Map "xen_nopvspin" to "nopvspin", fix stale description of "xen_nopvspin"
as we use qspinlock now.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are cases where a guest tries to switch spinlocks to bare metal
behavior (e.g. by setting "xen_nopvspin" on XEN platform and
"hv_nopvspin" on HYPER_V).
That feature is missed on KVM, add a new parameter "nopvspin" to disable
PV spinlocks for KVM guest.
The new 'nopvspin' parameter will also replace Xen and Hyper-V specific
parameters in future patches.
Define variable nopvsin as global because it will be used in future
patches as above.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pr_*() is preferred than printk(KERN_* ...), after change all the print
in arch/x86/kernel/kvm.c will have "kvm-guest: xxx" style.
No functional change.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 34226b6b70.
Commit 8990cac6e5 ("x86/jump_label: Initialize static branching
early") adds jump_label_init() call in setup_arch() to make static
keys initialized early, so we could use the original simpler code
again.
The similar change for XEN is in commit 090d54bcbc ("Revert
"x86/paravirt: Set up the virt_spin_lock_key after static keys get
initialized"")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename KVM's accessor for retrieving a 'struct kvm_mmu_page' from the
associated host physical address to better convey what the function is
doing.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce sptep_to_sp() to reduce the boilerplate code needed to get the
shadow page associated with a spte pointer, and to improve readability
as it's not immediately obvious that "page_header" is a KVM-specific
accessor for retrieving a shadow page.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make 'struct kvm_mmu_page' MMU-only, nothing outside of the MMU should
be poking into the gory details of shadow pages.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add mmu/mmu_internal.h to hold declarations and definitions that need
to be shared between various mmu/ files, but should not be used by
anything outside of the MMU.
Begin populating mmu_internal.h with declarations of the helpers used by
page_track.c.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_mmu_available_pages() from mmu.h to mmu.c, it has a single
caller and has no business being exposed via mmu.h.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move mmu_audit.c and mmutrace.h under mmu/ where they belong.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Propagate any error returned by make_mmu_pages_available() out to
userspace instead of resuming the guest if the error occurs while
handling a page fault. Now that zapping the oldest MMU pages skips
active roots, i.e. fails if and only if there are no zappable pages,
there is no chance for a false positive, i.e. no chance of returning a
spurious error to userspace.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623193542.7554-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently introduced kvm_mmu_zap_oldest_mmu_pages() to batch zap
MMU pages when shrinking a slab. This fixes a long standing issue where
KVM's shrinker implementation is completely ineffective due to zapping
only a single page. E.g. without batch zapping, forcing a scan via
drop_caches basically has no impact on a VM with ~2k shadow pages. With
batch zapping, the number of shadow pages can be reduced to a few
hundred pages in one or two runs of drop_caches.
Note, if the default batch size (currently 128) is problematic, e.g.
zapping 128 pages holds mmu_lock for too long, KVM can bound the batch
size by setting @batch in mmu_shrinker.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623193542.7554-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Collect MMU pages for zapping in a loop when making MMU pages available,
and skip over active roots when doing so as zapping an active root can
never immediately free up a page. Batching the zapping avoids multiple
remote TLB flushes and remedies the issue where the loop would bail
early if an active root was encountered.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623193542.7554-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Delete a shadow page from the invalidation list instead of throwing it
back on the list of active pages when it's a root shadow page with
active users. Invalid active root pages will be explicitly freed by
mmu_free_root_page() when the root_count hits zero, i.e. they don't need
to be put on the active list to avoid leakage.
Use sp->role.invalid to detect that a shadow page has already been
zapped, i.e. is not on a list.
WARN if an invalid page is encountered when zapping pages, as it should
now be impossible.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623193542.7554-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the unsync checks and the write flooding clearing for fully direct
MMUs, which are guaranteed to not have unsync'd or indirect pages (write
flooding detection only applies to indirect pages). For TDP, this
avoids unnecessary memory reads and writes, and for the write flooding
count will also avoid dirtying a cache line (unsync_child_bitmap itself
consumes a cache line, i.e. write_flooding_count is guaranteed to be in
a different cache line than parent_ptes).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623194027.23135-3-sean.j.christopherson@intel.com>
Reviewed-By: Jon Cargille <jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor for_each_valid_sp() to take the list of shadow pages instead of
retrieving it from a gfn to avoid doing the gfn->list hash and lookup
multiple times during kvm_get_mmu_page().
Cc: Peter Feiner <pfeiner@google.com>
Cc: Jon Cargille <jcargill@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623194027.23135-2-sean.j.christopherson@intel.com>
Reviewed-By: Jon Cargille <jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current minimum required version of binutils is 2.23,
which supports VMCALL and VMMCALL instruction mnemonics.
Replace the byte-wise specification of VMCALL and
VMMCALL with these proper mnemonics.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
CC: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200623183439.5526-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Match the naming with other nested svm functions.
No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Message-Id: <20200625080325.28439-5-joro@8bytes.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make clear the symbols belong to the SVM code when they are built-in.
No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Message-Id: <20200625080325.28439-4-joro@8bytes.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make it more clear what data structure these functions operate on.
No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Message-Id: <20200625080325.28439-3-joro@8bytes.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Renaming is only needed in the svm.h header file.
No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Message-Id: <20200625080325.28439-2-joro@8bytes.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add nested_vmx_fail() to wrap VM-Fail paths that _may_ result in VM-Fail
Valid to make it clear at the call sites that the Valid flavor isn't
guaranteed.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200609015607.6994-1-sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since this field is now in kvm_vcpu_arch, clean things up a little by
setting it in vendor-agnostic code: vcpu_enter_guest. Note that it
must be set after the call to kvm_x86_ops.run(), since it can't be
updated before pre_sev_run().
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-7-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both the vcpu_vmx structure and the vcpu_svm structure have a
'last_cpu' field. Move the common field into the kvm_vcpu_arch
structure. For clarity, rename it to 'last_vmentry_cpu.'
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-6-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
More often than not, a failed VM-entry in an x86 production
environment is induced by a defective CPU. To help identify the bad
hardware, include the id of the last logical CPU to run a vCPU in the
information provided to userspace on a KVM exit for failed VM-entry or
for KVM internal errors not associated with emulation. The presence of
this additional information is indicated by a new capability,
KVM_CAP_LAST_CPU.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-5-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As we already do in svm, record the last logical processor on which a
vCPU has run, so that it can be communicated to userspace for
potential hardware errors.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-4-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, this field was only set when using SEV. Set it for all
vCPU configurations, so that it can be communicated to userspace for
diagnosing potential hardware errors.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-3-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current logical processor id is cached in vcpu->cpu. Use it
instead of raw_smp_processor_id() when a kvm_vcpu struct is available.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200603235623.245638-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Callers of sev_pin_memory() treat
NULL differently:
sev_launch_secret()/svm_register_enc_region() return -ENOMEM
sev_dbg_crypt() returns -EFAULT.
Switching to ERR_PTR() preserves the error and enables cleaner reporting of
different kinds of failures.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This code was using get_user_pages*(), in a "Case 2" scenario
(DMA/RDMA), using the categorization from [1]. That means that it's
time to convert the get_user_pages*() + put_page() calls to
pin_user_pages*() + unpin_user_pages() calls.
There is some helpful background in [2]: basically, this is a small
part of fixing a long-standing disconnect between pinning pages, and
file systems' use of those pages.
[1] Documentation/core-api/pin_user_pages.rst
[2] "Explicit pinning of user-space pages":
https://lwn.net/Articles/807108/
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Message-Id: <20200526062207.1360225-3-jhubbard@nvidia.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two problems in svn_pin_memory():
1) The return value of get_user_pages_fast() is stored in an
unsigned long, although the declared return value is of type int.
This will not cause any symptoms, but it is misleading.
Fix this by changing the type of npinned to "int".
2) The number of pages passed into get_user_pages_fast() is stored
in an unsigned long, even though get_user_pages_fast() accepts an
int. This means that it is possible to silently overflow the number
of pages.
Fix this by adding a WARN_ON_ONCE() and an early error return. The
npages variable is left as an unsigned long for convenience in
checking for overflow.
Fixes: 89c5058090 ("KVM: SVM: Add support for KVM_SEV_LAUNCH_UPDATE_DATA command")
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Message-Id: <20200526062207.1360225-2-jhubbard@nvidia.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Canonicalization and Consistency Checks" in APM vol. 2
the following guest state is illegal:
"DR6[63:32] are not zero."
"DR7[63:32] are not zero."
"Any MBZ bit of EFER is set."
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20200522221954.32131-3-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Logically the ignore_msrs and report_ignored_msrs should also apply to feature
MSRs. Add them in.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200622220442.21998-3-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR accesses can be one of:
(1) KVM internal access,
(2) userspace access (e.g., via KVM_SET_MSRS ioctl),
(3) guest access.
The ignore_msrs was previously handled by kvm_get_msr_common() and
kvm_set_msr_common(), which is the bottom of the msr access stack. It's
working in most cases, however it could dump unwanted warning messages to dmesg
even if kvm get/set the msrs internally when calling __kvm_set_msr() or
__kvm_get_msr() (e.g. kvm_cpuid()). Ideally we only want to trap cases (2)
or (3), but not (1) above.
To achieve this, move the ignore_msrs handling upper until the callers of
__kvm_get_msr() and __kvm_set_msr(). To identify the "msr missing" event, a
new return value (KVM_MSR_RET_INVALID==2) is used for that.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200622220442.21998-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move .write_log_dirty() into kvm_x86_nested_ops to help differentiate it
from the non-nested dirty log hooks. And because it's a nested-only
operation.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if vmx_write_pml_buffer() is called outside of guest mode instead
of silently ignoring the condition. The only caller is nested EPT's
ept_update_accessed_dirty_bits(), which should only be reachable when
L2 is active.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_write_log_dirty() in favor of invoking .write_log_dirty()
directly from FNAME(update_accessed_dirty_bits). "kvm_arch" is usually
used for x86 functions that are invoked from generic KVM, and implies
that there are external callers, neither of which is true.
Remove the check for a non-NULL kvm_x86_ops hook as the call is wrapped
in PTTYPE_EPT and is unconditionally set by VMX.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unlike normal 'int' functions returning '0' on success, kvm_setup_async_pf()/
kvm_arch_setup_async_pf() return '1' when a job to handle page fault
asynchronously was scheduled and '0' otherwise. To avoid the confusion
change return type to 'bool'.
No functional change intended.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200615121334.91300-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM guest code in Linux enables APF only when KVM_FEATURE_ASYNC_PF_INT
is supported, this means we will never see KVM_PV_REASON_PAGE_READY
when handling page fault vmexit in KVM.
While on it, make sure we only follow genuine page fault path when
APF reason is zero. If we happen to see something else this means
that the underlying hypervisor is misbehaving. Leave WARN_ON_ONCE()
to catch that.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reading LBR registers in a perf NMI handler for a non-PEBS event
causes a high overhead because the number of LBR registers is huge.
To reduce the overhead, the XSAVES instruction should be used to replace
the LBR registers' reading method.
The XSAVES buffer used for LBR read has to be per-CPU because the NMI
handler invoked the lbr_read(). The existing task_ctx_data buffer
cannot be used which is per-task and only be allocated for the LBR call
stack mode. A new lbr_xsave pointer is introduced in the cpu_hw_events
as an XSAVES buffer for LBR read.
The XSAVES buffer should be allocated only when LBR is used by a
non-PEBS event on the CPU because the total size of the lbr_xsave is
not small (~1.4KB).
The XSAVES buffer is allocated when a non-PEBS event is added, but it
is lazily released in x86_release_hardware() when perf releases the
entire PMU hardware resource, because perf may frequently schedule the
event, e.g. high context switch. The lazy release method reduces the
overhead of frequently allocate/free the buffer.
If the lbr_xsave fails to be allocated, roll back to normal Arch LBR
lbr_read().
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-24-git-send-email-kan.liang@linux.intel.com
In the LBR call stack mode, LBR information is used to reconstruct a
call stack. To get the complete call stack, perf has to save/restore
all LBR registers during a context switch. Due to a large number of the
LBR registers, this process causes a high CPU overhead. To reduce the
CPU overhead during a context switch, use the XSAVES/XRSTORS
instructions.
Every XSAVE area must follow a canonical format: the legacy region, an
XSAVE header and the extended region. Although the LBR information is
only kept in the extended region, a space for the legacy region and
XSAVE header is still required. Add a new dedicated structure for LBR
XSAVES support.
Before enabling XSAVES support, the size of the LBR state has to be
sanity checked, because:
- the size of the software structure is calculated from the max number
of the LBR depth, which is enumerated by the CPUID leaf for Arch LBR.
The size of the LBR state is enumerated by the CPUID leaf for XSAVE
support of Arch LBR. If the values from the two CPUID leaves are not
consistent, it may trigger a buffer overflow. For example, a hypervisor
may unconsciously set inconsistent values for the two emulated CPUID.
- unlike other state components, the size of an LBR state depends on the
max number of LBRs, which may vary from generation to generation.
Expose the function xfeature_size() for the sanity check.
The LBR XSAVES support will be disabled if the size of the LBR state
enumerated by CPUID doesn't match with the size of the software
structure.
The XSAVE instruction requires 64-byte alignment for state buffers. A
new macro is added to reflect the alignment requirement. A 64-byte
aligned kmem_cache is created for architecture LBR.
Currently, the structure for each state component is maintained in
fpu/types.h. The structure for the new LBR state component should be
maintained in the same place. Move structure lbr_entry to fpu/types.h as
well for broader sharing.
Add dedicated lbr_save/lbr_restore functions for LBR XSAVES support,
which invokes the corresponding xstate helpers to XSAVES/XRSTORS LBR
information at the context switch when the call stack mode is enabled.
Since the XSAVES/XRSTORS instructions will be eventually invoked, the
dedicated functions is named with '_xsaves'/'_xrstors' postfix.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-23-git-send-email-kan.liang@linux.intel.com
The perf subsystem will only need to save/restore the LBR state.
However, the existing helpers save all supported supervisor states to a
kernel buffer, which will be unnecessary. Two helpers are introduced to
only save/restore requested dynamic supervisor states. The supervisor
features in XFEATURE_MASK_SUPERVISOR_SUPPORTED and
XFEATURE_MASK_SUPERVISOR_UNSUPPORTED mask cannot be saved/restored using
these helpers.
The helpers will be used in the following patch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-22-git-send-email-kan.liang@linux.intel.com
Last Branch Records (LBR) registers are used to log taken branches and
other control flows. In perf with call stack mode, LBR information is
used to reconstruct a call stack. To get the complete call stack, perf
has to save/restore all LBR registers during a context switch. Due to
the large number of the LBR registers, e.g., the current platform has
96 LBR registers, this process causes a high CPU overhead. To reduce
the CPU overhead during a context switch, an LBR state component that
contains all the LBR related registers is introduced in hardware. All
LBR registers can be saved/restored together using one XSAVES/XRSTORS
instruction.
However, the kernel should not save/restore the LBR state component at
each context switch, like other state components, because of the
following unique features of LBR:
- The LBR state component only contains valuable information when LBR
is enabled in the perf subsystem, but for most of the time, LBR is
disabled.
- The size of the LBR state component is huge. For the current
platform, it's 808 bytes.
If the kernel saves/restores the LBR state at each context switch, for
most of the time, it is just a waste of space and cycles.
To efficiently support the LBR state component, it is desired to have:
- only context-switch the LBR when the LBR feature is enabled in perf.
- only allocate an LBR-specific XSAVE buffer on demand.
(Besides the LBR state, a legacy region and an XSAVE header have to be
included in the buffer as well. There is a total of (808+576) byte
overhead for the LBR-specific XSAVE buffer. The overhead only happens
when the perf is actively using LBRs. There is still a space-saving,
on average, when it replaces the constant 808 bytes of overhead for
every task, all the time on the systems that support architectural
LBR.)
- be able to use XSAVES/XRSTORS for accessing LBR at run time.
However, the IA32_XSS should not be adjusted at run time.
(The XCR0 | IA32_XSS are used to determine the requested-feature
bitmap (RFBM) of XSAVES.)
A solution, called dynamic supervisor feature, is introduced to address
this issue, which
- does not allocate a buffer in each task->fpu;
- does not save/restore a state component at each context switch;
- sets the bit corresponding to the dynamic supervisor feature in
IA32_XSS at boot time, and avoids setting it at run time.
- dynamically allocates a specific buffer for a state component
on demand, e.g. only allocates LBR-specific XSAVE buffer when LBR is
enabled in perf. (Note: The buffer has to include the LBR state
component, a legacy region and a XSAVE header space.)
(Implemented in a later patch)
- saves/restores a state component on demand, e.g. manually invokes
the XSAVES/XRSTORS instruction to save/restore the LBR state
to/from the buffer when perf is active and a call stack is required.
(Implemented in a later patch)
A new mask XFEATURE_MASK_DYNAMIC and a helper xfeatures_mask_dynamic()
are introduced to indicate the dynamic supervisor feature. For the
systems which support the Architecture LBR, LBR is the only dynamic
supervisor feature for now. For the previous systems, there is no
dynamic supervisor feature available.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-21-git-send-email-kan.liang@linux.intel.com
When saving xstate to a kernel/user XSAVE area with the XSAVE family of
instructions, the current code applies the 'full' instruction mask (-1),
which tries to XSAVE all possible features. This method relies on
hardware to trim 'all possible' down to what is enabled in the
hardware. The code works well for now. However, there will be a
problem, if some features are enabled in hardware, but are not suitable
to be saved into all kernel XSAVE buffers, like task->fpu, due to
performance consideration.
One such example is the Last Branch Records (LBR) state. The LBR state
only contains valuable information when LBR is explicitly enabled by
the perf subsystem, and the size of an LBR state is large (808 bytes
for now). To avoid both CPU overhead and space overhead at each context
switch, the LBR state should not be saved into task->fpu like other
state components. It should be saved/restored on demand when LBR is
enabled in the perf subsystem. Current copy_xregs_to_* will trigger a
buffer overflow for such cases.
Three sites use the '-1' instruction mask which must be updated.
Two are saving/restoring the xstate to/from a kernel-allocated XSAVE
buffer and can use 'xfeatures_mask_all', which will save/restore all of
the features present in a normal task FPU buffer.
The last one saves the register state directly to a user buffer. It
could
also use 'xfeatures_mask_all'. Just as it was with the '-1' argument,
any supervisor states in the mask will be filtered out by the hardware
and not saved to the buffer. But, to be more explicit about what is
expected to be saved, use xfeatures_mask_user() for the instruction
mask.
KVM includes the header file fpu/internal.h. To avoid 'undefined
xfeatures_mask_all' compiling issue, move copy_fpregs_to_fpstate() to
fpu/core.c and export it, because:
- The xfeatures_mask_all is indirectly used via copy_fpregs_to_fpstate()
by KVM. The function which is directly used by other modules should be
exported.
- The copy_fpregs_to_fpstate() is a function, while xfeatures_mask_all
is a variable for the "internal" FPU state. It's safer to export a
function than a variable, which may be implicitly changed by others.
- The copy_fpregs_to_fpstate() is a big function with many checks. The
removal of the inline keyword should not impact the performance.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-20-git-send-email-kan.liang@linux.intel.com
A new kmem_cache method is introduced to allocate the PMU specific data
task_ctx_data, which requires the PMU specific code to create a
kmem_cache.
Currently, the task_ctx_data is only used by the Intel LBR call stack
feature, which is introduced since Haswell. The kmem_cache should be
only created for Haswell and later platforms. There is no alignment
requirement for the existing platforms.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-18-git-send-email-kan.liang@linux.intel.com
Last Branch Records (LBR) enables recording of software path history by
logging taken branches and other control flows within architectural
registers now. Intel CPUs have had model-specific LBR for quite some
time, but this evolves them into an architectural feature now.
The main improvements of Architectural LBR implemented includes:
- Linux kernel can support the LBR features without knowing the model
number of the current CPU.
- Architectural LBR capabilities can be enumerated by CPUID. The
lbr_ctl_map is based on the CPUID Enumeration.
- The possible LBR depth can be retrieved from CPUID enumeration. The
max value is written to the new MSR_ARCH_LBR_DEPTH as the number of
LBR entries.
- A new IA32_LBR_CTL MSR is introduced to enable and configure LBRs,
which replaces the IA32_DEBUGCTL[bit 0] and the LBR_SELECT MSR.
- Each LBR record or entry is still comprised of three MSRs,
IA32_LBR_x_FROM_IP, IA32_LBR_x_TO_IP and IA32_LBR_x_TO_IP.
But they become the architectural MSRs.
- Architectural LBR is stack-like now. Entry 0 is always the youngest
branch, entry 1 the next youngest... The TOS MSR has been removed.
The way to enable/disable Architectural LBR is similar to the previous
model-specific LBR. __intel_pmu_lbr_enable/disable() can be reused, but
some modifications are required, which include:
- MSR_ARCH_LBR_CTL is used to enable and configure the Architectural
LBR.
- When checking the value of the IA32_DEBUGCTL MSR, ignoring the
DEBUGCTLMSR_LBR (bit 0) for Architectural LBR, which has no meaning
and always return 0.
- The FREEZE_LBRS_ON_PMI has to be explicitly set/clear, because
MSR_IA32_DEBUGCTLMSR is not touched in __intel_pmu_lbr_disable() for
Architectural LBR.
- Only MSR_ARCH_LBR_CTL is cleared in __intel_pmu_lbr_disable() for
Architectural LBR.
Some Architectural LBR dedicated functions are implemented to
reset/read/save/restore LBR.
- For reset, writing to the ARCH_LBR_DEPTH MSR clears all Arch LBR
entries, which is a lot faster and can improve the context switch
latency.
- For read, the branch type information can be retrieved from
the MSR_ARCH_LBR_INFO_*. But it's not fully compatible due to
OTHER_BRANCH type. The software decoding is still required for the
OTHER_BRANCH case.
LBR records are stored in the age order as well. Reuse
intel_pmu_store_lbr(). Check the CPUID enumeration before accessing
the corresponding bits in LBR_INFO.
- For save/restore, applying the fast reset (writing ARCH_LBR_DEPTH).
Reading 'lbr_from' of entry 0 instead of the TOS MSR to check if the
LBR registers are reset in the deep C-state. If 'the deep C-state
reset' bit is not set in CPUID enumeration, ignoring the check.
XSAVE support for Architectural LBR will be implemented later.
