-authored-by: Philip Elcan <pelcan@codeaurora.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:57:57 +00:00
Ard Biesheuvel ca79acca27 arm64/kernel: enable A53 erratum #8434319 handling at runtime
Omit patching of ADRP instruction at module load time if the current
CPUs are not susceptible to the erratum.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: Drop duplicate initialisation of .def_scope field]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:23:09 +00:00
Xie XiuQi 64c02720ea arm64: cpufeature: Detect CPU RAS Extentions
ARM's v8.2 Extentions add support for Reliability, Availability and
Serviceability (RAS). On CPUs with these extensions system software
can use additional barriers to isolate errors and determine if faults
are pending. Add cpufeature detection.

Platform level RAS support may require additional firmware support.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
[Rebased added config option, reworded commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:05:48 +00:00
Shanker Donthineni ec82b567a7 arm64: Implement branch predictor hardening for Falkor
Falkor is susceptible to branch predictor aliasing and can
theoretically be attacked by malicious code. This patch
implements a mitigation for these attacks, preventing any
malicious entries from affecting other victim contexts.

Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[will: fix label name when !CONFIG_KVM and remove references to MIDR_FALKOR]
Signed-off-by: Will Deacon <will.deacon@arm.com>

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:47:07 +00:00
Will Deacon 0f15adbb28 arm64: Add skeleton to harden the branch predictor against aliasing attacks
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.

This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.

Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:45:25 +00:00
Will Deacon ea1e3de85e arm64: entry: Add fake CPU feature for unmapping the kernel at EL0
Allow explicit disabling of the entry trampoline on the kernel command
line (kpti=off) by adding a fake CPU feature (ARM64_UNMAP_KERNEL_AT_EL0)
that can be used to toggle the alternative sequences in our entry code and
avoid use of the trampoline altogether if desired. This also allows us to
make use of a static key in arm64_kernel_unmapped_at_el0().

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:41:06 +00:00
Dave Martin 43994d824e arm64/sve: Detect SVE and activate runtime support
This patch enables detection of hardware SVE support via the
cpufeatures framework, and reports its presence to the kernel and
userspace via the new ARM64_SVE cpucap and HWCAP_SVE hwcap
respectively.

Userspace can also detect SVE using ID_AA64PFR0_EL1, using the
cpufeatures MRS emulation.

When running on hardware that supports SVE, this enables runtime
kernel support for SVE, and allows user tasks to execute SVE
instructions and make of the of the SVE-specific user/kernel
interface extensions implemented by this series.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:21 +00:00
Robin Murphy d50e071fda arm64: Implement pmem API support
Add a clean-to-point-of-persistence cache maintenance helper, and wire
up the basic architectural support for the pmem driver based on it.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[catalin.marinas@arm.com: move arch_*_pmem() functions to arch/arm64/mm/flush.c]
[catalin.marinas@arm.com: change dmb(sy) to dmb(osh)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-09 12:15:45 +01:00
David Daney 690a341577 arm64: Add workaround for Cavium Thunder erratum 30115
Some Cavium Thunder CPUs suffer a problem where a KVM guest may
inadvertently cause the host kernel to quit receiving interrupts.

Use the Group-0/1 trapping in order to deal with it.

[maz]: Adapted patch to the Group-0/1 trapping, reworked commit log

Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:45:04 +01:00