The number of LBR entries cannot be hardcoded anymore, which should be
retrieved from CPUID enumeration. A new structure
x86_perf_task_context_arch_lbr is introduced for Architectural LBR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-15-git-send-email-kan.liang@linux.intel.com
The way to store the LBR information from a PEBS LBR record can be
reused in Architecture LBR, because
- The LBR information is stored like a stack. Entry 0 is always the
youngest branch.
- The layout of the LBR INFO MSR is similar.
The LBR information may be retrieved from either the LBR registers
(non-PEBS event) or a buffer (PEBS event). Extend rdlbr_*() to support
both methods.
Explicitly check the invalid entry (0s), which can avoid unnecessary MSR
access if using a non-PEBS event. For a PEBS event, the check should
slightly improve the performance as well. The invalid entries are cut.
The intel_pmu_lbr_filter() doesn't need to check and filter them out.
Cannot share the function with current model-specific LBR read, because
the direction of the LBR growth is opposite.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-14-git-send-email-kan.liang@linux.intel.com
The previous model-specific LBR and Architecture LBR (legacy way) use a
similar method to save/restore the LBR information, which directly
accesses the LBR registers. The codes which read/write a set of LBR
registers can be shared between them.
Factor out two functions which are used to read/write a set of LBR
registers.
Add lbr_info into structure x86_pmu, and use it to replace the hardcoded
LBR INFO MSR, because the LBR INFO MSR address of the previous
model-specific LBR is different from Architecture LBR. The MSR address
should be assigned at boot time. For now, only Sky Lake and later
platforms have the LBR INFO MSR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-13-git-send-email-kan.liang@linux.intel.com
The {rd,wr}lbr_{to,from} wrappers are invoked in hot paths, e.g. context
switch and NMI handler. They should be always inline to achieve better
performance. However, the CONFIG_OPTIMIZE_INLINING allows the compiler
to uninline functions marked 'inline'.
Mark the {rd,wr}lbr_{to,from} wrappers as __always_inline to force
inline the wrappers.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-12-git-send-email-kan.liang@linux.intel.com
Current LBR information in the structure x86_perf_task_context is stored
in a different format from the PEBS LBR record and Architecture LBR,
which prevents the sharing of the common codes.
Use the format of the PEBS LBR record as a unified format. Use a generic
name lbr_entry to replace pebs_lbr_entry.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-11-git-send-email-kan.liang@linux.intel.com
An IA32_LBR_CTL is introduced for Architecture LBR to enable and config
LBR registers to replace the previous LBR_SELECT.
All the related members in struct cpu_hw_events and struct x86_pmu
have to be renamed.
Some new macros are added to reflect the layout of LBR_CTL.
The mapping from PERF_SAMPLE_BRANCH_* to the corresponding bits in
LBR_CTL MSR is saved in lbr_ctl_map now, which is not a const value.
The value relies on the CPUID enumeration.
For the previous model-specific LBR, most of the bits in LBR_SELECT
operate in the suppressed mode. For the bits in LBR_CTL, the polarity is
inverted.
For the previous model-specific LBR format 5 (LBR_FORMAT_INFO), if the
NO_CYCLES and NO_FLAGS type are set, the flag LBR_NO_INFO will be set to
avoid the unnecessary LBR_INFO MSR read. Although Architecture LBR also
has a dedicated LBR_INFO MSR, perf doesn't need to check and set the
flag LBR_NO_INFO. For Architecture LBR, XSAVES instruction will be used
as the default way to read the LBR MSRs all together. The overhead which
the flag tries to avoid doesn't exist anymore. Dropping the flag can
save the extra check for the flag in the lbr_read() later, and make the
code cleaner.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-10-git-send-email-kan.liang@linux.intel.com
The LBR capabilities of Architecture LBR are retrieved from the CPUID
enumeration once at boot time. The capabilities have to be saved for
future usage.
Several new fields are added into structure x86_pmu to indicate the
capabilities. The fields will be used in the following patches.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-9-git-send-email-kan.liang@linux.intel.com
The type of task_ctx is hardcoded as struct x86_perf_task_context,
which doesn't apply for Architecture LBR. For example, Architecture LBR
doesn't have the TOS MSR. The number of LBR entries is variable. A new
struct will be introduced for Architecture LBR. Perf has to determine
the type of task_ctx at run time.
The type of task_ctx pointer is changed to 'void *', which will be
determined at run time.
The generic LBR optimization can be shared between Architecture LBR and
model-specific LBR. Both need to access the structure for the generic
LBR optimization. A helper task_context_opt() is introduced to retrieve
the pointer of the structure at run time.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-7-git-send-email-kan.liang@linux.intel.com
To reduce the overhead of a context switch with LBR enabled, some
generic optimizations were introduced, e.g. avoiding restore LBR if no
one else touched them. The generic optimizations can also be used by
Architecture LBR later. Currently, the fields for the generic
optimizations are part of structure x86_perf_task_context, which will be
deprecated by Architecture LBR. A new structure should be introduced
for the common fields of generic optimization, which can be shared
between Architecture LBR and model-specific LBR.
Both 'valid_lbrs' and 'tos' are also used by the generic optimizations,
but they are not moved into the new structure, because Architecture LBR
is stack-like. The 'valid_lbrs' which records the index of the valid LBR
is not required anymore. The TOS MSR will be removed.
LBR registers may be cleared in the deep Cstate. If so, the generic
optimizations should not be applied. Perf has to unconditionally
restore the LBR registers. A generic function is required to detect the
reset due to the deep Cstate. lbr_is_reset_in_cstate() is introduced.
Currently, for the model-specific LBR, the TOS MSR is used to detect the
reset. There will be another method introduced for Architecture LBR
later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-6-git-send-email-kan.liang@linux.intel.com
The MSRs of Architectural LBR are different from previous model-specific
LBR. Perf has to implement different functions to save and restore them.
The function pointers for LBR save and restore are introduced. Perf
should initialize the corresponding functions at boot time.
The generic optimizations, e.g. avoiding restore LBR if no one else
touched them, still apply for Architectural LBRs. The related codes are
not moved to model-specific functions.
Current model-specific LBR functions are set as default.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-5-git-send-email-kan.liang@linux.intel.com
The method to read Architectural LBRs is different from previous
model-specific LBR. Perf has to implement a different function.
A function pointer for LBR read is introduced. Perf should initialize
the corresponding function at boot time, and avoid checking lbr_format
at run time.
The current 64-bit LBR read function is set as default.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-4-git-send-email-kan.liang@linux.intel.com
The method to reset Architectural LBRs is different from previous
model-specific LBR. Perf has to implement a different function.
A function pointer is introduced for LBR reset. The enum of
LBR_FORMAT_* is also moved to perf_event.h. Perf should initialize the
corresponding functions at boot time, and avoid checking lbr_format at
run time.
The current 64-bit LBR reset function is set as default.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-3-git-send-email-kan.liang@linux.intel.com
CPUID.(EAX=07H, ECX=0):EDX[19] indicates whether an Intel CPU supports
Architectural LBRs.
The "X86_FEATURE_..., word 18" is already mirrored from CPUID
"0x00000007:0 (EDX)". Add X86_FEATURE_ARCH_LBR under the "word 18"
section.
The feature will appear as "arch_lbr" in /proc/cpuinfo.
The Architectural Last Branch Records (LBR) feature enables recording
of software path history by logging taken branches and other control
flows. The feature will be supported in the perf_events subsystem.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-2-git-send-email-kan.liang@linux.intel.com
As discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
need to tweak vdso_join_timens() to always succeed. So switch
vdso_join_timens() to using a read lock and replacing
mmap_write_lock_killable() to mmap_read_lock() as we discussed.
Last cycle setns() was changed to support attaching to multiple namespaces
atomically. This requires all namespaces to have a point of no return where
they can't fail anymore. Specifically, <namespace-type>_install() is
allowed to perform permission checks and install the namespace into the new
struct nsset that it has been given but it is not allowed to make visible
changes to the affected task. Once <namespace-type>_install() returns
anything that the given namespace type requires to be setup in addition
needs to ideally be done in a function that can't fail or if it fails the
failure is not fatal. For time namespaces the relevant functions that fall
into this category are timens_set_vvar_page() and vdso_join_timens().
Currently the latter can fail but doesn't need to. With this we can go on
to implement a timens_commit() helper in a follow up patch to be used by
setns().
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200706154912.3248030-2-christian.brauner@ubuntu.com
Some Makefiles already pass -ffreestanding unconditionally.
For example, arch/arm64/lib/Makefile, arch/x86/purgatory/Makefile.
No problem report so far about hard-coding this option. So, we can
assume all supported compilers know -ffreestanding.
I confirmed GCC 4.8 and Clang manuals document this option.
Get rid of cc-option from -ffreestanding.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Some Makefiles already pass -fno-stack-protector unconditionally.
For example, arch/arm64/kernel/vdso/Makefile, arch/x86/xen/Makefile.
No problem report so far about hard-coding this option. So, we can
assume all supported compilers know -fno-stack-protector.
GCC 4.8 and Clang support this option (https://godbolt.org/z/_HDGzN)
Get rid of cc-option from -fno-stack-protector.
Remove CONFIG_CC_HAS_STACKPROTECTOR_NONE, which is always 'y'.
Note:
arch/mips/vdso/Makefile adds -fno-stack-protector twice, first
unconditionally, and second conditionally. I removed the second one.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl8DWosUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO8cAf/UskNg8qoLGG17rQwhFpmigSllbiJ
TAyi3tpb1Y0Z2MfYeGkeiEb1L34bS28Cxl929DoqI3hrXy1wDCmsHPB5c3URXrzd
aswvr7pJtQV9iH1ykaS2woFJnOUovMFsFYMhj46yUPoAvdKOZKvuqcduxbogYHFw
YeRhS+1lGfiP2A0j3O/nnNJ0wq+FxKO46G3CgWeqG75+FSL6y/tl0bZJUMKKajQZ
GNaOv/CYCHAfUdvgy0ZitRD8lV8yxng3dYGjm+a52Kmn2ZWiFlxNrnxzHySk16Rn
Lq6MfFOqgrYpoZv7SnsFYnRE05U5bEFQ8BGr22fImQ+ktKDgq+9gv6cKwA==
=+DN/
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes and a one-liner patch to silence a sparse warning"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: arm64: Stop clobbering x0 for HVC_SOFT_RESTART
KVM: arm64: PMU: Fix per-CPU access in preemptible context
KVM: VMX: Use KVM_POSSIBLE_CR*_GUEST_BITS to initialize guest/host masks
KVM: x86: Mark CR4.TSD as being possibly owned by the guest
KVM: x86: Inject #GP if guest attempts to toggle CR4.LA57 in 64-bit mode
kvm: use more precise cast and do not drop __user
KVM: x86: bit 8 of non-leaf PDPEs is not reserved
KVM: X86: Fix async pf caused null-ptr-deref
KVM: arm64: vgic-v4: Plug race between non-residency and v4.1 doorbell
KVM: arm64: pvtime: Ensure task delay accounting is enabled
KVM: arm64: Fix kvm_reset_vcpu() return code being incorrect with SVE
KVM: arm64: Annotate hyp NMI-related functions as __always_inline
KVM: s390: reduce number of IO pins to 1
They were originally called _cond_rcu because they were special versions
with conditional RCU handling. Now they're the standard entry and exit
path, so the _cond_rcu part is just confusing. Drop it.
Also change the signature to make them more extensible and more foolproof.
No functional change -- it's pure refactoring.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/247fc67685263e0b673e1d7f808182d28ff80359.1593795633.git.luto@kernel.org
Using a mutex for "print this warning only once" is so overdesigned as
to be actively offensive to my sensitive stomach.
Just use "pr_info_once()" that already does this, although in a
(harmlessly) racy manner that can in theory cause the message to be
printed twice if more than one CPU races on that "is this the first
time" test.
[ If somebody really cares about that harmless data race (which sounds
very unlikely indeed), that person can trivially fix printk_once() by
using a simple atomic access, preferably with an optimistic non-atomic
test first before even bothering to treat the pointless "make sure it
is _really_ just once" case.
A mutex is most definitely never the right primitive to use for
something like this. ]
Yes, this is a small and meaningless detail in a code path that hardly
matters. But let's keep some code quality standards here, and not
accept outrageously bad code.
Link: https://lore.kernel.org/lkml/CAHk-=wgV9toS7GU3KmNpj8hCS9SeF+A0voHS8F275_mgLhL4Lw@mail.gmail.com/
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xenpv_exc_nmi() and xenpv_exc_debug() are only defined on 64-bit kernels,
but they snuck into the 32-bit build via <asm/identry.h>, causing the link
to fail:
ld: arch/x86/entry/entry_32.o: in function `asm_xenpv_exc_nmi':
(.entry.text+0x817): undefined reference to `xenpv_exc_nmi'
ld: arch/x86/entry/entry_32.o: in function `asm_xenpv_exc_debug':
(.entry.text+0x827): undefined reference to `xenpv_exc_debug'
Only use them on 64-bit kernels.
Fixes: f41f0824224e: ("x86/entry/xen: Route #DB correctly on Xen PV")
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Reset MXCSR in kernel_fpu_begin() to prevent using a stale user space
value.
- Prevent writing MSR_TEST_CTRL on CPUs which are not explicitly
whitelisted for split lock detection. Some CPUs which do not support
it crash even when the MSR is written to 0 which is the default value.
- Fix the XEN PV fallout of the entry code rework
- Fix the 32bit fallout of the entry code rework
- Add more selftests to ensure that these entry problems don't come back.
- Disable 16 bit segments on XEN PV. It's not supported because XEN PV
does not implement ESPFIX64
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8B9JoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoV8LEAC6QJPDvqYUl4r0rNIRG+S6D99lQOse
1smxvgXX4UaRz5Tgz6kvYUcucqmmnTfvnO8cg82LASeFw1xfVPPAtl3GZjoClwhv
0NJkKYcMm5QUOSVjJmjkcbAld//FyRfxHuJ8HMEtrbvkys2qWBmLzMaUNhFDNhcc
73UMmyuyL4kef9v/iAeR5WXG5+b+j9lZDiC1lTWuEKs10d1EdTwt2O/wtSRRPpMn
kL1qGTJAL+iRyRe7weLOkC2KZ9+Gq2NtyJQutkthZtGe5+pLT3AT6AlWxeg1HU8q
pxaQP25oe8/8naIoOmwiuwAP2qmm5eHedzXoN0h7i2XmofYOJaWeF95K7oDro8Nj
2deCx1bk0wr/RUxbYlfUacs8S+wmMWe7+BPnHXZphkSq5Vx+oXIw6mJOqmNb7Yiv
7ld1QwSD5dyWCEk1af16XKsFvSIRiGh8FypfTiTxyk+z7HIWBNXlu8OWHn1A7Sra
iaolCZfXtTJzm4w5+VVT2FX3s7jJrmMM4iSLtM2ISo2k+1HMlTbgLE6/yGjQ3ZaY
U298W7Pm8CwBRgzyKBvZVfncm0U/B0FNo/8C0jsJKPIOdpoLhs+u7sjpyaNC+toz
GE0skoWZxMhga4xPF84ua/l1VGncVUN1d5/dmnXz8xdyxFlktUtkt2iPE4G0rt3S
Xgh2uLHOgST6Kw==
=lI9c
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-07-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A series of fixes for x86:
- Reset MXCSR in kernel_fpu_begin() to prevent using a stale user
space value.
- Prevent writing MSR_TEST_CTRL on CPUs which are not explicitly
whitelisted for split lock detection. Some CPUs which do not
support it crash even when the MSR is written to 0 which is the
default value.
- Fix the XEN PV fallout of the entry code rework
- Fix the 32bit fallout of the entry code rework
- Add more selftests to ensure that these entry problems don't come
back.
- Disable 16 bit segments on XEN PV. It's not supported because XEN
PV does not implement ESPFIX64"
* tag 'x86-urgent-2020-07-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ldt: Disable 16-bit segments on Xen PV
x86/entry/32: Fix #MC and #DB wiring on x86_32
x86/entry/xen: Route #DB correctly on Xen PV
x86/entry, selftests: Further improve user entry sanity checks
x86/entry/compat: Clear RAX high bits on Xen PV SYSENTER
selftests/x86: Consolidate and fix get/set_eflags() helpers
selftests/x86/syscall_nt: Clear weird flags after each test
selftests/x86/syscall_nt: Add more flag combinations
x86/entry/64/compat: Fix Xen PV SYSENTER frame setup
x86/entry: Move SYSENTER's regs->sp and regs->flags fixups into C
x86/entry: Assert that syscalls are on the right stack
x86/split_lock: Don't write MSR_TEST_CTRL on CPUs that aren't whitelisted
x86/fpu: Reset MXCSR to default in kernel_fpu_begin()
Now that HAVE_COPY_THREAD_TLS has been removed, rename copy_thread_tls()
back simply copy_thread(). It's a simpler name, and doesn't imply that only
tls is copied here. This finishes an outstanding chunk of internal process
creation work since we've added clone3().
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>A
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>A
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
All architectures support copy_thread_tls() now, so remove the legacy
copy_thread() function and the HAVE_COPY_THREAD_TLS config option. Everyone
uses the same process creation calling convention based on
copy_thread_tls() and struct kernel_clone_args. This will make it easier to
maintain the core process creation code under kernel/, simplifies the
callpaths and makes the identical for all architectures.
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Xen PV doesn't implement ESPFIX64, so they don't work right. Disable
them. Also print a warning the first time anyone tries to use a
16-bit segment on a Xen PV guest that would otherwise allow it
to help people diagnose this change in behavior.
This gets us closer to having all x86 selftests pass on Xen PV.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/92b2975459dfe5929ecf34c3896ad920bd9e3f2d.1593795633.git.luto@kernel.org
DEFINE_IDTENTRY_MCE and DEFINE_IDTENTRY_DEBUG were wired up as non-RAW
on x86_32, but the code expected them to be RAW.
Get rid of all the macro indirection for them on 32-bit and just use
DECLARE_IDTENTRY_RAW and DEFINE_IDTENTRY_RAW directly.
Also add a warning to make sure that we only hit the _kernel paths
in kernel mode.
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/9e90a7ee8e72fd757db6d92e1e5ff16339c1ecf9.1593795633.git.luto@kernel.org
On Xen PV, #DB doesn't use IST. It still needs to be correctly routed
depending on whether it came from user or kernel mode.
Get rid of DECLARE/DEFINE_IDTENTRY_XEN -- it was too hard to follow the
logic. Instead, route #DB and NMI through DECLARE/DEFINE_IDTENTRY_RAW on
Xen, and do the right thing for #DB. Also add more warnings to the
exc_debug* handlers to make this type of failure more obvious.
This fixes various forms of corruption that happen when usermode
triggers #DB on Xen PV.
Fixes: 4c0dcd8350 ("x86/entry: Implement user mode C entry points for #DB and #MCE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/4163e733cce0b41658e252c6c6b3464f33fdff17.1593795633.git.luto@kernel.org
Move the clearing of the high bits of RAX after Xen PV joins the SYSENTER
path so that Xen PV doesn't skip it.
Arguably this code should be deleted instead, but that would belong in the
merge window.
Fixes: ffae641f57 ("x86/entry/64/compat: Fix Xen PV SYSENTER frame setup")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/9d33b3f3216dcab008070f1c28b6091ae7199969.1593795633.git.luto@kernel.org
Fix the recently added new __vmalloc_node_range callers to pass the
correct values as the owner for display in /proc/vmallocinfo.
Fixes: 800e26b813 ("x86/hyperv: allocate the hypercall page with only read and execute bits")
Fixes: 10d5e97c1b ("arm64: use PAGE_KERNEL_ROX directly in alloc_insn_page")
Fixes: 7a0e27b2a0 ("mm: remove vmalloc_exec")
Reported-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200627075649.2455097-1-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the "common" KVM_POSSIBLE_CR*_GUEST_BITS defines to initialize the
CR0/CR4 guest host masks instead of duplicating most of the CR4 mask and
open coding the CR0 mask. SVM doesn't utilize the masks, i.e. the masks
are effectively VMX specific even if they're not named as such. This
avoids duplicate code, better documents the guest owned CR0 bit, and
eliminates the need for a build-time assertion to keep VMX and x86
synchronized.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703040422.31536-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark CR4.TSD as being possibly owned by the guest as that is indeed the
case on VMX. Without TSD being tagged as possibly owned by the guest, a
targeted read of CR4 to get TSD could observe a stale value. This bug
is benign in the current code base as the sole consumer of TSD is the
emulator (for RDTSC) and the emulator always "reads" the entirety of CR4
when grabbing bits.
Add a build-time assertion in to ensure VMX doesn't hand over more CR4
bits without also updating x86.
Fixes: 52ce3c21ae ("x86,kvm,vmx: Don't trap writes to CR4.TSD")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703040422.31536-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a #GP on MOV CR4 if CR4.LA57 is toggled in 64-bit mode, which is
illegal per Intel's SDM:
CR4.LA57
57-bit linear addresses (bit 12 of CR4) ... blah blah blah ...
This bit cannot be modified in IA-32e mode.
Note, the pseudocode for MOV CR doesn't call out the fault condition,
which is likely why the check was missed during initial development.
This is arguably an SDM bug and will hopefully be fixed in future
release of the SDM.
Fixes: fd8cb43373 ("KVM: MMU: Expose the LA57 feature to VM.")
Cc: stable@vger.kernel.org
Reported-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703021714.5549-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clang's integrated assembler complains "invalid reassignment of
non-absolute variable 'var_ddq_add'" while assembling
arch/x86/crypto/aes_ctrby8_avx-x86_64.S. It was because var_ddq_add was
reassigned with non-absolute values several times, which IAS did not
support. We can avoid the reassignment by replacing the uses of
var_ddq_add with its definitions accordingly to have compatilibility
with IAS.
Link: https://github.com/ClangBuiltLinux/linux/issues/1008
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Reported-by: Fangrui Song <maskray@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # build+boot Linux v5.7.5; clang v11.0.0-git
Signed-off-by: Jian Cai <caij2003@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When a guest wants to use the LBR registers, its hypervisor creates a guest
LBR event and let host perf schedules it. The LBR records msrs are
accessible to the guest when its guest LBR event is scheduled on
by the perf subsystem.
Before scheduling this event out, we should avoid host changes on
IA32_DEBUGCTLMSR or LBR_SELECT. Otherwise, some unexpected branch
operations may interfere with guest behavior, pollute LBR records, and even
cause host branches leakage. In addition, the read operation
on host is also avoidable.
To ensure that guest LBR records are not lost during the context switch,
the guest LBR event would enable the callstack mode which could
save/restore guest unread LBR records with the help of
intel_pmu_lbr_sched_task() naturally.
However, the guest LBR_SELECT may changes for its own use and the host
LBR event doesn't save/restore it. To ensure that we doesn't lost the guest
LBR_SELECT value when the guest LBR event is running, the vlbr_constraint
is bound up with a new constraint flag PERF_X86_EVENT_LBR_SELECT.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200514083054.62538-6-like.xu@linux.intel.com
The hypervisor may request the perf subsystem to schedule a time window
to directly access the LBR records msrs for its own use. Normally, it would
create a guest LBR event with callstack mode enabled, which is scheduled
along with other ordinary LBR events on the host but in an exclusive way.
To avoid wasting a counter for the guest LBR event, the perf tracks its
hw->idx via INTEL_PMC_IDX_FIXED_VLBR and assigns it with a fake VLBR
counter with the help of new vlbr_constraint. As with the BTS event,
there is actually no hardware counter assigned for the guest LBR event.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200514083054.62538-5-like.xu@linux.intel.com
The LBR records msrs are model specific. The perf subsystem has already
obtained the base addresses of LBR records based on the cpu model.
Therefore, an interface is added to allow callers outside the perf
subsystem to obtain these LBR information. It's useful for hypervisors
to emulate the LBR feature for guests with less code.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-4-like.xu@linux.intel.com
For intel_pmu_en/disable_event(), reorder the branches checks for hw->idx
and make them sorted by probability: gp,fixed,bts,others.
Clean up the x86_assign_hw_event() by converting multiple if-else
statements to a switch statement.
To skip x86_perf_event_update() and x86_perf_event_set_period(),
it's generic to replace "idx == INTEL_PMC_IDX_FIXED_BTS" check with
'!hwc->event_base' because that should be 0 for all non-gp/fixed cases.
Wrap related bit operations into intel_set/clear_masks() and make the main
path more cleaner and readable.
No functional changes.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Original-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-3-like.xu@linux.intel.com
The MSR variable type can be 'unsigned int', which uses less memory than
the longer 'unsigned long'. Fix 'struct x86_pmu' for that. The lbr_nr won't
be a negative number, so make it 'unsigned int' as well.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-2-like.xu@linux.intel.com
By default intel_pstate the driver disables energy efficiency by setting
MSR_IA32_POWER_CTL bit 19 for Kaby Lake desktop CPU model in HWP mode.
This CPU model is also shared by Coffee Lake desktop CPUs. This allows
these systems to reach maximum possible frequency. But this adds power
penalty, which some customers don't want. They want some way to enable/
disable dynamically.
So, add an additional attribute "energy_efficiency" under
/sys/devices/system/cpu/intel_pstate/ for these CPU models. This allows
to read and write bit 19 ("Disable Energy Efficiency Optimization") in
the MSR IA32_POWER_CTL.
This attribute is present in both HWP and non-HWP mode as this has an
effect in both modes. Refer to Intel Software Developer's manual for
details.
The scope of this bit is package wide. Also these systems are single
package systems. So read/write MSR on the current CPU is enough.
The energy efficiency (EE) bit setting needs to be preserved during
suspend/resume and CPU offline/online operation. To do this:
- Restoring the EE setting from the cpufreq resume() callback, if there
is change from the system default.
- By default, don't disable EE from cpufreq init() callback for matching
CPU models. Since the scope is package wide and is a single package
system, move the disable EE calls from init() callback to
intel_pstate_init() function, which is called only once.
Suggested-by: Len Brown <lenb@kernel.org>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On Xen PV, SWAPGS doesn't work. Teach __rdfsbase_inactive() and
__wrgsbase_inactive() to use rdmsrl()/wrmsrl() on Xen PV. The Xen
pvop code will understand this and issue the correct hypercalls.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/f07c08f178fe9711915862b656722a207cd52c28.1593192140.git.luto@kernel.org
Debuggers expect that doing PTRACE_GETREGS, then poking at a tracee
and maybe letting it run for a while, then doing PTRACE_SETREGS will
put the tracee back where it was. In the specific case of a 32-bit
tracer and tracee, the PTRACE_GETREGS/SETREGS data structure doesn't
have fs_base or gs_base fields, so FSBASE and GSBASE fields are
never stored anywhere. Everything used to still work because
nonzero FS or GS would result full reloads of the segment registers
when the tracee resumes, and the bases associated with FS==0 or
GS==0 are irrelevant to 32-bit code.
Adding FSGSBASE support broke this: when FSGSBASE is enabled, FSBASE
and GSBASE are now restored independently of FS and GS for all tasks
when context-switched in. This means that, if a 32-bit tracer
restores a previous state using PTRACE_SETREGS but the tracee's
pre-restore and post-restore bases don't match, then the tracee is
resumed with the wrong base.
Fix it by explicitly loading the base when a 32-bit tracer pokes FS
or GS on a 64-bit kernel.
Also add a test case.
Fixes: 673903495c ("x86/process/64: Use FSBSBASE in switch_to() if available")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/229cc6a50ecbb701abd50fe4ddaf0eda888898cd.1593192140.git.luto@kernel.org
The SYSENTER frame setup was nonsense. It worked by accident because the
normal code into which the Xen asm jumped (entry_SYSENTER_32/compat) threw
away SP without touching the stack. entry_SYSENTER_compat was recently
modified such that it relied on having a valid stack pointer, so now the
Xen asm needs to invoke it with a valid stack.
Fix it up like SYSCALL: use the Xen-provided frame and skip the bare
metal prologue.
Fixes: 1c3e5d3f60 ("x86/entry: Make entry_64_compat.S objtool clean")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lkml.kernel.org/r/947880c41ade688ff4836f665d0c9fcaa9bd1201.1593191971.git.luto@kernel.org
The SYSENTER asm (32-bit and compat) contains fixups for regs->sp and
regs->flags. Move the fixups into C and fix some comments while at it.
This is a valid cleanup all by itself, and it also simplifies the
subsequent patch that will fix Xen PV SYSENTER.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/fe62bef67eda7fac75b8f3dbafccf571dc4ece6b.1593191971.git.luto@kernel.org
Now that the entry stack is a full page, it's too easy to regress the
system call entry code and end up on the wrong stack without noticing.
Assert that all system calls (SYSCALL64, SYSCALL32, SYSENTER, and INT80)
are on the right stack and have pt_regs in the right place.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/52059e42bb0ab8551153d012d68f7be18d72ff8e.1593191971.git.luto@kernel.org
Replace http:// links with https:// links. This reduces the likelihood of
man-in-the-middle attacks when developers open these links.
Deterministic algorithm:
For each file:
If not .svg:
For each line:
If doesn't contain `\bxmlns\b`:
For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
If both the HTTP and HTTPS versions
return 200 OK and serve the same content:
Replace HTTP with HTTPS.
[bhelgaas: also update samsung.com links, drop sourceforge link]
Link: https://lore.kernel.org/r/20200627103050.71712-1-grandmaster@al2klimov.de
Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Choo! Choo! All aboard the Split Lock Express, with direct service to
Wreckage!
Skip split_lock_verify_msr() if the CPU isn't whitelisted as a possible
SLD-enabled CPU model to avoid writing MSR_TEST_CTRL. MSR_TEST_CTRL
exists, and is writable, on many generations of CPUs. Writing the MSR,
even with '0', can result in bizarre, undocumented behavior.
This fixes a crash on Haswell when resuming from suspend with a live KVM
guest. Because APs use the standard SMP boot flow for resume, they will
go through split_lock_init() and the subsequent RDMSR/WRMSR sequence,
which runs even when sld_state==sld_off to ensure SLD is disabled. On
Haswell (at least, my Haswell), writing MSR_TEST_CTRL with '0' will
succeed and _may_ take the SMT _sibling_ out of VMX root mode.
When KVM has an active guest, KVM performs VMXON as part of CPU onlining
(see kvm_starting_cpu()). Because SMP boot is serialized, the resulting
flow is effectively:
on_each_ap_cpu() {
WRMSR(MSR_TEST_CTRL, 0)
VMXON
}
As a result, the WRMSR can disable VMX on a different CPU that has
already done VMXON. This ultimately results in a #UD on VMPTRLD when
KVM regains control and attempt run its vCPUs.
The above voodoo was confirmed by reworking KVM's VMXON flow to write
MSR_TEST_CTRL prior to VMXON, and to serialize the sequence as above.
Further verification of the insanity was done by redoing VMXON on all
APs after the initial WRMSR->VMXON sequence. The additional VMXON,
which should VM-Fail, occasionally succeeded, and also eliminated the
unexpected #UD on VMPTRLD.
The damage done by writing MSR_TEST_CTRL doesn't appear to be limited
to VMX, e.g. after suspend with an active KVM guest, subsequent reboots
almost always hang (even when fudging VMXON), a #UD on a random Jcc was
observed, suspend/resume stability is qualitatively poor, and so on and
so forth.
kernel BUG at arch/x86/kvm/x86.c:386!
CPU: 1 PID: 2592 Comm: CPU 6/KVM Tainted: G D
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:kvm_spurious_fault+0xf/0x20
Call Trace:
vmx_vcpu_load_vmcs+0x1fb/0x2b0
vmx_vcpu_load+0x3e/0x160
kvm_arch_vcpu_load+0x48/0x260
finish_task_switch+0x140/0x260
__schedule+0x460/0x720
_cond_resched+0x2d/0x40
kvm_arch_vcpu_ioctl_run+0x82e/0x1ca0
kvm_vcpu_ioctl+0x363/0x5c0
ksys_ioctl+0x88/0xa0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x4c/0x170
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: dbaba47085 ("x86/split_lock: Rework the initialization flow of split lock detection")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200605192605.7439-1-sean.j.christopherson@intel.com
Bit 8 would be the "global" bit, which does not quite make sense for non-leaf
page table entries. Intel ignores it; AMD ignores it in PDEs and PDPEs, but
reserves it in PML4Es.
Probably, earlier versions of the AMD manual documented it as reserved in PDPEs
as well, and that behavior made it into KVM as well as kvm-unit-tests; fix it.
Cc: stable@vger.kernel.org
Reported-by: Nadav Amit <namit@vmware.com>
Fixes: a0c0feb579 ("KVM: x86: reserve bit 8 of non-leaf PDPEs and PML4Es in 64-bit mode on AMD", 2014-09-03)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are no users left, all drivers have been converted to use the
per-device private pointer offered by IOMMU core.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20200625130836.1916-10-joro@8bytes.org
cpa_4k_install could be accessed concurrently as noticed by KCSAN,
read to 0xffffffffaa59a000 of 8 bytes by interrupt on cpu 7:
cpa_inc_4k_install arch/x86/mm/pat/set_memory.c:131 [inline]
__change_page_attr+0x10cf/0x1840 arch/x86/mm/pat/set_memory.c:1514
__change_page_attr_set_clr+0xce/0x490 arch/x86/mm/pat/set_memory.c:1636
__set_pages_np+0xc4/0xf0 arch/x86/mm/pat/set_memory.c:2148
__kernel_map_pages+0xb0/0xc8 arch/x86/mm/pat/set_memory.c:2178
kernel_map_pages include/linux/mm.h:2719 [inline] <snip>
write to 0xffffffffaa59a000 of 8 bytes by task 1 on cpu 6:
cpa_inc_4k_install arch/x86/mm/pat/set_memory.c:131 [inline]
__change_page_attr+0x10ea/0x1840 arch/x86/mm/pat/set_memory.c:1514
__change_page_attr_set_clr+0xce/0x490 arch/x86/mm/pat/set_memory.c:1636
__set_pages_p+0xc4/0xf0 arch/x86/mm/pat/set_memory.c:2129
__kernel_map_pages+0x2e/0xc8 arch/x86/mm/pat/set_memory.c:2176
kernel_map_pages include/linux/mm.h:2719 [inline] <snip>
Both accesses are due to the same "cpa_4k_install++" in
cpa_inc_4k_install. A data race here could be potentially undesirable:
depending on compiler optimizations or how x86 executes a non-LOCK'd
increment, it may lose increments, corrupt the counter, etc. Since this
counter only seems to be used for printing some stats, this data race
itself is unlikely to cause harm to the system though. Thus, mark this
intentional data race using the data_race() marco.
Suggested-by: Macro Elver <elver@google.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When creating a trampoline based on the ftrace_regs_caller code, nop out the
jnz test that would jmup to the code that would return to a direct caller
(stored in the ORIG_RAX field) and not back to the function that called it.
Link: http://lkml.kernel.org/r/20200422162750.638839749@goodmis.org
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
If a direct hook is attached to a function that ftrace also has a function
attached to it, then it is required that the ftrace_ops_list_func() is used
to iterate over the registered ftrace callbacks. This will also include the
direct ftrace_ops helper, that tells ftrace_regs_caller where to return to
(the direct callback and not the function that called it).
As this direct helper is only to handle the case of ftrace callbacks
attached to the same function as the direct callback, the ftrace callback
allocated trampolines (used to only call them), should never be used to
return back to a direct callback.
Only copy the portion of the ftrace_regs_caller that will return back to
what called it, and not the portion that returns back to the direct caller.
The direct ftrace_ops must then pick the ftrace_regs_caller builtin function
as its own trampoline to ensure that it will never have one allocated for
it (which would not include the handling of direct callbacks).
Link: http://lkml.kernel.org/r/20200422162750.495903799@goodmis.org
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
If a direct function is hooked along with one of the ftrace registered
functions, then the ftrace_regs_caller is attached to the function that
shares the direct hook as well as the ftrace hook. The ftrace_regs_caller
will call ftrace_ops_list_func() that iterates through all the registered
ftrace callbacks, and if there's a direct callback attached to that
function, the direct ftrace_ops callback is called to notify that
ftrace_regs_caller to return to the direct caller instead of going back to
the function that called it.
But this is a very uncommon case. Currently, the code has it as the default
case. Modify ftrace_regs_caller to make the default case (the non jump) to
just return normally, and have the jump to the handling of the direct
caller.
Link: http://lkml.kernel.org/r/20200422162750.350373278@goodmis.org
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Syzbot reported that:
CPU: 1 PID: 6780 Comm: syz-executor153 Not tainted 5.7.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:__apic_accept_irq+0x46/0xb80
Call Trace:
kvm_arch_async_page_present+0x7de/0x9e0
kvm_check_async_pf_completion+0x18d/0x400
kvm_arch_vcpu_ioctl_run+0x18bf/0x69f0
kvm_vcpu_ioctl+0x46a/0xe20
ksys_ioctl+0x11a/0x180
__x64_sys_ioctl+0x6f/0xb0
do_syscall_64+0xf6/0x7d0
entry_SYSCALL_64_after_hwframe+0x49/0xb3
The testcase enables APF mechanism in MSR_KVM_ASYNC_PF_EN with ASYNC_PF_INT
enabled w/o setting MSR_KVM_ASYNC_PF_INT before, what's worse, interrupt
based APF 'page ready' event delivery depends on in kernel lapic, however,
we didn't bail out when lapic is not in kernel during guest setting
MSR_KVM_ASYNC_PF_EN which causes the null-ptr-deref in host later.
This patch fixes it.
Reported-by: syzbot+1bf777dfdde86d64b89b@syzkaller.appspotmail.com
Fixes: 2635b5c4a0 (KVM: x86: interrupt based APF 'page ready' event delivery)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1593426391-8231-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, kernel floating point code would run with the MXCSR control
register value last set by userland code by the thread that was active
on the CPU core just before kernel call. This could affect calculation
results if rounding mode was changed, or a crash if a FPU/SIMD exception
was unmasked.
Restore MXCSR to the kernel's default value.
[ bp: Carve out from a bigger patch by Petteri, add feature check, add
FNINIT call too (amluto). ]
Signed-off-by: Petteri Aimonen <jpa@git.mail.kapsi.fi>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=207979
Link: https://lkml.kernel.org/r/20200624114646.28953-2-bp@alien8.de
- Robustness fix for TPM log parsing code
- kobject refcount fix for the ESRT parsing code
- Two efivarfs fixes to make it behave more like an ordinary file system
- Style fixup for zero length arrays
- Fix a regression in path separator handling in the initrd loader
- Fix a missing prototype warning
- Add some kerneldoc headers for newly introduced stub routines
- Allow support for SSDT overrides via EFI variables to be disabled
- Report CPU mode and MMU state upon entry for 32-bit ARM
- Use the correct stack pointer alignment when entering from mixed mode
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl74344RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1heMw//b9UPgWlkH2xnAjo9QeFvounyT8XrLLnW
QkhkiIGDvM2qWUmRotRrxRq39P9A+AH4x0krWTZam67W1OuWleUjwQWrnYE8vhql
xdIAJmD1oWTi07p4SFzLVA7mJvMX5xenCYvGTALoHtsGnLbOiRGSSTnuXZr1c6Kd
2XcY89kpcZGXgw9VCNV2Ez1g0OlCHS1N5LV31WGUcFl30Q3aZpdLmnFUzKLUbRgb
sTNMlu2mLGSs/ZaTAaOGNzFkxGVJI2+0C+ApKvmR9WR7+5n9Brs27RSLgPMViXun
BnsTewMdxNBXITgLxcUEtngPEWIzqrwJVbLaZVeWcWez0g11GIt0+wonpRnxWjHA
XgQm00sK4HIvs+3YWUJ1PpXyjUmiPvOKZM5um9zsCiYml+RzzIm6bznII4Lh7rQe
4kOLXkxaww+LS4r3+si6Q16og4zd/zZs4MoxaF7frTJ6oiUWOpBJqdf92Kiz0DaS
kfQ2I3d/PdZvWuNIiBCfX9bjd7q0zq0zyIghP7460lx88aaHb20samTtl+qjN4MM
Wpik/soeYi5pICDRRwiAHhpgK+li4LLjP3D81rYX8pEaAiubpjCwqLxIexQ6XJCV
UZAR4swswrYntdXfUMmRnPBsLWWLePq6sRAvlent2si2cp+65f8I1xZ0ClK7YMjr
qXUW7jOp/88=
=F0bv
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent-2020-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI fixes from Ingo Molnar:
- Fix build regression on v4.8 and older
- Robustness fix for TPM log parsing code
- kobject refcount fix for the ESRT parsing code
- Two efivarfs fixes to make it behave more like an ordinary file
system
- Style fixup for zero length arrays
- Fix a regression in path separator handling in the initrd loader
- Fix a missing prototype warning
- Add some kerneldoc headers for newly introduced stub routines
- Allow support for SSDT overrides via EFI variables to be disabled
- Report CPU mode and MMU state upon entry for 32-bit ARM
- Use the correct stack pointer alignment when entering from mixed mode
* tag 'efi-urgent-2020-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/libstub: arm: Print CPU boot mode and MMU state at boot
efi/libstub: arm: Omit arch specific config table matching array on arm64
efi/x86: Setup stack correctly for efi_pe_entry
efi: Make it possible to disable efivar_ssdt entirely
efi/libstub: Descriptions for stub helper functions
efi/libstub: Fix path separator regression
efi/libstub: Fix missing-prototype warning for skip_spaces()
efi: Replace zero-length array and use struct_size() helper
efivarfs: Don't return -EINTR when rate-limiting reads
efivarfs: Update inode modification time for successful writes
efi/esrt: Fix reference count leak in esre_create_sysfs_entry.
efi/tpm: Verify event log header before parsing
efi/x86: Fix build with gcc 4
* Use the proper length type in the 32-bit truncate() syscall variant,
by Jiri Slaby.
* Reinit IA32_FEAT_CTL during wakeup to fix the case where after
resume, VMXON would #GP due to VMX not being properly enabled, by Sean
Christopherson.
* Fix a static checker warning in the resctrl code, by Dan Carpenter.
* Add a CR4 pinning mask for bits which cannot change after boot, by
Kees Cook.
* Align the start of the loop of __clear_user() to 16 bytes, to improve
performance on AMD zen1 and zen2 microarchitectures, by Matt Fleming.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl74q8kACgkQEsHwGGHe
VUqYig/8CRyHBweLnR9naD6uZ+rF83LXiTKOGLt60WRzNPCLpkwGD5aRiUwzRmFL
FOn9g2YLDY32+SzPRkqwJioodfxXRhvjKMnEChgnDcWAtTkWfMXWQfj2w5E8sTLE
/9cpc9rmfCQJmZFDPkL88lfH38t+Uye4Ydcur/HMetkoR4C8hGrUOGZpkG3nR8EJ
PGmmQ1VpMmwKMUsdD+GgKC+wgyrHbhFcrr+ZH5quU3XIzuvxXsHBiK2MlqVnN1a/
1xKglMHfQQ1MI7tmJth8s1xLQ1/Mr+ctxhC5nyyMpheDU9/257bVNKE1uF+yz7or
KylFUcvYje49mm7fxyEDrX+NMJGT7ZBBK/Xn7Fw5sLSsGGNY2/2HwYRbnzMSTjNO
JzY7HDkZuQgzLxlKSIKgRvz5f1j1m8D0UaG/q+JuJ6mJoPDS5qiPyshv4cW8v8iD
t5mzEuj++dWfiyPR4sWruP36jNKqPnbe8bUGe4j+QJ+TZL0SsSlopCFxo3TEJ4Bo
dlHUxXZcYE2/48wlP15X+jFultKcqi0HwO+rQm8uPN7O7X1xsWcO4PbTl/lngvg6
HxClDwmfDjoCmEXij3U9gqWvXmy++C5ljWCwhYNM60Fc1yIChfnwJHZBUvx3XGui
DZqimVa+QIRNFwWqMVF1RmE1ZuyCMYGZulZPo68gEXNeeNZ0R6g=
=hxkd
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- AMD Memory bandwidth counter width fix, by Babu Moger.
- Use the proper length type in the 32-bit truncate() syscall variant,
by Jiri Slaby.
- Reinit IA32_FEAT_CTL during wakeup to fix the case where after
resume, VMXON would #GP due to VMX not being properly enabled, by
Sean Christopherson.
- Fix a static checker warning in the resctrl code, by Dan Carpenter.
- Add a CR4 pinning mask for bits which cannot change after boot, by
Kees Cook.
- Align the start of the loop of __clear_user() to 16 bytes, to improve
performance on AMD zen1 and zen2 microarchitectures, by Matt Fleming.
* tag 'x86_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm/64: Align start of __clear_user() loop to 16-bytes
x86/cpu: Use pinning mask for CR4 bits needing to be 0
x86/resctrl: Fix a NULL vs IS_ERR() static checker warning in rdt_cdp_peer_get()
x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeup
syscalls: Fix offset type of ksys_ftruncate()
x86/resctrl: Fix memory bandwidth counter width for AMD
Address KCOV vs noinstr. There is no function attribute to selectively
suppress KCOV instrumentation, instead teach objtool to NOP out the
calls in noinstr functions.
This cures a bunch of KCOV crashes (as used by syzcaller).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl74pC0ACgkQEsHwGGHe
VUobXA//cJvRCujUriL6HjZZxmqrWKYyB4kH4yFVycJ7DRflGk3QGLpnHJifWWUL
eG50obtNI+KOWrr/0lY7XURZgr1mVDe0L3z0tdBJH/rCiQPraDf2JPpCSRRtdq/a
MvbRXE14z3YLeRI2CurRBH+ZmveBRu2Gv9APPym0CqGBhX3rRRKoyOOiQS95PCZB
pehuYjbLLrLCQvFoANq3ZwHyLZzczhhwgVBSl+UgdDBwrbM5VC6ByxtEkRgcwoqt
Tvhji0HqjV4Nqu23/PUsR53hkp+kQrdfe2vaC7IeISWxusMTXCMFOYlZNR4xnQ/f
M7No8eZK+/j7KsI6/8hfRMvTeis21IMUCV9gRXZYpSWfbf4vKBsYFoIAMxQTNyBo
t/7BUqwTA9eLtUoaTCZim5a/n1nNWWPnnd74DYmQ7KilGgS3HO9dDwNrPnJhDUYZ
Ed6Wb0Jgk4s8+TxQEEx8j9bVfpxJGuL+BzcrqdRSCIHV12CRRzUigSadW5/4OR6S
XNVzY1Si0RGKI5K3OJAZDP5YaPWNXu8SwQUzaZDXjt8qavljqvDfY7GXIdhRNPCY
6o/H8i/iHXn5v3nSpGKrAeDBqXP8BncvP2ux1Zs3/uBdPgU1dFcYBrUEZxStjDWU
tyX6tNIU7pGMvXSiEsKzSpb1/LkzR+zG7z//DC3WCYNqP4KdaoE=
=0Wd6
-----END PGP SIGNATURE-----
Merge tag 'objtool_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fixes from Borislav Petkov:
"Three fixes from Peter Zijlstra suppressing KCOV instrumentation in
noinstr sections.
Peter Zijlstra says:
"Address KCOV vs noinstr. There is no function attribute to
selectively suppress KCOV instrumentation, instead teach objtool
to NOP out the calls in noinstr functions"
This cures a bunch of KCOV crashes (as used by syzcaller)"
* tag 'objtool_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Fix noinstr vs KCOV
objtool: Provide elf_write_{insn,reloc}()
objtool: Clean up elf_write() condition
These patches address a number of instrumentation issues that were found after
the x86/entry overhaul. When combined with rcu/urgent and objtool/urgent, these
patches make UBSAN/KASAN/KCSAN happy again.
Part of making this all work is bumping the minimum GCC version for KASAN
builds to gcc-8.3, the reason for this is that the __no_sanitize_address
function attribute is broken in GCC releases before that.
No known GCC version has a working __no_sanitize_undefined, however because the
only noinstr violation that results from this happens when an UB is found, we
treat it like WARN. That is, we allow it to violate the noinstr rules in order
to get the warning out.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl74oWMACgkQEsHwGGHe
VUpZCw/5AfanXrEixuh4hZLPBOJ7MtW0YI3eyBRJ8j14R8iaK+Hvn/yU4/+qC2jj
eAlc42QS6Ckzcdknyy8VpHVDR7LR2angN0ePJmrbKsjYq0LTrnfa2H5uABcAQoiW
0BuGFub0QBRjCkxgsOoG3llqWsTkhRrGX1928lCuuK+8L+kB0bREGMqpR36EBFaS
wIyLodLO/Bd+YcoWDMvm4I6FvHcdyY3Oq++mzro+5ye7bE9s0PpMC5IXNzmIuGmR
31UvST+ooRMsM6GlhxHpn6pZuCqfjygXAYuuutwdK10g1f75ESkQdYz9T9KDlHrF
4GqzcCGtOlN4DAvk3L7KGfHw3XIhioGFxeRT+gGgKsnxoBjvJXJ8x9GrcLA9jdJi
WeqlqiEOiAa949nclwQQ+fSrx4LgLhJ8bexyOkwiRPx7R75Y0e6OqpxZtE6GiL8O
BA6Z6cR7U8H4uhKIzZZ0NJiLwO1cSGo5Uz/ERcyg4L23rHYKrDdaQwFSDUxXWq/s
2lEqISD0WrSwMxJtfET3zB0B20n6IO7Uszo0FdnDFO62fck8HlStZsqV4meoT2Cc
moqIZsYc3qnESxO9OhWHdSGGAyGS0qcE4Sq/oM8d2dIvIeL4KwHqTE6QFSmcUivi
QYdXIIQnqJgqX4dmvLFrTuI2Whc86oS40U5/Dhv7BlHx0oewSlg=
=fcu1
-----END PGP SIGNATURE-----
Merge tag 'x86_entry_for_5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry fixes from Borislav Petkov:
"This is the x86/entry urgent pile which has accumulated since the
merge window.
It is not the smallest but considering the almost complete entry core
rewrite, the amount of fixes to follow is somewhat higher than usual,
which is to be expected.
Peter Zijlstra says:
'These patches address a number of instrumentation issues that were
found after the x86/entry overhaul. When combined with rcu/urgent
and objtool/urgent, these patches make UBSAN/KASAN/KCSAN happy
again.
Part of making this all work is bumping the minimum GCC version for
KASAN builds to gcc-8.3, the reason for this is that the
__no_sanitize_address function attribute is broken in GCC releases
before that.
No known GCC version has a working __no_sanitize_undefined, however
because the only noinstr violation that results from this happens
when an UB is found, we treat it like WARN. That is, we allow it to
violate the noinstr rules in order to get the warning out'"
* tag 'x86_entry_for_5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry: Fix #UD vs WARN more
x86/entry: Increase entry_stack size to a full page
x86/entry: Fixup bad_iret vs noinstr
objtool: Don't consider vmlinux a C-file
kasan: Fix required compiler version
compiler_attributes.h: Support no_sanitize_undefined check with GCC 4
x86/entry, bug: Comment the instrumentation_begin() usage for WARN()
x86/entry, ubsan, objtool: Whitelist __ubsan_handle_*()
x86/entry, cpumask: Provide non-instrumented variant of cpu_is_offline()
compiler_types.h: Add __no_sanitize_{address,undefined} to noinstr
kasan: Bump required compiler version
x86, kcsan: Add __no_kcsan to noinstr
kcsan: Remove __no_kcsan_or_inline
x86, kcsan: Remove __no_kcsan_or_inline usage
Patch series "fix a hyperv W^X violation and remove vmalloc_exec"
Dexuan reported a W^X violation due to the fact that the hyper hypercall
page due switching it to be allocated using vmalloc_exec.
The problem is that PAGE_KERNEL_EXEC as used by vmalloc_exec actually
sets writable permissions in the pte. This series fixes the issue by
switching to the low-level __vmalloc_node_range interface that allows
specifing more detailed permissions instead. It then also open codes
the other two callers and removes the somewhat confusing vmalloc_exec
interface.
Peter noted that the hyper hypercall page allocation also has another
long standing issue in that it shouldn't use the full vmalloc but just
the module space. This issue is so far theoretical as the allocation is
done early in the boot process. I plan to fix it with another bigger
series for 5.9.
This patch (of 3):
Avoid a W^X violation cause by the fact that PAGE_KERNEL_EXEC includes
the writable bit.
For this resurrect the removed PAGE_KERNEL_RX definition, but as
PAGE_KERNEL_ROX to match arm64 and powerpc.
Link: http://lkml.kernel.org/r/20200618064307.32739-2-hch@lst.de
Fixes: 78bb17f76e ("x86/hyperv: use vmalloc_exec for the hypercall page")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Dexuan Cui <decui@microsoft.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Catch up with upstream, in particular to get c1e8d7c6a7 ("mmap locking
API: convert mmap_sem comments").
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
vmlinux.o: warning: objtool: exc_invalid_op()+0x47: call to probe_kernel_read() leaves .noinstr.text section
Since we use UD2 as a short-cut for 'CALL __WARN', treat it as such.
Have the bare exception handler do the report_bug() thing.
Fixes: 15a416e8aa ("x86/entry: Treat BUG/WARN as NMI-like entries")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200622114713.GE577403@hirez.programming.kicks-ass.net
Marco crashed in bad_iret with a Clang11/KCSAN build due to
overflowing the stack. Now that we run C code on it, expand it to a
full page.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20200618144801.819246178@infradead.org
vmlinux.o: warning: objtool: fixup_bad_iret()+0x8e: call to memcpy() leaves .noinstr.text section
Worse, when KASAN there is no telling what memcpy() actually is. Force
the use of __memcpy() which is our assmebly implementation.
Reported-by: Marco Elver <elver@google.com>
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20200618144801.760070502@infradead.org
Add functionality to disable writing to MSRs from userspace. Writes can
still be allowed by supplying the allow_writes=on module parameter. The
kernel will be tainted so that it shows in oopses.
Having unfettered access to all MSRs on a system is and has always been
a disaster waiting to happen. Think performance counter MSRs, MSRs with
sticky or locked bits, MSRs making major system changes like loading
microcode, MTRRs, PAT configuration, TSC counter, security mitigations
MSRs, you name it.
This also destroys all the kernel's caching of MSR values for
performance, as the recent case with MSR_AMD64_LS_CFG showed.
Another example is writing MSRs by mistake by simply typing the wrong
MSR address. System freezes have been experienced that way.
In general, poking at MSRs under the kernel's feet is a bad bad idea.
So log writing to MSRs by default. Longer term, such writes will be
disabled by default.
If userspace still wants to do that, then proper interfaces should be
defined which are under the kernel's control and accesses to those MSRs
can be synchronized and sanitized properly.
[ Fix sparse warnings. ]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Link: https://lkml.kernel.org/r/20200612105026.GA22660@zn.tnic
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7x2lwUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPiVAgAn/83Vx/YrF9sr0+TLzukzfOubJVK
Majxb0I06De23VDExiDoZjh5CnCN3kDja0m2c543ZI1XOrHRbp09v1goJQkAgiT0
AQ8Npi1KB71io18SbZtrAhPLmSiUgRirF+XWHB38qjdbZixvZyWz8nvSITFY8aJQ
ICgbm5jftzBdSOKEhqbHwZ+LcXjEGZsehwTiHpUBKUR/kNlRFV5UFAd5m+CT5i4O
3DydLIReATDCoZUKfkBjYtoR3c9DyWESyfWD4GZ/2xRKr/1QfiZ4dA0cd/P9hJYz
7MAG+ULvJGlasSzmcEQJ/X3o9QuIJzpQFpwbKeMX6gOsEsSVUQeriUHIFA==
=jTFw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"All bugfixes except for a couple cleanup patches"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: VMX: Remove vcpu_vmx's defunct copy of host_pkru
KVM: x86: allow TSC to differ by NTP correction bounds without TSC scaling
KVM: X86: Fix MSR range of APIC registers in X2APIC mode
KVM: VMX: Stop context switching MSR_IA32_UMWAIT_CONTROL
KVM: nVMX: Plumb L2 GPA through to PML emulation
KVM: x86/mmu: Avoid mixing gpa_t with gfn_t in walk_addr_generic()
KVM: LAPIC: ensure APIC map is up to date on concurrent update requests
kvm: lapic: fix broken vcpu hotplug
Revert "KVM: VMX: Micro-optimize vmexit time when not exposing PMU"
KVM: VMX: Add helpers to identify interrupt type from intr_info
kvm/svm: disable KCSAN for svm_vcpu_run()
KVM: MIPS: Fix a build error for !CPU_LOONGSON64
Remove vcpu_vmx.host_pkru, which got left behind when PKRU support was
moved to common x86 code.
No functional change intended.
Fixes: 37486135d3 ("KVM: x86: Fix pkru save/restore when guest CR4.PKE=0, move it to x86.c")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200617034123.25647-1-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Linux TSC calibration procedure is subject to small variations
(its common to see +-1 kHz difference between reboots on a given CPU, for example).
So migrating a guest between two hosts with identical processor can fail, in case
of a small variation in calibrated TSC between them.
Without TSC scaling, the current kernel interface will either return an error
(if user_tsc_khz <= tsc_khz) or enable TSC catchup mode.
This change enables the following TSC tolerance check to
accept KVM_SET_TSC_KHZ within tsc_tolerance_ppm (which is 250ppm by default).
/*
* Compute the variation in TSC rate which is acceptable
* within the range of tolerance and decide if the
* rate being applied is within that bounds of the hardware
* rate. If so, no scaling or compensation need be done.
*/
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
use_scaling = 1;
}
NTP daemon in the guest can correct this difference (NTP can correct upto 500ppm).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20200616114741.GA298183@fuller.cnet>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only MSR address range 0x800 through 0x8ff is architecturally reserved
and dedicated for accessing APIC registers in x2APIC mode.
Fixes: 0105d1a526 ("KVM: x2apic interface to lapic")
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200616073307.16440-1-xiaoyao.li@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove support for context switching between the guest's and host's
desired UMWAIT_CONTROL. Propagating the guest's value to hardware isn't
required for correct functionality, e.g. KVM intercepts reads and writes
to the MSR, and the latency effects of the settings controlled by the
MSR are not architecturally visible.
As a general rule, KVM should not allow the guest to control power
management settings unless explicitly enabled by userspace, e.g. see
KVM_CAP_X86_DISABLE_EXITS. E.g. Intel's SDM explicitly states that C0.2
can improve the performance of SMT siblings. A devious guest could
disable C0.2 so as to improve the performance of their workloads at the
detriment to workloads running in the host or on other VMs.
Wholesale removal of UMWAIT_CONTROL context switching also fixes a race
condition where updates from the host may cause KVM to enter the guest
with the incorrect value. Because updates are are propagated to all
CPUs via IPI (SMP function callback), the value in hardware may be
stale with respect to the cached value and KVM could enter the guest
with the wrong value in hardware. As above, the guest can't observe the
bad value, but it's a weird and confusing wart in the implementation.
Removal also fixes the unnecessary usage of VMX's atomic load/store MSR
lists. Using the lists is only necessary for MSRs that are required for
correct functionality immediately upon VM-Enter/VM-Exit, e.g. EFER on
old hardware, or for MSRs that need to-the-uop precision, e.g. perf
related MSRs. For UMWAIT_CONTROL, the effects are only visible in the
kernel via TPAUSE/delay(), and KVM doesn't do any form of delay in
vcpu_vmx_run(). Using the atomic lists is undesirable as they are more
expensive than direct RDMSR/WRMSR.
Furthermore, even if giving the guest control of the MSR is legitimate,
e.g. in pass-through scenarios, it's not clear that the benefits would
outweigh the overhead. E.g. saving and restoring an MSR across a VMX
roundtrip costs ~250 cycles, and if the guest diverged from the host
that cost would be paid on every run of the guest. In other words, if
there is a legitimate use case then it should be enabled by a new
per-VM capability.
Note, KVM still needs to emulate MSR_IA32_UMWAIT_CONTROL so that it can
correctly expose other WAITPKG features to the guest, e.g. TPAUSE,
UMWAIT and UMONITOR.
Fixes: 6e3ba4abce ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Cc: Jingqi Liu <jingqi.liu@intel.com>
Cc: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623005135.10414-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly pass the L2 GPA to kvm_arch_write_log_dirty(), which for all
intents and purposes is vmx_write_pml_buffer(), instead of having the
latter pull the GPA from vmcs.GUEST_PHYSICAL_ADDRESS. If the dirty bit
update is the result of KVM emulation (rare for L2), then the GPA in the
VMCS may be stale and/or hold a completely unrelated GPA.
Fixes: c5f983f6e8 ("nVMX: Implement emulated Page Modification Logging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
translate_gpa() returns a GPA, assigning it to 'real_gfn' seems obviously
wrong. There is no real issue because both 'gpa_t' and 'gfn_t' are u64 and
we don't use the value in 'real_gfn' as a GFN, we do
real_gfn = gpa_to_gfn(real_gfn);
instead. 'If you see a "buffalo" sign on an elephant's cage, do not trust
your eyes', but let's fix it for good.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200622151435.752560-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following race can cause lost map update events:
cpu1 cpu2
apic_map_dirty = true
------------------------------------------------------------
kvm_recalculate_apic_map:
pass check
mutex_lock(&kvm->arch.apic_map_lock);
if (!kvm->arch.apic_map_dirty)
and in process of updating map
-------------------------------------------------------------
other calls to
apic_map_dirty = true might be too late for affected cpu
-------------------------------------------------------------
apic_map_dirty = false
-------------------------------------------------------------
kvm_recalculate_apic_map:
bail out on
if (!kvm->arch.apic_map_dirty)
To fix it, record the beginning of an update of the APIC map in
apic_map_dirty. If another APIC map change switches apic_map_dirty
back to DIRTY during the update, kvm_recalculate_apic_map should not
make it CLEAN, and the other caller will go through the slow path.
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest fails to online hotplugged CPU with error
smpboot: do_boot_cpu failed(-1) to wakeup CPU#4
It's caused by the fact that kvm_apic_set_state(), which used to call
recalculate_apic_map() unconditionally and pulled hotplugged CPU into
apic map, is updating map conditionally on state changes. In this case
the APIC map is not considered dirty and the is not updated.
Fix the issue by forcing unconditional update from kvm_apic_set_state(),
like it used to be.
Fixes: 4abaffce4d ("KVM: LAPIC: Recalculate apic map in batch")
Cc: stable@vger.kernel.org
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20200622160830.426022-1-imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1068ed4547 ("x86/msr: Lift AMD family 0x15 power-specific MSRs")
moved the three F15h power MSRs to the architectural list but that was
wrong as they belong in the family 0x15 list. That also caused:
In file included from trace/beauty/tracepoints/x86_msr.c:10:
perf/trace/beauty/generated/x86_arch_MSRs_array.c:292:45: error: initialized field overwritten [-Werror=override-init]
292 | [0xc0010280 - x86_AMD_V_KVM_MSRs_offset] = "F15H_PTSC",
| ^~~~~~~~~~~
perf/trace/beauty/generated/x86_arch_MSRs_array.c:292:45: note: (near initialization for 'x86_AMD_V_KVM_MSRs[640]')
due to MSR_F15H_PTSC ending up being defined twice. Move them where they
belong and drop the duplicate.
Also, drop the respective tools/ changes of the msr-index.h copy the
above commit added because perf tool developers prefer to go through
those changes themselves in order to figure out whether changes to the
kernel headers would need additional handling in perf.
Fixes: 1068ed4547 ("x86/msr: Lift AMD family 0x15 power-specific MSRs")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lkml.kernel.org/r/20200621163323.14e8533f@canb.auug.org.au
This separate helper only existed to guarantee the mutual exclusivity of
CLONE_PIDFD and CLONE_PARENT_SETTID for legacy clone since CLONE_PIDFD
abuses the parent_tid field to return the pidfd. But we can actually handle
this uniformely thus removing the helper. For legacy clone we can detect
that CLONE_PIDFD is specified in conjunction with CLONE_PARENT_SETTID
because they will share the same memory which is invalid and for clone3()
setting the separate pidfd and parent_tid fields to the same memory is
bogus as well. So fold that helper directly into _do_fork() by detecting
this case.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: x86@kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Pull i2c fixes from Wolfram Sang:
- a small collection of remaining API conversion patches (all acked)
which allow to finally remove the deprecated API
- some documentation fixes and a MAINTAINERS addition
* 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux:
MAINTAINERS: Add robert and myself as qcom i2c cci maintainers
i2c: smbus: Fix spelling mistake in the comments
Documentation/i2c: SMBus start signal is S not A
i2c: remove deprecated i2c_new_device API
Documentation: media: convert to use i2c_new_client_device()
video: backlight: tosa_lcd: convert to use i2c_new_client_device()
x86/platform/intel-mid: convert to use i2c_new_client_device()
drm: encoder_slave: use new I2C API
drm: encoder_slave: fix refcouting error for modules
- Have recordmcount work with > 64K sections (to support LTO)
- kprobe RCU fixes
- Correct a kprobe critical section with missing mutex
- Remove redundant arch_disarm_kprobe() call
- Fix lockup when kretprobe triggers within kprobe_flush_task()
- Fix memory leak in fetch_op_data operations
- Fix sleep in atomic in ftrace trace array sample code
- Free up memory on failure in sample trace array code
- Fix incorrect reporting of function_graph fields in format file
- Fix quote within quote parsing in bootconfig
- Fix return value of bootconfig tool
- Add testcases for bootconfig tool
- Fix maybe uninitialized warning in ftrace pid file code
- Remove unused variable in tracing_iter_reset()
- Fix some typos
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXu1jrRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qoCMAP91nOccE3X+Nvc3zET3isDWnl1tWJxk
icsBgN/JwBRuTAD/dnWTHIWM2/5lTiagvyVsmINdJHP6JLr8T7dpN9tlxAQ=
=Cuo7
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
- Have recordmcount work with > 64K sections (to support LTO)
- kprobe RCU fixes
- Correct a kprobe critical section with missing mutex
- Remove redundant arch_disarm_kprobe() call
- Fix lockup when kretprobe triggers within kprobe_flush_task()
- Fix memory leak in fetch_op_data operations
- Fix sleep in atomic in ftrace trace array sample code
- Free up memory on failure in sample trace array code
- Fix incorrect reporting of function_graph fields in format file
- Fix quote within quote parsing in bootconfig
- Fix return value of bootconfig tool
- Add testcases for bootconfig tool
- Fix maybe uninitialized warning in ftrace pid file code
- Remove unused variable in tracing_iter_reset()
- Fix some typos
* tag 'trace-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Fix maybe-uninitialized compiler warning
tools/bootconfig: Add testcase for show-command and quotes test
tools/bootconfig: Fix to return 0 if succeeded to show the bootconfig
tools/bootconfig: Fix to use correct quotes for value
proc/bootconfig: Fix to use correct quotes for value
tracing: Remove unused event variable in tracing_iter_reset
tracing/probe: Fix memleak in fetch_op_data operations
trace: Fix typo in allocate_ftrace_ops()'s comment
tracing: Make ftrace packed events have align of 1
sample-trace-array: Remove trace_array 'sample-instance'
sample-trace-array: Fix sleeping function called from invalid context
kretprobe: Prevent triggering kretprobe from within kprobe_flush_task
kprobes: Remove redundant arch_disarm_kprobe() call
kprobes: Fix to protect kick_kprobe_optimizer() by kprobe_mutex
kprobes: Use non RCU traversal APIs on kprobe_tables if possible
kprobes: Suppress the suspicious RCU warning on kprobes
recordmcount: support >64k sections
Commit
3e77abda65 ("x86/idt: Consolidate idt functionality")
states that idt_descr could be made static, but it did not actually make
the change. Make it static now.
Fixes: 3e77abda65 ("x86/idt: Consolidate idt functionality")
Signed-off-by: Jason Andryuk <jandryuk@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200619205103.30873-1-jandryuk@gmail.com
x86 CPUs can suffer severe performance drops if a tight loop, such as
the ones in __clear_user(), straddles a 16-byte instruction fetch
window, or worse, a 64-byte cacheline. This issues was discovered in the
SUSE kernel with the following commit,
1153933703 ("x86/asm/64: Micro-optimize __clear_user() - Use immediate constants")
which increased the code object size from 10 bytes to 15 bytes and
caused the 8-byte copy loop in __clear_user() to be split across a
64-byte cacheline.
Aligning the start of the loop to 16-bytes makes this fit neatly inside
a single instruction fetch window again and restores the performance of
__clear_user() which is used heavily when reading from /dev/zero.
Here are some numbers from running libmicro's read_z* and pread_z*
microbenchmarks which read from /dev/zero:
Zen 1 (Naples)
libmicro-file
5.7.0-rc6 5.7.0-rc6 5.7.0-rc6
revert-1153933703d9+ align16+
Time mean95-pread_z100k 9.9195 ( 0.00%) 5.9856 ( 39.66%) 5.9938 ( 39.58%)
Time mean95-pread_z10k 1.1378 ( 0.00%) 0.7450 ( 34.52%) 0.7467 ( 34.38%)
Time mean95-pread_z1k 0.2623 ( 0.00%) 0.2251 ( 14.18%) 0.2252 ( 14.15%)
Time mean95-pread_zw100k 9.9974 ( 0.00%) 6.0648 ( 39.34%) 6.0756 ( 39.23%)
Time mean95-read_z100k 9.8940 ( 0.00%) 5.9885 ( 39.47%) 5.9994 ( 39.36%)
Time mean95-read_z10k 1.1394 ( 0.00%) 0.7483 ( 34.33%) 0.7482 ( 34.33%)
Note that this doesn't affect Haswell or Broadwell microarchitectures
which seem to avoid the alignment issue by executing the loop straight
out of the Loop Stream Detector (verified using perf events).
Fixes: 1153933703 ("x86/asm/64: Micro-optimize __clear_user() - Use immediate constants")
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v4.19+
Link: https://lkml.kernel.org/r/20200618102002.30034-1-matt@codeblueprint.co.uk
Guest crashes are observed on a Cascade Lake system when 'perf top' is
launched on the host, e.g.
BUG: unable to handle kernel paging request at fffffe0000073038
PGD 7ffa7067 P4D 7ffa7067 PUD 7ffa6067 PMD 7ffa5067 PTE ffffffffff120
Oops: 0000 [#1] SMP PTI
CPU: 1 PID: 1 Comm: systemd Not tainted 4.18.0+ #380
...
Call Trace:
serial8250_console_write+0xfe/0x1f0
call_console_drivers.constprop.0+0x9d/0x120
console_unlock+0x1ea/0x460
Call traces are different but the crash is imminent. The problem was
blindly bisected to the commit 041bc42ce2 ("KVM: VMX: Micro-optimize
vmexit time when not exposing PMU"). It was also confirmed that the
issue goes away if PMU is exposed to the guest.
With some instrumentation of the guest we can see what is being switched
(when we do atomic_switch_perf_msrs()):
vmx_vcpu_run: switching 2 msrs
vmx_vcpu_run: switching MSR38f guest: 70000000d host: 70000000f
vmx_vcpu_run: switching MSR3f1 guest: 0 host: 2
The current guess is that PEBS (MSR_IA32_PEBS_ENABLE, 0x3f1) is to blame.
Regardless of whether PMU is exposed to the guest or not, PEBS needs to
be disabled upon switch.
This reverts commit 041bc42ce2.
Reported-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200619094046.654019-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move away from the deprecated API and return the shiny new ERRPTR where
useful.
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
Merge non-faulting memory access cleanups from Christoph Hellwig:
"Andrew and I decided to drop the patches implementing your suggested
rename of the probe_kernel_* and probe_user_* helpers from -mm as
there were way to many conflicts.
After -rc1 might be a good time for this as all the conflicts are
resolved now"
This also adds a type safety checking patch on top of the renaming
series to make the subtle behavioral difference between 'get_user()' and
'get_kernel_nofault()' less potentially dangerous and surprising.
* emailed patches from Christoph Hellwig <hch@lst.de>:
maccess: make get_kernel_nofault() check for minimal type compatibility
maccess: rename probe_kernel_address to get_kernel_nofault
maccess: rename probe_user_{read,write} to copy_{from,to}_user_nofault
maccess: rename probe_kernel_{read,write} to copy_{from,to}_kernel_nofault
Now that we've renamed probe_kernel_address() to get_kernel_nofault()
and made it look and behave more in line with get_user(), some of the
subtle type behavior differences end up being more obvious and possibly
dangerous.
When you do
get_user(val, user_ptr);
the type of the access comes from the "user_ptr" part, and the above
basically acts as
val = *user_ptr;
by design (except, of course, for the fact that the actual dereference
is done with a user access).
Note how in the above case, the type of the end result comes from the
pointer argument, and then the value is cast to the type of 'val' as
part of the assignment.
So the type of the pointer is ultimately the more important type both
for the access itself.
But 'get_kernel_nofault()' may now _look_ similar, but it behaves very
differently. When you do
get_kernel_nofault(val, kernel_ptr);
it behaves like
val = *(typeof(val) *)kernel_ptr;
except, of course, for the fact that the actual dereference is done with
exception handling so that a faulting access is suppressed and returned
as the error code.
But note how different the casting behavior of the two superficially
similar accesses are: one does the actual access in the size of the type
the pointer points to, while the other does the access in the size of
the target, and ignores the pointer type entirely.
Actually changing get_kernel_nofault() to act like get_user() is almost
certainly the right thing to do eventually, but in the meantime this
patch adds logit to at least verify that the pointer type is compatible
with the type of the result.
In many cases, this involves just casting the pointer to 'void *' to
make it obvious that the type of the pointer is not the important part.
It's not how 'get_user()' acts, but at least the behavioral difference
is now obvious and explicit.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Better describe what this helper does, and match the naming of
copy_from_kernel_nofault.
Also switch the argument order around, so that it acts and looks
like get_user().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix:
arch/x86/mm/init.c:503:21:
warning: no previous prototype for ‘init_memory_mapping’ [-Wmissing-prototypes]
unsigned long __ref init_memory_mapping(unsigned long start,
arch/x86/mm/init.c:745:13:
warning: no previous prototype for ‘poking_init’ [-Wmissing-prototypes]
void __init poking_init(void)
Lift init_memory_mapping() and poking_init() out of the ifdef
CONFIG_X86_64 to make the functions visible on 32-bit too.
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200606123743.3277-1-b.thiel@posteo.de
Since many compilers cannot disable KCOV with a function attribute,
help it to NOP out any __sanitizer_cov_*() calls injected in noinstr
code.
This turns:
12: e8 00 00 00 00 callq 17 <lockdep_hardirqs_on+0x17>
13: R_X86_64_PLT32 __sanitizer_cov_trace_pc-0x4
into:
12: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
13: R_X86_64_NONE __sanitizer_cov_trace_pc-0x4
Just like recordmcount does.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
The kernel needs to explicitly enable FSGSBASE. So, the application needs
to know if it can safely use these instructions. Just looking at the CPUID
bit is not enough because it may be running in a kernel that does not
enable the instructions.
One way for the application would be to just try and catch the SIGILL.
But that is difficult to do in libraries which may not want to overwrite
the signal handlers of the main application.
Enumerate the enabled FSGSBASE capability in bit 1 of AT_HWCAP2 in the ELF
aux vector. AT_HWCAP2 is already used by PPC for similar purposes.
The application can access it open coded or by using the getauxval()
function in newer versions of glibc.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-18-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-14-sashal@kernel.org
Without FSGSBASE, user space cannot change GSBASE other than through a
PRCTL. The kernel enforces that the user space GSBASE value is postive as
negative values are used for detecting the kernel space GSBASE value in the
paranoid entry code.
If FSGSBASE is enabled, user space can set arbitrary GSBASE values without
kernel intervention, including negative ones, which breaks the paranoid
entry assumptions.
To avoid this, paranoid entry needs to unconditionally save the current
GSBASE value independent of the interrupted context, retrieve and write the
kernel GSBASE and unconditionally restore the saved value on exit. The
restore happens either in paranoid_exit or in the special exit path of the
NMI low level code.
All other entry code pathes which use unconditional SWAPGS are not affected
as they do not depend on the actual content.
[ tglx: Massaged changelogs and comments ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-13-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-12-sashal@kernel.org
GSBASE is used to find per-CPU data in the kernel. But when GSBASE is
unknown, the per-CPU base can be found from the per_cpu_offset table with a
CPU NR. The CPU NR is extracted from the limit field of the CPUNODE entry
in GDT, or by the RDPID instruction. This is a prerequisite for using
FSGSBASE in the low level entry code.
Also, add the GAS-compatible RDPID macro as binutils 2.23 do not support
it. Support is added in version 2.27.
[ tglx: Massaged changelog ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-12-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-11-sashal@kernel.org
When FSGSBASE is enabled, the GSBASE handling in paranoid entry will need
to retrieve the kernel GSBASE which requires that the kernel page table is
active.
As the CR3 switch to the kernel page tables (PTI is active) does not depend
on kernel GSBASE, move the CR3 switch in front of the GSBASE handling.
Comment the EBX content while at it.
No functional change.
[ tglx: Rewrote changelog and comments ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-11-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-10-sashal@kernel.org
Before enabling FSGSBASE the kernel could safely assume that the content
of GS base was a user address. Thus any speculative access as the result
of a mispredicted branch controlling the execution of SWAPGS would be to
a user address. So systems with speculation-proof SMAP did not need to
add additional LFENCE instructions to mitigate.
With FSGSBASE enabled a hostile user can set GS base to a kernel address.
So they can make the kernel speculatively access data they wish to leak
via a side channel. This means that SMAP provides no protection.
Add FSGSBASE as an additional condition to enable the fence-based SWAPGS
mitigation.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200528201402.1708239-9-sashal@kernel.org
When FSGSBASE is enabled, copying threads and reading fsbase and gsbase
using ptrace must read the actual values.
When copying a thread, use save_fsgs() and copy the saved values. For
ptrace, the bases must be read from memory regardless of the selector if
FSGSBASE is enabled.
[ tglx: Invoke __rdgsbase_inactive() with interrupts disabled ]
[ luto: Massage changelog ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-9-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-8-sashal@kernel.org
With the new FSGSBASE instructions, FS and GSABSE can be efficiently read
and writen in __switch_to(). Use that capability to preserve the full
state.
This will enable user code to do whatever it wants with the new
instructions without any kernel-induced gotchas. (There can still be
architectural gotchas: movl %gs,%eax; movl %eax,%gs may change GSBASE if
WRGSBASE was used, but users are expected to read the CPU manual before
doing things like that.)
This is a considerable speedup. It seems to save about 100 cycles
per context switch compared to the baseline 4.6-rc1 behavior on a
Skylake laptop. This is mostly due to avoiding the WRMSR operation.
[ chang: 5~10% performance improvements were seen with a context switch
benchmark that ran threads with different FS/GSBASE values (to the
baseline 4.16). Minor edit on the changelog. ]
[ tglx: Masaage changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1557309753-24073-8-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-6-sashal@kernel.org
save_fsgs_for_kvm() is invoked via
vcpu_enter_guest()
kvm_x86_ops.prepare_guest_switch(vcpu)
vmx_prepare_switch_to_guest()
save_fsgs_for_kvm()
with preemption disabled, but interrupts enabled.
The upcoming FSGSBASE based GS safe needs interrupts to be disabled. This
could be done in the helper function, but that function is also called from
switch_to() which has interrupts disabled already.
Disable interrupts inside save_fsgs_for_kvm() and rename the function to
current_save_fsgs() so it can be invoked from other places.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200528201402.1708239-7-sashal@kernel.org
Add cpu feature conditional FSGSBASE access to the relevant helper
functions. That allows to accelerate certain FS/GS base operations in
subsequent changes.
Note, that while possible, the user space entry/exit GSBASE operations are
not going to use the new FSGSBASE instructions. The reason is that it would
require additional storage for the user space value which adds more
complexity to the low level code and experiments have shown marginal
benefit. This may be revisited later but for now the SWAPGS based handling
in the entry code is preserved except for the paranoid entry/exit code.
To preserve the SWAPGS entry mechanism introduce __[rd|wr]gsbase_inactive()
helpers. Note, for Xen PV, paravirt hooks can be added later as they might
allow a very efficient but different implementation.
[ tglx: Massaged changelog, convert it to noinstr and force inline
native_swapgs() ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-7-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-5-sashal@kernel.org
[ luto: Rename the variables from FS and GS to FSBASE and GSBASE and
make <asm/fsgsbase.h> safe to include on 32-bit kernels. ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1557309753-24073-6-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-4-sashal@kernel.org
This is temporary. It will allow the next few patches to be tested
incrementally.
Setting unsafe_fsgsbase is a root hole. Don't do it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/1557309753-24073-4-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-3-sashal@kernel.org
When a ptracer writes a ptracee's FS/GSBASE with a different value, the
selector is also cleared. This behavior is not correct as the selector
should be preserved.
Update only the base value and leave the selector intact. To simplify the
code further remove the conditional checking for the same value as this
code is not performance critical.
The only recognizable downside of this change is when the selector is
already nonzero on write. The base will be reloaded according to the
selector. But the case is highly unexpected in real usages.
[ tglx: Massage changelog ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/9040CFCD-74BD-4C17-9A01-B9B713CF6B10@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-2-sashal@kernel.org
Make use of the struct_size() helper instead of an open-coded version
in order to avoid any potential type mistakes.
This code was detected with the help of Coccinelle and, audited and
fixed manually.
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200617211734.GA9636@embeddedor
The idle tasks created for each secondary CPU already have a random stack
canary generated by fork(). Copy the canary to the percpu variable before
starting the secondary CPU which removes the need to call
boot_init_stack_canary().
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200617225624.799335-1-brgerst@gmail.com
Commit
17054f492d ("efi/x86: Implement mixed mode boot without the handover protocol")
introduced a new entry point for the EFI stub to be booted in mixed mode
on 32-bit firmware.
When entered via efi32_pe_entry, control is first transferred to
startup_32 to setup for the switch to long mode, and then the EFI stub
proper is entered via efi_pe_entry. efi_pe_entry is an MS ABI function,
and the ABI requires 32 bytes of shadow stack space to be allocated by
the caller, as well as the stack being aligned to 8 mod 16 on entry.
Allocate 40 bytes on the stack before switching to 64-bit mode when
calling efi_pe_entry to account for this.
For robustness, explicitly align boot_stack_end to 16 bytes. It is
currently implicitly aligned since .bss is cacheline-size aligned,
head_64.o is the first object file with a .bss section, and the heap and
boot sizes are aligned.
Fixes: 17054f492d ("efi/x86: Implement mixed mode boot without the handover protocol")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200617131957.2507632-1-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The callers don't expect *d_cdp to be set to an error pointer, they only
check for NULL. This leads to a static checker warning:
arch/x86/kernel/cpu/resctrl/rdtgroup.c:2648 __init_one_rdt_domain()
warn: 'd_cdp' could be an error pointer
This would not trigger a bug in this specific case because
__init_one_rdt_domain() calls it with a valid domain that would not have
a negative id and thus not trigger the return of the ERR_PTR(). If this
was a negative domain id then the call to rdt_find_domain() in
domain_add_cpu() would have returned the ERR_PTR() much earlier and the
creation of the domain with an invalid id would have been prevented.
Even though a bug is not triggered currently the right and safe thing to
do is to set the pointer to NULL because that is what can be checked for
when the caller is handling the CDP and non-CDP cases.
Fixes: 52eb74339a ("x86/resctrl: Fix rdt_find_domain() return value and checks")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lkml.kernel.org/r/20200602193611.GA190851@mwanda
Fix -Wmissing-prototypes warnings:
arch/x86/mm/init.c:81:6:
warning: no previous prototype for ‘x86_has_pat_wp’ [-Wmissing-prototypes]
bool x86_has_pat_wp(void)
arch/x86/mm/init.c:86:22:
warning: no previous prototype for ‘pgprot2cachemode’ [-Wmissing-prototypes]
enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
by including the respective header containing prototypes. Also fix:
arch/x86/mm/init.c:893:13:
warning: no previous prototype for ‘mem_encrypt_free_decrypted_mem’ [-Wmissing-prototypes]
void __weak mem_encrypt_free_decrypted_mem(void) { }
by making it static inline for the !CONFIG_AMD_MEM_ENCRYPT case. This
warning happens when CONFIG_AMD_MEM_ENCRYPT is not enabled (defconfig
for example):
./arch/x86/include/asm/mem_encrypt.h:80:27:
warning: inline function ‘mem_encrypt_free_decrypted_mem’ declared weak [-Wattributes]
static inline void __weak mem_encrypt_free_decrypted_mem(void) { }
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's ok to convert to static inline because the function is used only in
x86. Is not shared with other architectures so drop the __weak too.
[ bp: Massage and adjust __weak comments while at it. ]
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200606122629.2720-1-b.thiel@posteo.de
Ziqian reported lockup when adding retprobe on _raw_spin_lock_irqsave.
My test was also able to trigger lockdep output:
============================================
WARNING: possible recursive locking detected
5.6.0-rc6+ #6 Not tainted
--------------------------------------------
sched-messaging/2767 is trying to acquire lock:
ffffffff9a492798 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_hash_lock+0x52/0xa0
but task is already holding lock:
ffffffff9a491a18 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_trampoline+0x0/0x50
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(kretprobe_table_locks[i].lock));
lock(&(kretprobe_table_locks[i].lock));
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by sched-messaging/2767:
#0: ffffffff9a491a18 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_trampoline+0x0/0x50
stack backtrace:
CPU: 3 PID: 2767 Comm: sched-messaging Not tainted 5.6.0-rc6+ #6
Call Trace:
dump_stack+0x96/0xe0
__lock_acquire.cold.57+0x173/0x2b7
? native_queued_spin_lock_slowpath+0x42b/0x9e0
? lockdep_hardirqs_on+0x590/0x590
? __lock_acquire+0xf63/0x4030
lock_acquire+0x15a/0x3d0
? kretprobe_hash_lock+0x52/0xa0
_raw_spin_lock_irqsave+0x36/0x70
? kretprobe_hash_lock+0x52/0xa0
kretprobe_hash_lock+0x52/0xa0
trampoline_handler+0xf8/0x940
? kprobe_fault_handler+0x380/0x380
? find_held_lock+0x3a/0x1c0
kretprobe_trampoline+0x25/0x50
? lock_acquired+0x392/0xbc0
? _raw_spin_lock_irqsave+0x50/0x70
? __get_valid_kprobe+0x1f0/0x1f0
? _raw_spin_unlock_irqrestore+0x3b/0x40
? finish_task_switch+0x4b9/0x6d0
? __switch_to_asm+0x34/0x70
? __switch_to_asm+0x40/0x70
The code within the kretprobe handler checks for probe reentrancy,
so we won't trigger any _raw_spin_lock_irqsave probe in there.
The problem is in outside kprobe_flush_task, where we call:
kprobe_flush_task
kretprobe_table_lock
raw_spin_lock_irqsave
_raw_spin_lock_irqsave
where _raw_spin_lock_irqsave triggers the kretprobe and installs
kretprobe_trampoline handler on _raw_spin_lock_irqsave return.
The kretprobe_trampoline handler is then executed with already
locked kretprobe_table_locks, and first thing it does is to
lock kretprobe_table_locks ;-) the whole lockup path like:
kprobe_flush_task
kretprobe_table_lock
raw_spin_lock_irqsave
_raw_spin_lock_irqsave ---> probe triggered, kretprobe_trampoline installed
---> kretprobe_table_locks locked
kretprobe_trampoline
trampoline_handler
kretprobe_hash_lock(current, &head, &flags); <--- deadlock
Adding kprobe_busy_begin/end helpers that mark code with fake
probe installed to prevent triggering of another kprobe within
this code.
Using these helpers in kprobe_flush_task, so the probe recursion
protection check is hit and the probe is never set to prevent
above lockup.
Link: http://lkml.kernel.org/r/158927059835.27680.7011202830041561604.stgit@devnote2
Fixes: ef53d9c5e4 ("kprobes: improve kretprobe scalability with hashed locking")
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "Gustavo A . R . Silva" <gustavoars@kernel.org>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: "Naveen N . Rao" <naveen.n.rao@linux.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Reported-by: "Ziqian SUN (Zamir)" <zsun@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The purgatory Makefile removes -fstack-protector options if they were
configured in, but does not currently add -fno-stack-protector.
If gcc was configured with the --enable-default-ssp configure option,
this results in the stack protector still being enabled for the
purgatory (absent distro-specific specs files that might disable it
again for freestanding compilations), if the main kernel is being
compiled with stack protection enabled (if it's disabled for the main
kernel, the top-level Makefile will add -fno-stack-protector).
This will break the build since commit
e4160b2e4b ("x86/purgatory: Fail the build if purgatory.ro has missing symbols")
and prior to that would have caused runtime failure when trying to use
kexec.
Explicitly add -fno-stack-protector to avoid this, as done in other
Makefiles that need to disable the stack protector.
Reported-by: Gabriel C <nix.or.die@googlemail.com>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge the test whether the CPU supports STIBP into the test which
determines whether STIBP is required. Thus try to simplify what is
already an insane logic.
Remove a superfluous newline in a comment, while at it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Anthony Steinhauser <asteinhauser@google.com>
Link: https://lkml.kernel.org/r/20200615065806.GB14668@zn.tnic
... into the global msr-index.h header because they're used in multiple
compilation units. Sort the MSR list a bit. Update the msr-index.h copy
in tools.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lkml.kernel.org/r/20200608164847.14232-1-bp@alien8.de
Add is_intr_type() and is_intr_type_n() to consolidate the boilerplate
code for querying a specific type of interrupt given an encoded value
from VMCS.VM_{ENTER,EXIT}_INTR_INFO, with and without an associated
vector respectively.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200609014518.26756-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some reasons, running a simple qemu-kvm command with KCSAN will
reset AMD hosts. It turns out svm_vcpu_run() could not be instrumented.
Disable it for now.
# /usr/libexec/qemu-kvm -name ubuntu-18.04-server-cloudimg -cpu host
-smp 2 -m 2G -hda ubuntu-18.04-server-cloudimg.qcow2
=== console output ===
Kernel 5.6.0-next-20200408+ on an x86_64
hp-dl385g10-05 login:
<...host reset...>
HPE ProLiant System BIOS A40 v1.20 (03/09/2018)
(C) Copyright 1982-2018 Hewlett Packard Enterprise Development LP
Early system initialization, please wait...
Signed-off-by: Qian Cai <cai@lca.pw>
Message-Id: <20200415153709.1559-1-cai@lca.pw>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reinitialize IA32_FEAT_CTL on the BSP during wakeup to handle the case
where firmware doesn't initialize or save/restore across S3. This fixes
a bug where IA32_FEAT_CTL is left uninitialized and results in VMXON
taking a #GP due to VMX not being fully enabled, i.e. breaks KVM.
Use init_ia32_feat_ctl() to "restore" IA32_FEAT_CTL as it already deals
with the case where the MSR is locked, and because APs already redo
init_ia32_feat_ctl() during suspend by virtue of the SMP boot flow being
used to reinitialize APs upon wakeup. Do the call in the early wakeup
flow to avoid dependencies in the syscore_ops chain, e.g. simply adding
a resume hook is not guaranteed to work, as KVM does VMXON in its own
resume hook, kvm_resume(), when KVM has active guests.
Fixes: 21bd3467a5 ("KVM: VMX: Drop initialization of IA32_FEAT_CTL MSR")
Reported-by: Brad Campbell <lists2009@fnarfbargle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Brad Campbell <lists2009@fnarfbargle.com>
Cc: stable@vger.kernel.org # v5.6
Link: https://lkml.kernel.org/r/20200608174134.11157-1-sean.j.christopherson@intel.com
Explain the rationale for annotating WARN(), even though, strictly
speaking printk() and friends are very much not safe in many of the
places we put them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Now that KCSAN relies on -tsan-distinguish-volatile we no longer need
the annotation for constant_test_bit(). Remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Be defensive against the case where the processor reports a base_freq
larger than turbo_freq (the ratio would be zero).
Fixes: 1567c3e346 ("x86, sched: Add support for frequency invariance")
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200531182453.15254-4-ggherdovich@suse.cz
There may be CPUs that support turbo boost but don't declare any turbo
ratio, i.e. their MSR_TURBO_RATIO_LIMIT is all zeroes. In that condition
scale-invariant calculations can't be performed.
Fixes: 1567c3e346 ("x86, sched: Add support for frequency invariance")
Suggested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Link: https://lkml.kernel.org/r/20200531182453.15254-3-ggherdovich@suse.cz
The product mcnt * arch_max_freq_ratio can overflows u64.
For context, a large value for arch_max_freq_ratio would be 5000,
corresponding to a turbo_freq/base_freq ratio of 5 (normally it's more like
1500-2000). A large increment frequency for the MPERF counter would be 5GHz
(the base clock of all CPUs on the market today is less than that). With
these figures, a CPU would need to go without a scheduler tick for around 8
days for the u64 overflow to happen. It is unlikely, but the check is
warranted.
Under similar conditions, the difference acnt of two consecutive APERF
readings can overflow as well.
In these circumstances is appropriate to disable frequency invariant
accounting: the feature relies on measures of the clock frequency done at
every scheduler tick, which need to be "fresh" to be at all meaningful.
A note on i386: prior to version 5.1, the GCC compiler didn't have the
builtin function __builtin_mul_overflow. In these GCC versions the macro
check_mul_overflow needs __udivdi3() to do (u64)a/b, which the kernel
doesn't provide. For this reason this change fails to build on i386 if
GCC<5.1, and we protect the entire frequency invariant code behind
CONFIG_X86_64 (special thanks to "kbuild test robot" <lkp@intel.com>).
Fixes: 1567c3e346 ("x86, sched: Add support for frequency invariance")
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200531182453.15254-2-ggherdovich@suse.cz
People report that utime and stime from /proc/<pid>/stat become very
wrong when the numbers are big enough, especially if you watch these
counters incrementally.
Specifically, the current implementation of: stime*rtime/total,
results in a saw-tooth function on top of the desired line, where the
teeth grow in size the larger the values become. IOW, it has a
relative error.
The result is that, when watching incrementally as time progresses
(for large values), we'll see periods of pure stime or utime increase,
irrespective of the actual ratio we're striving for.
Replace scale_stime() with a math64.h helper: mul_u64_u64_div_u64()
that is far more accurate. This also allows architectures to override
the implementation -- for instance they can opt for the old algorithm
if this new one turns out to be too expensive for them.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200519172506.GA317395@hirez.programming.kicks-ass.net
Current version supports a server line starting Intel® Xeon® Processor
Scalable Family and introduces mapping for IIO Uncore units only.
Other units can be added on demand.
IIO stack to PMON mapping is exposed through:
/sys/devices/uncore_iio_<pmu_idx>/dieX
where dieX is file which holds "Segment:Root Bus" for PCIe root port,
which can be monitored by that IIO PMON block.
Details are explained in Documentation/ABI/testing/sysfs-devices-mapping
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200601083543.30011-4-alexander.antonov@linux.intel.com
The accessor to return number of dies on the platform.
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200601083543.30011-3-alexander.antonov@linux.intel.com
Each Uncore unit type, by its nature, can be mapped to its own context -
which platform component each PMON block of that type is supposed to
monitor.
Intel® Xeon® Scalable processor family (code name Skylake-SP) makes
significant changes in the integrated I/O (IIO) architecture. The new
solution introduces IIO stacks which are responsible for managing traffic
between the PCIe domain and the Mesh domain. Each IIO stack has its own
PMON block and can handle either DMI port, x16 PCIe root port, MCP-Link
or various built-in accelerators. IIO PMON blocks allow concurrent
monitoring of I/O flows up to 4 x4 bifurcation within each IIO stack.
Software is supposed to program required perf counters within each IIO
stack and gather performance data. The tricky thing here is that IIO PMON
reports data per IIO stack but users have no idea what IIO stacks are -
they only know devices which are connected to the platform.
Understanding IIO stack concept to find which IIO stack that particular
IO device is connected to, or to identify an IIO PMON block to program
for monitoring specific IIO stack assumes a lot of implicit knowledge
about given Intel server platform architecture.
Usage example:
ls /sys/devices/uncore_<type>_<pmu_idx>/die*
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200601083543.30011-2-alexander.antonov@linux.intel.com
An oops will be triggered, if perf tries to access an invalid address
which exceeds the mapped area.
Check the address before the actual access to MMIO sapce of an uncore
unit.
Suggested-by: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1590679169-61823-3-git-send-email-kan.liang@linux.intel.com
Perf cannot validate an address before the actual access to MMIO space
of some uncore units, e.g. IMC on TGL. Accessing an invalid address,
which exceeds mapped area, can trigger oops.
Perf never records the size of mapped area. Generic functions, e.g.
uncore_mmio_read_counter(), cannot get the correct size for address
validation.
Add mmio_map_size in intel_uncore_type to record the size of mapped
area. Print warning message if ioremap fails.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1590679169-61823-2-git-send-email-kan.liang@linux.intel.com
When counting IMC uncore events on some TGL machines, an oops will be
triggered.
[ 393.101262] BUG: unable to handle page fault for address:
ffffb45200e15858
[ 393.101269] #PF: supervisor read access in kernel mode
[ 393.101271] #PF: error_code(0x0000) - not-present page
Current perf uncore driver still use the IMC MAP SIZE inherited from
SNB, which is 0x6000.
However, the offset of IMC uncore counters is larger than 0x6000,
e.g. 0xd8a0.
Enlarge the IMC MAP SIZE for TGL to 0xe000.
Fixes: fdb6482244 ("perf/x86: Add Intel Tiger Lake uncore support")
Reported-by: Ammy Yi <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Ammy Yi <ammy.yi@intel.com>
Tested-by: Chao Qin <chao.qin@intel.com>
Link: https://lkml.kernel.org/r/1590679169-61823-1-git-send-email-kan.liang@linux.intel.com
Add perf text poke events for kprobes. That includes:
- the replaced instruction(s) which are executed out-of-line
i.e. arch_copy_kprobe() and arch_remove_kprobe()
- the INT3 that activates the kprobe
i.e. arch_arm_kprobe() and arch_disarm_kprobe()
- optimised kprobe function
i.e. arch_prepare_optimized_kprobe() and
__arch_remove_optimized_kprobe()
- optimised kprobe
i.e. arch_optimize_kprobes() and arch_unoptimize_kprobe()
Resulting in 8 possible text_poke events:
0: NULL -> probe.ainsn.insn (if ainsn.boostable && !kp.post_handler)
arch_copy_kprobe()
1: old0 -> INT3 arch_arm_kprobe()
// boosted kprobe active
2: NULL -> optprobe_trampoline arch_prepare_optimized_kprobe()
3: INT3,old1,old2,old3,old4 -> JMP32 arch_optimize_kprobes()
// optprobe active
4: JMP32 -> INT3,old1,old2,old3,old4
// optprobe disabled and kprobe active (this sometimes goes back to 3)
arch_unoptimize_kprobe()
5: optprobe_trampoline -> NULL arch_remove_optimized_kprobe()
// boosted kprobe active
6: INT3 -> old0 arch_disarm_kprobe()
7: probe.ainsn.insn -> NULL (if ainsn.boostable && !kp.post_handler)
arch_remove_kprobe()
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20200512121922.8997-6-adrian.hunter@intel.com
Add support for perf text poke event for text_poke_bp_batch() callers. That
includes jump labels. See comments for more details.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200512121922.8997-3-adrian.hunter@intel.com
The uncore subsystem on Comet Lake is similar to Sky Lake.
The only difference is the new PCI IDs for IMC.
Share the perf code with Sky Lake.
Add new PCI IDs in the table.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1589915905-55870-1-git-send-email-kan.liang@linux.intel.com
KVM now supports using interrupt for 'page ready' APF event delivery and
legacy mechanism was deprecated. Switch KVM guests to the new one.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-9-vkuznets@redhat.com>
[Use HYPERVISOR_CALLBACK_VECTOR instead of a separate vector. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original code is a nop as i_mce.status is or'ed with part of itself,
fix it.
Fixes: a1300e5052 ("x86/ras/mce_amd_inj: Trigger deferred and thresholding errors interrupts")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lkml.kernel.org/r/20200611023238.3830-1-zhenzhong.duan@gmail.com
The x86 microcode support works just fine without FW_LOADER. In fact,
these days most people load microcode early during boot so FW_LOADER
never gets into the picture anyway.
As almost everyone on x86 needs to enable MICROCODE, this by extension
means that FW_LOADER is always built into the kernel even if nothing
uses it. The FW_LOADER system is about two thousand lines long and
contains user-space facing interfaces that could potentially provide an
entry point into the kernel (or beyond).
Remove the unnecessary select of FW_LOADER by MICROCODE. People who need
the FW_LOADER capability can still enable it.
[ bp: Massage a bit. ]
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200610042911.GA20058@gondor.apana.org.au
Memory bandwidth is calculated reading the monitoring counter
at two intervals and calculating the delta. It is the software’s
responsibility to read the count often enough to avoid having
the count roll over _twice_ between reads.
The current code hardcodes the bandwidth monitoring counter's width
to 24 bits for AMD. This is due to default base counter width which
is 24. Currently, AMD does not implement the CPUID 0xF.[ECX=1]:EAX
to adjust the counter width. But, the AMD hardware supports much
wider bandwidth counter with the default width of 44 bits.
Kernel reads these monitoring counters every 1 second and adjusts the
counter value for overflow. With 24 bits and scale value of 64 for AMD,
it can only measure up to 1GB/s without overflowing. For the rates
above 1GB/s this will fail to measure the bandwidth.
Fix the issue setting the default width to 44 bits by adjusting the
offset.
AMD future products will implement CPUID 0xF.[ECX=1]:EAX.
[ bp: Let the line stick out and drop {}-brackets around a single
statement. ]
Fixes: 4d05bf71f1 ("x86/resctrl: Introduce AMD QOS feature")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/159129975546.62538.5656031125604254041.stgit@naples-babu.amd.com
- fix build rules in binderfs sample
- fix build errors when Kbuild recurses to the top Makefile
- covert '---help---' in Kconfig to 'help'
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAl7lBuYVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGHvIP/3iErjPshpg/phwH8NTCS4SFkiti
BZRM+2lupSn7Qs53BTpVzIkXoHBJQZlJxlQ5HY8ScO+fiz28rKZr+b40us+je1Q+
SkvSPfwZzxjEg7lAZutznG4KgItJLWJKmDyh9T8Y8TAuG4f8WO0hKnXoAp3YorS2
zppEIxso8O5spZPjp+fF/fPbxPjIsabGK7Jp2LpSVFR5pVDHI/ycTlKQS+MFpMEx
6JIpdFRw7TkvKew1dr5uAWT5btWHatEqjSR3JeyVHv3EICTGQwHmcHK67cJzGInK
T51+DT7/CpKtmRgGMiTEu/INfMzzoQAKl6Fcu+vMaShTN97Hk9DpdtQyvA6P/h3L
8GA4UBct05J7fjjIB7iUD+GYQ0EZbaFujzRXLYk+dQqEJRbhcCwvdzggGp0WvGRs
1f8/AIpgnQv8JSL/bOMgGMS5uL2dSLsgbzTdr6RzWf1jlYdI1i4u7AZ/nBrwWP+Z
iOBkKsVceEoJrTbaynl3eoYqFLtWyDau+//oBc2gUvmhn8ioM5dfqBRiJjxJnPG9
/giRj6xRIqMMEw8Gg8PCG7WebfWxWyaIQwlWBbPok7DwISURK5mvOyakZL+Q25/y
6MBr2H8NEJsf35q0GTINpfZnot7NX4JXrrndJH8NIRC7HEhwd29S041xlQJdP0rs
E76xsOr3hrAmBu4P
=1NIT
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull more Kbuild updates from Masahiro Yamada:
- fix build rules in binderfs sample
- fix build errors when Kbuild recurses to the top Makefile
- covert '---help---' in Kconfig to 'help'
* tag 'kbuild-v5.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
treewide: replace '---help---' in Kconfig files with 'help'
kbuild: fix broken builds because of GZIP,BZIP2,LZOP variables
samples: binderfs: really compile this sample and fix build issues
* Unmap a whole guest page if an MCE is encountered in it to avoid
follow-on MCEs leading to the guest crashing, by Tony Luck.
This change collided with the entry changes and the merge resolution
would have been rather unpleasant. To avoid that the entry branch was
merged in before applying this. The resulting code did not change
over the rebase.
* AMD MCE error thresholding machinery cleanup and hotplug sanitization, by
Thomas Gleixner.
* Change the MCE notifiers to denote whether they have handled the error
and not break the chain early by returning NOTIFY_STOP, thus giving the
opportunity for the later handlers in the chain to see it. By Tony Luck.
* Add AMD family 0x17, models 0x60-6f support, by Alexander Monakov.
* Last but not least, the usual round of fixes and improvements.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j5m0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoXyMD/9GneajFaI5D0F59/btEGAx1X0PTDz1
LrGf79Y5NqSJrzggsnrdFzsGjJNcQ2KbfSgs9fhdsvvvIpK+YqZ+rVFAg7DcKc2n
RwHd+X3TluKsc4oCuagZli7R4HHO5P9hbkHY6DD++F0eeMblLhNnq1hGUSdoENHN
HFsZapQpvlpn3IYN1e07lFBVvujRL/pBez7tmhh6bPxmcLZFCBrIHuAXz7dbzz0Y
BjhVRLNq6+9Yztvrt8uIgc1EAoMfprkY6nVtvkxC5gmVor3orkRC4rRNc/+jhgDK
p0s1JxDgb3SNN79no9wvQaqRNs/rNlAx6xSA0gmW+SbxrFEsk6cUp1BVVRr031dk
/QGedvpJzK7PjCX+d7Jvy+391q1YEsdnbQhXRdjSXQf+DihWm98O++wDodw9kgwt
FgkZD4qICT3xtpGs1bqDgrm220g8d27nGjsXlvFfyVYAQAlE2vcx0NqySOTT7NeT
Zu6GIvGcGCObJT2JTWbPkvbm2aNYXzYNZGRBLlEzy7qFXuVG4aKR6W1L6uSW3SmK
UUo/F3KHgZWM/h1PyMbxzAvu60eojBcEXva8jDxBv0GCDJhzFV3yOVdgxrLPpGcZ
7EqiUtTrxvxGOFjpFFaZRiT0R89ZfvOxVyXGwMX8zph9NyPLSj9MspyQSkhFFREz
0FAfy/7wqDfMRg==
=iWiy
-----END PGP SIGNATURE-----
Merge tag 'ras-core-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS updates from Thomas Gleixner:
"RAS updates from Borislav Petkov:
- Unmap a whole guest page if an MCE is encountered in it to avoid
follow-on MCEs leading to the guest crashing, by Tony Luck.
This change collided with the entry changes and the merge
resolution would have been rather unpleasant. To avoid that the
entry branch was merged in before applying this. The resulting code
did not change over the rebase.
- AMD MCE error thresholding machinery cleanup and hotplug
sanitization, by Thomas Gleixner.
- Change the MCE notifiers to denote whether they have handled the
error and not break the chain early by returning NOTIFY_STOP, thus
giving the opportunity for the later handlers in the chain to see
it. By Tony Luck.
- Add AMD family 0x17, models 0x60-6f support, by Alexander Monakov.
- Last but not least, the usual round of fixes and improvements"
* tag 'ras-core-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/mce/dev-mcelog: Fix -Wstringop-truncation warning about strncpy()
x86/{mce,mm}: Unmap the entire page if the whole page is affected and poisoned
EDAC/amd64: Add AMD family 17h model 60h PCI IDs
hwmon: (k10temp) Add AMD family 17h model 60h PCI match
x86/amd_nb: Add AMD family 17h model 60h PCI IDs
x86/mcelog: Add compat_ioctl for 32-bit mcelog support
x86/mce: Drop bogus comment about mce.kflags
x86/mce: Fixup exception only for the correct MCEs
EDAC: Drop the EDAC report status checks
x86/mce: Add mce=print_all option
x86/mce: Change default MCE logger to check mce->kflags
x86/mce: Fix all mce notifiers to update the mce->kflags bitmask
x86/mce: Add a struct mce.kflags field
x86/mce: Convert the CEC to use the MCE notifier
x86/mce: Rename "first" function as "early"
x86/mce/amd, edac: Remove report_gart_errors
x86/mce/amd: Make threshold bank setting hotplug robust
x86/mce/amd: Cleanup threshold device remove path
x86/mce/amd: Straighten CPU hotplug path
x86/mce/amd: Sanitize thresholding device creation hotplug path
...
This all started about 6 month ago with the attempt to move the Posix CPU
timer heavy lifting out of the timer interrupt code and just have lockless
quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and the
review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some inconsistencies
vs. instrumentation in general. The int3 text poke handling in particular
was completely unprotected and with the batched update of trace events even
more likely to expose to endless int3 recursion.
In parallel the RCU implications of instrumenting fragile entry code came
up in several discussions.
The conclusion of the X86 maintainer team was to go all the way and make
the protection against any form of instrumentation of fragile and dangerous
code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit d5f744f9a2.
The (almost) full solution introduced a new code section '.noinstr.text'
into which all code which needs to be protected from instrumentation of all
sorts goes into. Any call into instrumentable code out of this section has
to be annotated. objtool has support to validate this. Kprobes now excludes
this section fully which also prevents BPF from fiddling with it and all
'noinstr' annotated functions also keep ftrace off. The section, kprobes
and objtool changes are already merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the noinstr.text
section or enforcing inlining by marking them __always_inline so the
compiler cannot misplace or instrument them.
- Splitting and simplifying the idtentry macro maze so that it is now
clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now calls
into C after doing the really necessary ASM handling and the return
path goes back out without bells and whistels in ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3 recursion
issue.
- Consolidate the declaration and definition of entry points between 32
and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the regular
exception entry code.
- All ASM entry points except NMI are now generated from the shared header
file and the corresponding macros in the 32 and 64 bit entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central point
that all corresponding entry points share the same semantics. The
actual function body for most entry points is in an instrumentable
and sane state.
There are special macros for the more sensitive entry points,
e.g. INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required other
isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and disable
it on NMI, #MC entry, which allowed to get rid of the nested #DB IST
stack shifting hackery.
- A few other cleanups and enhancements which have been made possible
through this and already merged changes, e.g. consolidating and
further restricting the IDT code so the IDT table becomes RO after
init which removes yet another popular attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this was
not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they have
not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle code
especially the parts where RCU stopped watching. This was beyond the
scope of the more obvious and exposable problems and is on the todo
list.
The lesson learned from this brain melting exercise to morph the evolved
code base into something which can be validated and understood is that once
again the violation of the most important engineering principle
"correctness first" has caused quite a few people to spend valuable time on
problems which could have been avoided in the first place. The "features
first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to this
effort. Special thanks go to the following people (alphabetical order):
Alexandre Chartre
Andy Lutomirski
Borislav Petkov
Brian Gerst
Frederic Weisbecker
Josh Poimboeuf
Juergen Gross
Lai Jiangshan
Macro Elver
Paolo Bonzini
Paul McKenney
Peter Zijlstra
Vitaly Kuznetsov
Will Deacon
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j510THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoU2WD/4refvaNm08fG7aiVYem3JJzr0+Pq5O
/opwnI/1D973ApApj5W/Nd53sN5tVqOiXncSKgywRBWZxRCAGjVYypl9rjpvXu4l
HlMjhEKBmWkDryxxrM98Vr7hl3hnId5laR56oFfH+G4LUsItaV6Uak/HfXZ4Mq1k
iYVbEtl2CN+KJjvSgZ6Y1l853Ab5mmGvmeGNHHWCj8ZyjF3cOLoelDTQNnsb0wXM
crKXBcXJSsCWKYyJ5PTvB82crQCET7Su+LgwK06w/ZbW1//2hVIjSCiN5o/V+aRJ
06BZNMj8v9tfglkN8LEQvRIjTlnEQ2sq3GxbrVtA53zxkzbBCBJQ96w8yYzQX0ux
yhqQ/aIZJ1wTYEjJzSkftwLNMRHpaOUnKvJndXRKAYi+eGI7syF61qcZSYGKuAQ/
bK3b/CzU6QWr1235oTADxh4isEwxA0Pg5wtJCfDDOG0MJ9ALMSOGUkhoiz5EqpkU
mzFAwfG/Uj7hRjlkms7Yj2OjZfnU7iypj63GgpXghLjr5ksRFKEOMw8e1GXltVHs
zzwghUjqp2EPq0VOOQn3lp9lol5Prc3xfFHczKpO+CJW6Rpa4YVdqJmejBqJy/on
Hh/T/ST3wa2qBeAw89vZIeWiUJZZCsQ0f//+2hAbzJY45Y6DuR9vbTAPb9agRgOM
xg+YaCfpQqFc1A==
=llba
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Thomas Gleixner:
"The x86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix
CPU timer heavy lifting out of the timer interrupt code and just have
lockless quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and
the review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some
inconsistencies vs. instrumentation in general. The int3 text poke
handling in particular was completely unprotected and with the batched
update of trace events even more likely to expose to endless int3
recursion.
In parallel the RCU implications of instrumenting fragile entry code
came up in several discussions.
The conclusion of the x86 maintainer team was to go all the way and
make the protection against any form of instrumentation of fragile and
dangerous code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit
d5f744f9a2 ("Pull x86 entry code updates from Thomas Gleixner")
That (almost) full solution introduced a new code section
'.noinstr.text' into which all code which needs to be protected from
instrumentation of all sorts goes into. Any call into instrumentable
code out of this section has to be annotated. objtool has support to
validate this.
Kprobes now excludes this section fully which also prevents BPF from
fiddling with it and all 'noinstr' annotated functions also keep
ftrace off. The section, kprobes and objtool changes are already
merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the
noinstr.text section or enforcing inlining by marking them
__always_inline so the compiler cannot misplace or instrument
them.
- Splitting and simplifying the idtentry macro maze so that it is
now clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now
calls into C after doing the really necessary ASM handling and
the return path goes back out without bells and whistels in
ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3
recursion issue.
- Consolidate the declaration and definition of entry points between
32 and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the
regular exception entry code.
- All ASM entry points except NMI are now generated from the shared
header file and the corresponding macros in the 32 and 64 bit
entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central
point that all corresponding entry points share the same
semantics. The actual function body for most entry points is in an
instrumentable and sane state.
There are special macros for the more sensitive entry points, e.g.
INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required
other isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and
disable it on NMI, #MC entry, which allowed to get rid of the
nested #DB IST stack shifting hackery.
- A few other cleanups and enhancements which have been made
possible through this and already merged changes, e.g.
consolidating and further restricting the IDT code so the IDT
table becomes RO after init which removes yet another popular
attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this
was not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they
have not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle
code especially the parts where RCU stopped watching. This was
beyond the scope of the more obvious and exposable problems and is
on the todo list.
The lesson learned from this brain melting exercise to morph the
evolved code base into something which can be validated and understood
is that once again the violation of the most important engineering
principle "correctness first" has caused quite a few people to spend
valuable time on problems which could have been avoided in the first
place. The "features first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to
this effort. Special thanks go to the following people (alphabetical
order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
Vitaly Kuznetsov, and Will Deacon"
* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
x86/entry: Force rcu_irq_enter() when in idle task
x86/entry: Make NMI use IDTENTRY_RAW
x86/entry: Treat BUG/WARN as NMI-like entries
x86/entry: Unbreak __irqentry_text_start/end magic
x86/entry: __always_inline CR2 for noinstr
lockdep: __always_inline more for noinstr
x86/entry: Re-order #DB handler to avoid *SAN instrumentation
x86/entry: __always_inline arch_atomic_* for noinstr
x86/entry: __always_inline irqflags for noinstr
x86/entry: __always_inline debugreg for noinstr
x86/idt: Consolidate idt functionality
x86/idt: Cleanup trap_init()
x86/idt: Use proper constants for table size
x86/idt: Add comments about early #PF handling
x86/idt: Mark init only functions __init
x86/entry: Rename trace_hardirqs_off_prepare()
x86/entry: Clarify irq_{enter,exit}_rcu()
x86/entry: Remove DBn stacks
x86/entry: Remove debug IDT frobbing
x86/entry: Optimize local_db_save() for virt
...
Since commit 84af7a6194 ("checkpatch: kconfig: prefer 'help' over
'---help---'"), the number of '---help---' has been gradually
decreasing, but there are still more than 2400 instances.
This commit finishes the conversion. While I touched the lines,
I also fixed the indentation.
There are a variety of indentation styles found.
a) 4 spaces + '---help---'
b) 7 spaces + '---help---'
c) 8 spaces + '---help---'
d) 1 space + 1 tab + '---help---'
e) 1 tab + '---help---' (correct indentation)
f) 1 tab + 1 space + '---help---'
g) 1 tab + 2 spaces + '---help---'
In order to convert all of them to 1 tab + 'help', I ran the
following commend:
$ find . -name 'Kconfig*' | xargs sed -i 's/^[[:space:]]*---help---/\thelp/'
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
The idea of conditionally calling into rcu_irq_enter() only when RCU is
not watching turned out to be not completely thought through.
Paul noticed occasional premature end of grace periods in RCU torture
testing. Bisection led to the commit which made the invocation of
rcu_irq_enter() conditional on !rcu_is_watching().
It turned out that this conditional breaks RCU assumptions about the idle
task when the scheduler tick happens to be a nested interrupt. Nested
interrupts can happen when the first interrupt invokes softirq processing
on return which enables interrupts.
If that nested tick interrupt does not invoke rcu_irq_enter() then the
RCU's irq-nesting checks will believe that this interrupt came directly
from idle, which will cause RCU to report a quiescent state. Because this
interrupt instead came from a softirq handler which might have been
executing an RCU read-side critical section, this can cause the grace
period to end prematurely.
Change the condition from !rcu_is_watching() to is_idle_task(current) which
enforces that interrupts in the idle task unconditionally invoke
rcu_irq_enter() independent of the RCU state.
This is also correct vs. user mode entries in NOHZ full scenarios because
user mode entries bring RCU out of EQS and force the RCU irq nesting state
accounting to nested. As only the first interrupt can enter from user mode
a nested tick interrupt will enter from kernel mode and as the nesting
state accounting is forced to nesting it will not do anything stupid even
if rcu_irq_enter() has not been invoked.
Fixes: 3eeec38584 ("x86/entry: Provide idtentry_entry/exit_cond_rcu()")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: "Paul E. McKenney" <paulmck@kernel.org>
Reviewed-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/87wo4cxubv.fsf@nanos.tec.linutronix.de
- Loongson port
PPC:
- Fixes
ARM:
- Fixes
x86:
- KVM_SET_USER_MEMORY_REGION optimizations
- Fixes
- Selftest fixes
The guest side of the asynchronous page fault work has been delayed to 5.9
in order to sync with Thomas's interrupt entry rework.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7icj4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPHGQgAj9+5j+f5v06iMP/+ponWwsVfh+5/
UR1gPbpMSFMKF0U+BCFxsBeGKWPDiz9QXaLfy6UGfOFYBI475Su5SoZ8/i/o6a2V
QjcKIJxBRNs66IG/774pIpONY8/mm/3b6vxmQktyBTqjb6XMGlOwoGZixj/RTp85
+uwSICxMlrijg+fhFMwC4Bo/8SFg+FeBVbwR07my88JaLj+3cV/NPolG900qLSa6
uPqJ289EQ86LrHIHXCEWRKYvwy77GFsmBYjKZH8yXpdzUlSGNexV8eIMAz50figu
wYRJGmHrRqwuzFwEGknv8SA3s2HVggXO4WVkWWCeJyO8nIVfYFUhME5l6Q==
=+Hh0
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Paolo Bonzini:
"The guest side of the asynchronous page fault work has been delayed to
5.9 in order to sync with Thomas's interrupt entry rework, but here's
the rest of the KVM updates for this merge window.
MIPS:
- Loongson port
PPC:
- Fixes
ARM:
- Fixes
x86:
- KVM_SET_USER_MEMORY_REGION optimizations
- Fixes
- Selftest fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (62 commits)
KVM: x86: do not pass poisoned hva to __kvm_set_memory_region
KVM: selftests: fix sync_with_host() in smm_test
KVM: async_pf: Inject 'page ready' event only if 'page not present' was previously injected
KVM: async_pf: Cleanup kvm_setup_async_pf()
kvm: i8254: remove redundant assignment to pointer s
KVM: x86: respect singlestep when emulating instruction
KVM: selftests: Don't probe KVM_CAP_HYPERV_ENLIGHTENED_VMCS when nested VMX is unsupported
KVM: selftests: do not substitute SVM/VMX check with KVM_CAP_NESTED_STATE check
KVM: nVMX: Consult only the "basic" exit reason when routing nested exit
KVM: arm64: Move hyp_symbol_addr() to kvm_asm.h
KVM: arm64: Synchronize sysreg state on injecting an AArch32 exception
KVM: arm64: Make vcpu_cp1x() work on Big Endian hosts
KVM: arm64: Remove host_cpu_context member from vcpu structure
KVM: arm64: Stop sparse from moaning at __hyp_this_cpu_ptr
KVM: arm64: Handle PtrAuth traps early
KVM: x86: Unexport x86_fpu_cache and make it static
KVM: selftests: Ignore KVM 5-level paging support for VM_MODE_PXXV48_4K
KVM: arm64: Save the host's PtrAuth keys in non-preemptible context
KVM: arm64: Stop save/restoring ACTLR_EL1
KVM: arm64: Add emulation for 32bit guests accessing ACTLR2
...
For no reason other than beginning brainmelt, IDTENTRY_NMI was mapped to
IDTENTRY_IST.
This is not a problem on 64bit because the IST default entry point maps to
IDTENTRY_RAW which does not any entry handling. The surplus function
declaration for the noist C entry point is unused and as there is no ASM
code emitted for NMI this went unnoticed.
On 32bit IDTENTRY_IST maps to a regular IDTENTRY which does the normal
entry handling. That is clearly the wrong thing to do for NMI.
Map it to IDTENTRY_RAW to unbreak it. The IDTENTRY_NMI mapping needs to
stay to avoid emitting ASM code.
Fixes: 6271fef00b ("x86/entry: Convert NMI to IDTENTRY_NMI")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Debugged-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/CA+G9fYvF3cyrY+-iw_SZtpN-i2qA2BruHg4M=QYECU2-dNdsMw@mail.gmail.com
BUG/WARN are cleverly optimized using UD2 to handle the BUG/WARN out of
line in an exception fixup.
But if BUG or WARN is issued in a funny RCU context, then the
idtentry_enter...() path might helpfully WARN that the RCU context is
invalid, which results in infinite recursion.
Split the BUG/WARN handling into an nmi_enter()/nmi_exit() path in
exc_invalid_op() to increase the chance to survive the experience.
[ tglx: Make the declaration match the implementation ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/f8fe40e0088749734b4435b554f73eee53dcf7a8.1591932307.git.luto@kernel.org
KCSAN is a dynamic race detector, which relies on compile-time
instrumentation, and uses a watchpoint-based sampling approach to detect
races.
The feature was under development for quite some time and has already found
legitimate bugs.
Unfortunately it comes with a limitation, which was only understood late in
the development cycle:
It requires an up to date CLANG-11 compiler
CLANG-11 is not yet released (scheduled for June), but it's the only
compiler today which handles the kernel requirements and especially the
annotations of functions to exclude them from KCSAN instrumentation
correctly.
These annotations really need to work so that low level entry code and
especially int3 text poke handling can be completely isolated.
A detailed discussion of the requirements and compiler issues can be found
here:
https://lore.kernel.org/lkml/CANpmjNMTsY_8241bS7=XAfqvZHFLrVEkv_uM4aDUWE_kh3Rvbw@mail.gmail.com/
We came to the conclusion that trying to work around compiler limitations
and bugs again would end up in a major trainwreck, so requiring a working
compiler seemed to be the best choice.
For Continous Integration purposes the compiler restriction is manageable
and that's where most xxSAN reports come from.
For a change this limitation might make GCC people actually look at their
bugs. Some issues with CSAN in GCC are 7 years old and one has been 'fixed'
3 years ago with a half baken solution which 'solved' the reported issue
but not the underlying problem.
The KCSAN developers also ponder to use a GCC plugin to become independent,
but that's not something which will show up in a few days.
Blocking KCSAN until wide spread compiler support is available is not a
really good alternative because the continuous growth of lockless
optimizations in the kernel demands proper tooling support.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7im98THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQ3xD/9+q87OmwnyoRTs6O3GDDbWZYoJGolh
rctDOAYW8RSS73Fiw23z8hKlLl9tJCya6/X8Q9qoonB1YeIEPPRVj5HJWAMUNEIs
YgjlZJFmh+mnbP/KQFctm3AWpoX8kqt3ncqj6zG72oQ9qKui691BY/2NmGVSLxUV
DqtUYSKmi51XEQtZuXRuHEf3zBxoyeD43DaSCdJAXd6f5O2X7tmrWDuazHVeKzHV
lhijvkyBvGMWvPg0IBrXkkLmeOvS0++MTGm3o+L72XF6nWpzTkcV7N0E9GEDFg45
zwcidRVKD5d/1DoU5Tos96rCJpBEGh/wimlu0z14mcZpNiJgRQH5rzVEO9Y14UcP
KL9FgRrb5dFw7yfX2zRQ070OFJ4AEDBMK0o5Lbu/QO5KLkvFkqnuWlQfmmtZJWCW
DTRw/FgUgU7lvyPjRrao6HBvwy+yTb0u9K5seCOTRkuepR9nPJs0710pFiBsNCfV
RY3cyggNBipAzgBOgLxixnq9+rHt70ton6S8Gijxpvt0dGGfO8k0wuEhFtA4zKrQ
6HGK+pidxnoVdEgyQZhS+qzMMkyiUL0FXdaGJ2IX+/DC+Ij1UrUPjZBn7v25M0hQ
ESkvxWKCn7snH4/NJsNxqCV1zyEc3zAW/WvLJUc9I7H8zPwtVvKWPrKEMzrJJ5bA
aneySilbRxBFUg==
=iplm
-----END PGP SIGNATURE-----
Merge tag 'locking-kcsan-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull the Kernel Concurrency Sanitizer from Thomas Gleixner:
"The Kernel Concurrency Sanitizer (KCSAN) is a dynamic race detector,
which relies on compile-time instrumentation, and uses a
watchpoint-based sampling approach to detect races.
The feature was under development for quite some time and has already
found legitimate bugs.
Unfortunately it comes with a limitation, which was only understood
late in the development cycle:
It requires an up to date CLANG-11 compiler
CLANG-11 is not yet released (scheduled for June), but it's the only
compiler today which handles the kernel requirements and especially
the annotations of functions to exclude them from KCSAN
instrumentation correctly.
These annotations really need to work so that low level entry code and
especially int3 text poke handling can be completely isolated.
A detailed discussion of the requirements and compiler issues can be
found here:
https://lore.kernel.org/lkml/CANpmjNMTsY_8241bS7=XAfqvZHFLrVEkv_uM4aDUWE_kh3Rvbw@mail.gmail.com/
We came to the conclusion that trying to work around compiler
limitations and bugs again would end up in a major trainwreck, so
requiring a working compiler seemed to be the best choice.
For Continous Integration purposes the compiler restriction is
manageable and that's where most xxSAN reports come from.
For a change this limitation might make GCC people actually look at
their bugs. Some issues with CSAN in GCC are 7 years old and one has
been 'fixed' 3 years ago with a half baken solution which 'solved' the
reported issue but not the underlying problem.
The KCSAN developers also ponder to use a GCC plugin to become
independent, but that's not something which will show up in a few
days.
Blocking KCSAN until wide spread compiler support is available is not
a really good alternative because the continuous growth of lockless
optimizations in the kernel demands proper tooling support"
* tag 'locking-kcsan-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits)
compiler_types.h, kasan: Use __SANITIZE_ADDRESS__ instead of CONFIG_KASAN to decide inlining
compiler.h: Move function attributes to compiler_types.h
compiler.h: Avoid nested statement expression in data_race()
compiler.h: Remove data_race() and unnecessary checks from {READ,WRITE}_ONCE()
kcsan: Update Documentation to change supported compilers
kcsan: Remove 'noinline' from __no_kcsan_or_inline
kcsan: Pass option tsan-instrument-read-before-write to Clang
kcsan: Support distinguishing volatile accesses
kcsan: Restrict supported compilers
kcsan: Avoid inserting __tsan_func_entry/exit if possible
ubsan, kcsan: Don't combine sanitizer with kcov on clang
objtool, kcsan: Add kcsan_disable_current() and kcsan_enable_current_nowarn()
kcsan: Add __kcsan_{enable,disable}_current() variants
checkpatch: Warn about data_race() without comment
kcsan: Use GFP_ATOMIC under spin lock
Improve KCSAN documentation a bit
kcsan: Make reporting aware of KCSAN tests
kcsan: Fix function matching in report
kcsan: Change data_race() to no longer require marking racing accesses
kcsan: Move kcsan_{disable,enable}_current() to kcsan-checks.h
...
1) Compilers uninline small atomic_* static inline functions which can
expose them to instrumentation.
2) The instrumentation of atomic primitives was done at the architecture
level while composites or fallbacks were provided at the generic level.
As a result there are no uninstrumented variants of the fallbacks.
Both issues were in the way of fully isolating fragile entry code pathes
and especially the text poke int3 handler which is prone to an endless
recursion problem when anything in that code path is about to be
instrumented. This was always a problem, but got elevated due to the new
batch mode updates of tracing.
The solution is to mark the functions __always_inline and to flip the
fallback and instrumentation so the non-instrumented variants are at the
architecture level and the instrumentation is done in generic code.
The latter introduces another fallback variant which will go away once all
architectures have been moved over to arch_atomic_*.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7imyETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoT0wEACcI3mDiK/9hNlfnobIJTup1E8erUdY
/EZX8yFc/FgpSSKAMROu3kswZ+rSWmBEyzTJLEtBAaYU6haAuGx77AugoDHfVkYi
+CEJvVEpeK7fzsgu9aTb/5B6EDUo/P1fzTFjVTK1I9M9KrGLxbkGRZWYUeX3KRZd
RskRJMbp9L4oiNJNAuIP6QKoJ7PK/sL16e8oVZSQR6WW9ZH4uDZbyfl5z0xLjI7u
PIsFCoDu7/ig2wpOhtAYRVsL8C6EQ8mSeEUMKeM7A7UFAkVadYB8PTmEJ/QcixW+
5R0+cnQE/3I/n0KRwfz/7p2gzILJk/cY6XJWVoAsQb990MD2ahjZJPYI4jdknjz6
8bL/QjBq+pZwbHWOhy+IdUntIYGkyjfLKoPLdSoh+uK1kl8Jsg+AlB2lN469BV1D
r0NltiCLggvtqXEDLV4YZqxie6H38gvOzPDbH8I6M34+WkOI2sM0D1P/Naqw/Wgl
M1Ygx4wYG8X4zDESAYMy9tSXh5lGDIjiF6sjGTOPYWwUIeRlINfWeJkiXKnYNwv/
qTiC8ciCxhlQcDifdyfQjT3mHNcP7YpVKp317TCtU4+WxMSrW1h2SL6m6j74dNI/
P7/J6GKONeLRbt0ZQbQGjqHxSuu6kqUEu69aVs5W9+WjNEoJW1EW4vrJ3TeF5jLh
0Srl4VsyDwzuXw==
=Jkzv
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull atomics rework from Thomas Gleixner:
"Peter Zijlstras rework of atomics and fallbacks. This solves two
problems:
1) Compilers uninline small atomic_* static inline functions which
can expose them to instrumentation.
2) The instrumentation of atomic primitives was done at the
architecture level while composites or fallbacks were provided at
the generic level. As a result there are no uninstrumented
variants of the fallbacks.
Both issues were in the way of fully isolating fragile entry code
pathes and especially the text poke int3 handler which is prone to an
endless recursion problem when anything in that code path is about to
be instrumented. This was always a problem, but got elevated due to
the new batch mode updates of tracing.
The solution is to mark the functions __always_inline and to flip the
fallback and instrumentation so the non-instrumented variants are at
the architecture level and the instrumentation is done in generic
code.
The latter introduces another fallback variant which will go away once
all architectures have been moved over to arch_atomic_*"
* tag 'locking-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomics: Flip fallbacks and instrumentation
asm-generic/atomic: Use __always_inline for fallback wrappers
- Unbreak paravirt VDSO clocks. While the VDSO code was moved into lib
for sharing a subtle check for the validity of paravirt clocks got
replaced. While the replacement works perfectly fine for bare metal as
the update of the VDSO clock mode is synchronous, it fails for paravirt
clocks because the hypervisor can invalidate them asynchronous. Bring
it back as an optional function so it does not inflict this on
architectures which are free of PV damage.
- Fix the jiffies to jiffies64 mapping on 64bit so it does not trigger
an ODR violation on newer compilers
- Three fixes for the SSBD and *IB* speculation mitigation maze to ensure
consistency, not disabling of some *IB* variants wrongly and to prevent
a rogue cross process shutdown of SSBD. All marked for stable.
- Add yet more CPU models to the splitlock detection capable list !@#%$!
- Bring the pr_info() back which tells that TSC deadline timer is enabled.
- Reboot quirk for MacBook6,1
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7ie1oTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofXrEACDD0mNBU2c4vQiR+n4d41PqW1p15DM
/wG7dYqYt2RdR6qOAspmNL5ilUP+L+eoT/86U9y0g4j3FtTREqyy6mpWE4MQzqaQ
eKWVoeYt7l9QbR1kP4eks1CN94OyVBUPo3P78UPruWMB11iyKjyrkEdsDmRSLOdr
6doqMFGHgowrQRwsLPFUt7b2lls6ssOSYgM/ChHi2Iga431ZuYYcRe2mNVsvqx3n
0N7QZlJ/LivXdCmdpe3viMBsDaomiXAloKUo+HqgrCLYFXefLtfOq09U7FpddYqH
ztxbGW/7gFn2HEbmdeaiufux263MdHtnjvdPhQZKHuyQmZzzxDNBFgOILSrBJb5y
qLYJGhMa0sEwMBM9MMItomNgZnOITQ3WGYAdSCg3mG3jK4EXzr6aQm/Qz5SI+Cte
bQKB2dgR53Gw/1uc7F5qMGQ2NzeUbKycT0ZbF3vkUPVh1kdU3juIntsovv2lFeBe
Rog/rZliT1xdHrGAHRbubb2/3v66CSodMoYz0eQtr241Oz0LGwnyFqLN3qcZVLDt
OtxHQ3bbaxevDEetJXfSh3CfHKNYMToAcszmGDse3MJxC7DL5AA51OegMa/GYOX6
r5J99MUsEzZQoQYyXFf1MjwgxH4CQK1xBBUXYaVG65AcmhT21YbNWnCbxgf7hW+V
hqaaUSig4V3NLw==
=VlBk
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more x86 updates from Thomas Gleixner:
"A set of fixes and updates for x86:
- Unbreak paravirt VDSO clocks.
While the VDSO code was moved into lib for sharing a subtle check
for the validity of paravirt clocks got replaced. While the
replacement works perfectly fine for bare metal as the update of
the VDSO clock mode is synchronous, it fails for paravirt clocks
because the hypervisor can invalidate them asynchronously.
Bring it back as an optional function so it does not inflict this
on architectures which are free of PV damage.
- Fix the jiffies to jiffies64 mapping on 64bit so it does not
trigger an ODR violation on newer compilers
- Three fixes for the SSBD and *IB* speculation mitigation maze to
ensure consistency, not disabling of some *IB* variants wrongly and
to prevent a rogue cross process shutdown of SSBD. All marked for
stable.
- Add yet more CPU models to the splitlock detection capable list
!@#%$!
- Bring the pr_info() back which tells that TSC deadline timer is
enabled.
- Reboot quirk for MacBook6,1"
* tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Unbreak paravirt VDSO clocks
lib/vdso: Provide sanity check for cycles (again)
clocksource: Remove obsolete ifdef
x86_64: Fix jiffies ODR violation
x86/speculation: PR_SPEC_FORCE_DISABLE enforcement for indirect branches.
x86/speculation: Prevent rogue cross-process SSBD shutdown
x86/speculation: Avoid force-disabling IBPB based on STIBP and enhanced IBRS.
x86/cpu: Add Sapphire Rapids CPU model number
x86/split_lock: Add Icelake microserver and Tigerlake CPU models
x86/apic: Make TSC deadline timer detection message visible
x86/reboot/quirks: Add MacBook6,1 reboot quirk
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__kvm_set_memory_region does not use the hva at all, so trying to
catch use-after-delete is pointless and, worse, it fails access_ok
now that we apply it to all memslots including private kernel ones.
This fixes an AVIC regression.
Fixes: 09d952c971 ("KVM: check userspace_addr for all memslots")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'Page not present' event may or may not get injected depending on
guest's state. If the event wasn't injected, there is no need to
inject the corresponding 'page ready' event as the guest may get
confused. E.g. Linux thinks that the corresponding 'page not present'
event wasn't delivered *yet* and allocates a 'dummy entry' for it.
This entry is never freed.
Note, 'wakeup all' events have no corresponding 'page not present'
event and always get injected.
s390 seems to always be able to inject 'page not present', the
change is effectively a nop.
Suggested-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200610175532.779793-2-vkuznets@redhat.com>
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=208081
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pointer s is being assigned a value that is never read, the
assignment is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Message-Id: <20200609233121.1118683-1-colin.king@canonical.com>
Fixes: 7837699fa6 ("KVM: In kernel PIT model")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When userspace configures KVM_GUESTDBG_SINGLESTEP, KVM will manage the
presence of X86_EFLAGS_TF via kvm_set/get_rflags on vcpus. The actual
rflag bit is therefore hidden from callers.
That includes init_emulate_ctxt() which uses the value returned from
kvm_get_flags() to set ctxt->tf. As a result, x86_emulate_instruction()
will skip a single step, leaving singlestep_rip stale and not returning
to userspace.
This resolves the issue by observing the vcpu guest_debug configuration
alongside ctxt->tf in x86_emulate_instruction(), performing the single
step if set.
Cc: stable@vger.kernel.org
Signed-off-by: Felipe Franciosi <felipe@nutanix.com>
Message-Id: <20200519081048.8204-1-felipe@nutanix.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using a topic branch so that stable branches can simply cherry-pick the
patch.
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consult only the basic exit reason, i.e. bits 15:0 of vmcs.EXIT_REASON,
when determining whether a nested VM-Exit should be reflected into L1 or
handled by KVM in L0.
For better or worse, the switch statement in nested_vmx_exit_reflected()
currently defaults to "true", i.e. reflects any nested VM-Exit without
dedicated logic. Because the case statements only contain the basic
exit reason, any VM-Exit with modifier bits set will be reflected to L1,
even if KVM intended to handle it in L0.
Practically speaking, this only affects EXIT_REASON_MCE_DURING_VMENTRY,
i.e. a #MC that occurs on nested VM-Enter would be incorrectly routed to
L1, as "failed VM-Entry" is the only modifier that KVM can currently
encounter. The SMM modifiers will never be generated as KVM doesn't
support/employ a SMI Transfer Monitor. Ditto for "exit from enclave",
as KVM doesn't yet support virtualizing SGX, i.e. it's impossible to
enter an enclave in a KVM guest (L1 or L2).
Fixes: 644d711aa0 ("KVM: nVMX: Deciding if L0 or L1 should handle an L2 exit")
Cc: Jim Mattson <jmattson@google.com>
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200227174430.26371-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kbuild test robot reported this warning:
arch/x86/kernel/cpu/mce/dev-mcelog.c: In function 'dev_mcelog_init_device':
arch/x86/kernel/cpu/mce/dev-mcelog.c:346:2: warning: 'strncpy' output \
truncated before terminating nul copying 12 bytes from a string of the \
same length [-Wstringop-truncation]
This is accurate, but I don't care that the trailing NUL character isn't
copied. The string being copied is just a magic number signature so that
crash dump tools can be sure they are decoding the right blob of memory.
Use memcpy() instead of strncpy().
Fixes: d8ecca4043 ("x86/mce/dev-mcelog: Dynamically allocate space for machine check records")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200527182808.27737-1-tony.luck@intel.com
An interesting thing happened when a guest Linux instance took a machine
check. The VMM unmapped the bad page from guest physical space and
passed the machine check to the guest.
Linux took all the normal actions to offline the page from the process
that was using it. But then guest Linux crashed because it said there
was a second machine check inside the kernel with this stack trace:
do_memory_failure
set_mce_nospec
set_memory_uc
_set_memory_uc
change_page_attr_set_clr
cpa_flush
clflush_cache_range_opt
This was odd, because a CLFLUSH instruction shouldn't raise a machine
check (it isn't consuming the data). Further investigation showed that
the VMM had passed in another machine check because is appeared that the
guest was accessing the bad page.
Fix is to check the scope of the poison by checking the MCi_MISC register.
If the entire page is affected, then unmap the page. If only part of the
page is affected, then mark the page as uncacheable.
This assumes that VMMs will do the logical thing and pass in the "whole
page scope" via the MCi_MISC register (since they unmapped the entire
page).
[ bp: Adjust to x86/entry changes. ]
Fixes: 284ce4011b ("x86/memory_failure: Introduce {set, clear}_mce_nospec()")
Reported-by: Jue Wang <juew@google.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jue Wang <juew@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200520163546.GA7977@agluck-desk2.amr.corp.intel.com
to fixup conflicts in arch/x86/kernel/cpu/mce/core.c so MCE specific follow
up patches can be applied without creating a horrible merge conflict
afterwards.
The entry rework moved interrupt entry code from the irqentry to the
noinstr section which made the irqentry section empty.
This breaks boundary checks which rely on the __irqentry_text_start/end
markers to find out whether a function in a stack trace is
interrupt/exception entry code. This affects the function graph tracer and
filter_irq_stacks().
As the IDT entry points are all sequentialy emitted this is rather simple
to unbreak by injecting __irqentry_text_start/end as global labels.
To make this work correctly:
- Remove the IRQENTRY_TEXT section from the x86 linker script
- Define __irqentry so it breaks the build if it's used
- Adjust the entry mirroring in PTI
- Remove the redundant kprobes and unwinder bound checks
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
vmlinux.o: warning: objtool: exc_debug()+0xbb: call to clear_ti_thread_flag.constprop.0() leaves .noinstr.text section
vmlinux.o: warning: objtool: noist_exc_debug()+0x55: call to clear_ti_thread_flag.constprop.0() leaves .noinstr.text section
Rework things so that handle_debug() looses the noinstr and move the
clear_thread_flag() into that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200603114052.127756554@infradead.org
- Move load_current_idt() out of line and replace the hideous comment with
a lockdep assert. This allows to make idt_table and idt_descr static.
- Mark idt_table read only after the IDT initialization is complete.
- Shuffle code around to consolidate the #ifdef sections into one.
- Adapt the F00F bug code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200528145523.084915381@linutronix.de
The difference between 32 and 64 bit vs. early #PF handling is not
documented. Replace the FIXME at idt_setup_early_pf() with proper comments.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200528145522.807135882@linutronix.de
Since 8175cfbbbfcb ("x86/idt: Remove update_intr_gate()") set_intr_gate()
and idt_setup_from_table() are only called from __init functions. Mark them
as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200528145522.715816477@linutronix.de
The typical pattern for trace_hardirqs_off_prepare() is:
ENTRY
lockdep_hardirqs_off(); // because hardware
... do entry magic
instrumentation_begin();
trace_hardirqs_off_prepare();
... do actual work
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
instrumentation_end();
... do exit magic
lockdep_hardirqs_on();
which shows that it's named wrong, rename it to
trace_hardirqs_off_finish(), as it concludes the hardirq_off transition.
Also, given that the above is the only correct order, make the traditional
all-in-one trace_hardirqs_off() follow suit.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.415774872@infradead.org
Because:
irq_enter_rcu() includes lockdep_hardirq_enter()
irq_exit_rcu() does *NOT* include lockdep_hardirq_exit()
Which resulted in two 'stray' lockdep_hardirq_exit() calls in
idtentry.h, and me spending a long time trying to find the matching
enter calls.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.359433429@infradead.org
Both #DB itself, as all other IST users (NMI, #MC) now clear DR7 on
entry. Combined with not allowing breakpoints on entry/noinstr/NOKPROBE
text and no single step (EFLAGS.TF) inside the #DB handler should guarantee
no nested #DB.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.303027161@infradead.org
Because DRn access is 'difficult' with virt; but the DR7 read is cheaper
than a cacheline miss on native, add a virt specific fast path to
local_db_save(), such that when breakpoints are not in use to avoid
touching DRn entirely.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.187833200@infradead.org
Instead of playing stupid games with IST stacks, fully disallow #DB
during NMIs. There is absolutely no reason to allow them, and killing
this saves a heap of trouble.
#DB is already forbidden on noinstr and CEA, so there can't be a #DB before
this. Disabling it right after nmi_enter() ensures that the full NMI code
is protected.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.069223695@infradead.org
In order to allow other exceptions than #DB to disable breakpoints,
provide common helpers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.012060983@infradead.org
cpu_tss_rw is not directly referenced by hardware, but cpu_tss_rw is
accessed in CPU entry code, especially when #DB shifts its stacks.
If a data breakpoint would be set on cpu_tss_rw.x86_tss.ist[IST_INDEX_DB],
it would cause recursive #DB ending up in a double fault.
Add it to the list of protected items.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200526014221.2119-4-laijs@linux.alibaba.com
Link: https://lkml.kernel.org/r/20200529213320.897976479@infradead.org
Kbuild test robot reports the following problem on ARM:
for 'xen_setup_callback_vector' [-Wmissing-prototypes]
1664 | void xen_setup_callback_vector(void) {}
| ^~~~~~~~~~~~~~~~~~~~~~~~~
The problem is that xen_setup_callback_vector is a x86 only thing, its
definition is present in arch/x86/xen/xen-ops.h but not on ARM. In
events_base.c there is a stub for !CONFIG_XEN_PVHVM but it is not declared
as 'static'.
On x86 the situation is hardly better: drivers/xen/events/events_base.c
doesn't include 'xen-ops.h' from arch/x86/xen/, it includes its namesake
from include/xen/ which also results in a 'no previous prototype' warning.
Currently, xen_setup_callback_vector() has two call sites: one in
drivers/xen/events_base.c and another in arch/x86/xen/suspend_hvm.c. The
former is placed under #ifdef CONFIG_X86 and the later is only compiled
in when CONFIG_XEN_PVHVM.
Resolve the issue by moving xen_setup_callback_vector() declaration to
arch neutral 'include/xen/hvm.h' as the implementation lives in arch
neutral drivers/xen/events/events_base.c.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20200520161600.361895-1-vkuznets@redhat.com
The last step to remove the irq tracing cruft from ASM. Ignore #DF as the
maschine is going to die anyway.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202120.414043330@linutronix.de
Since INT3/#BP no longer runs on an IST, this workaround is no longer
required.
Tested by running lockdep+ftrace as described in the initial commit:
5963e317b1 ("ftrace/x86: Do not change stacks in DEBUG when calling lockdep")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202120.319418546@linutronix.de
All exceptions/interrupts return with interrupts disabled now. No point in
doing this in ASM again.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202120.221223450@linutronix.de
The ASM users are gone. All callers are local.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202120.129232680@linutronix.de
Remove all the code which was there to emit the system vector stubs. All
users are gone.
Move the now unused GET_CR2_INTO macro muck to head_64.S where the last
user is. Fixup the eye hurting comment there while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.927433002@linutronix.de
The scheduler IPI does not need the full interrupt entry handling logic
when the entry is from kernel mode. Use IDTENTRY_SYSVEC_SIMPLE and spare
all the overhead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.835425642@linutronix.de
Convert the last oldstyle defined vector to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
Fixup the related XEN code by providing the primary C entry point in x86 to
avoid cluttering the generic code with X86'isms.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.741950104@linutronix.de
Convert various hypervisor vectors to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.647997594@linutronix.de
Convert KVM specific system vectors to IDTENTRY_SYSVEC*:
The two empty stub handlers which only increment the stats counter do no
need to run on the interrupt stack. Use IDTENTRY_SYSVEC_SIMPLE for them.
The wakeup handler does more work and runs on the interrupt stack.
None of these handlers need to save and restore the irq_regs pointer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.555715519@linutronix.de
Convert various system vectors to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.464812973@linutronix.de
Convert SMP system vectors to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.372234635@linutronix.de
Convert APIC interrupts to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.280728850@linutronix.de
Provide IDTENTRY variants for system vectors to consolidate the different
mechanisms to emit the ASM stubs for 32- and 64-bit.
On 64-bit this also moves the stack switching from ASM to C code. 32-bit will
excute the system vectors w/o stack switching as before.
The simple variant is meant for "empty" system vectors like scheduler IPI
and KVM posted interrupt vectors. These do not need the full glory of irq
enter/exit handling with softirq processing and more.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.185317067@linutronix.de
Replace the extra interrupt handling code and reuse the existing idtentry
machinery. This moves the irq stack switching on 64-bit from ASM to C code;
32-bit already does the stack switching in C.
This requires to remove HAVE_IRQ_EXIT_ON_IRQ_STACK as the stack switch is
not longer in the low level entry code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.078690991@linutronix.de
Provide a seperate IDTENTRY macro for device interrupts. Similar to
IDTENTRY_ERRORCODE with the addition of invoking irq_enter/exit_rcu() and
providing the errorcode as a 'u8' argument to the C function, which
truncates the sign extended vector number.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.984573165@linutronix.de
To consolidate the interrupt entry/exit code vs. the other exceptions
make handle_irq() an inline and handle both 64-bit and 32-bit mode.
Preparatory change to move irq stack switching for 64-bit to C which allows
to consolidate the entry exit handling by reusing the idtentry machinery
both in ASM and C.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.889972748@linutronix.de
Device interrupts which go through do_IRQ() or the spurious interrupt
handler have their separate entry code on 64 bit for no good reason.
Both 32 and 64 bit transport the vector number through ORIG_[RE]AX in
pt_regs. Further the vector number is forced to fit into an u8 and is
complemented and offset by 0x80 so it's in the signed character
range. Otherwise GAS would expand the pushq to a 5 byte instruction for any
vector > 0x7F.
Treat the vector number like an error code and hand it to the C function as
argument. This allows to get rid of the extra entry code in a later step.
Simplify the error code push magic by implementing the pushq imm8 via a
'.byte 0x6a, vector' sequence so GAS is not able to screw it up. As the
pushq imm8 is sign extending the resulting error code needs to be truncated
to 8 bits in C code.
Originally-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.796915981@linutronix.de
The only difference is the name of the per-CPU variable: irq_regs
vs. __irq_regs, but the accessor functions are identical.
Remove the pointless copy and use the generic variant.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.704169051@linutronix.de
xen_failsafe_callback() is invoked from XEN for two cases:
1. Fault while reloading DS, ES, FS or GS
2. Fault while executing IRET
#1 retries the IRET after XEN has fixed up the segments.
#2 injects a #GP which kills the task
For #1 there is no reason to go through the full exception return path
because the tasks TIF state is still the same. So just going straight to
the IRET path is good enough.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.423224507@linutronix.de
Now that all exceptions are converted over the sane flag is not longer
needed. Also the vector argument of idtentry_body on 64-bit is pointless
now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.331115895@linutronix.de
Convert page fault exceptions to IDTENTRY_RAW:
- Implement the C entry point with DEFINE_IDTENTRY_RAW
- Add the CR2 read into the exception handler
- Add the idtentry_enter/exit_cond_rcu() invocations in
in the regular page fault handler and in the async PF
part.
- Emit the ASM stub with DECLARE_IDTENTRY_RAW
- Remove the ASM idtentry in 64-bit
- Remove the CR2 read from 64-bit
- Remove the open coded ASM entry code in 32-bit
- Fix up the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.238455120@linutronix.de
All C functions which do not have an error code have been converted to the
new IDTENTRY interface which does not expect an error code in the
arguments. Spare the XORL.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.145811853@linutronix.de
Convert the XEN/PV hypercall to IDTENTRY:
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64-bit
- Remove the open coded ASM entry code in 32-bit
- Remove the old prototypes
The handler stubs need to stay in ASM code as they need corner case handling
and adjustment of the stack pointer.
Provide a new C function which invokes the entry/exit handling and calls
into the XEN handler on the interrupt stack if required.
The exit code is slightly different from the regular idtentry_exit() on
non-preemptible kernels. If the hypercall is preemptible and need_resched()
is set then XEN provides a preempt hypercall scheduling function.
Move this functionality into the entry code so it can use the existing
idtentry functionality.
[ mingo: Build fixes. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Juergen Gross <jgross@suse.com>
Tested-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20200521202118.055270078@linutronix.de
The XEN PV hypercall requires the ability of conditional rescheduling when
preemption is disabled because some hypercalls take ages.
Split out the rescheduling code from idtentry_exit_cond_rcu() so it can
be reused for that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202117.962199649@linutronix.de
The first step to get rid of the ENTER/LEAVE_IRQ_STACK ASM macro maze. Use
the new C code helpers to move do_softirq_own_stack() out of ASM code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202117.870911120@linutronix.de
Device interrupt handlers and system vector handlers are executed on the
interrupt stack. The stack switch happens in the low level assembly entry
code. This conflicts with the efforts to consolidate the exit code in C to
ensure correctness vs. RCU and tracing.
As there is no way to move #DB away from IST due to the MOV SS issue, the
requirements vs. #DB and NMI for switching to the interrupt stack do not
exist anymore. The only requirement is that interrupts are disabled.
That allows the moving of the stack switching to C code, which simplifies the
entry/exit handling further, because it allows the switching of stacks after
handling the entry and on exit before handling RCU, returning to usermode and
kernel preemption in the same way as for regular exceptions.
The initial attempt of having the stack switching in inline ASM caused too
much headache vs. objtool and the unwinder. After analysing the use cases
it was agreed on that having the stack switch in ASM for the price of an
indirect call is acceptable, as the main users are indirect call heavy
anyway and the few system vectors which are empty shells (scheduler IPI and
KVM posted interrupt vectors) can run from the regular stack.
Provide helper functions to check whether the interrupt stack is already
active and whether stack switching is required.
64-bit only for now, as 32-bit has a variant of that already. Once this is
cleaned up, the two implementations might be consolidated as an additional
cleanup on top.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202117.763775313@linutronix.de
Now that everything is converted to conditional RCU handling remove
idtentry_enter/exit() and tidy up the conditional functions.
This does not remove rcu_irq_exit_preempt(), to avoid conflicts with the RCU
tree. Will be removed once all of this hits Linus's tree.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202117.473597954@linutronix.de
Switch all idtentry_enter/exit() users over to the new conditional RCU
handling scheme and make the user mode entries in #DB, #INT3 and #MCE use
the user mode idtentry functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202117.382387286@linutronix.de
As there are exceptions which already handle entry from user mode and from
kernel mode separately, providing explicit user entry/exit handling callbacks
makes sense and makes the code easier to understand.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202117.289548561@linutronix.de
After a lengthy discussion [1] it turned out that RCU does not need a full
rcu_irq_enter/exit() when RCU is already watching. All it needs if
NOHZ_FULL is active is to check whether the tick needs to be restarted.
This allows to avoid a separate variant for the pagefault handler which
cannot invoke rcu_irq_enter() on a kernel pagefault which might sleep.
The cond_rcu argument is only temporary and will be removed once the
existing users of idtentry_enter/exit() have been cleaned up. After that
the code can be significantly simplified.
[ mingo: Simplified the control flow ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: [1] https://lkml.kernel.org/r/20200515235125.628629605@linutronix.de
Link: https://lore.kernel.org/r/20200521202117.181397835@linutronix.de
The following commit:
095b7a3e7745 ("x86/entry: Convert double fault exception to IDTENTRY_DF")
introduced a new build warning on 64-bit allnoconfig kernels, that have CONFIG_VMAP_STACK disabled:
arch/x86/kernel/traps.c:332:16: warning: unused variable ‘address’ [-Wunused-variable]
This variable is only used if CONFIG_VMAP_STACK is defined, so make it
dependent on that, not CONFIG_X86_64.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Convert #DF to IDTENTRY_DF
- Implement the C entry point with DEFINE_IDTENTRY_DF
- Emit the ASM stub with DECLARE_IDTENTRY_DF on 64bit
- Remove the ASM idtentry in 64bit
- Adjust the 32bit shim code
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.583415264@linutronix.de
Provide a separate macro for #DF as this needs to emit paranoid only code
and has also a special ASM stub in 32bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.583415264@linutronix.de
Mark the relevant functions noinstr, use the plain non-instrumented MSR
accessors. The only odd part is the instrumentation_begin()/end() pair around the
indirect machine_check_vector() call as objtool can't figure that out. The
possible invoked functions are annotated correctly.
Also use notrace variant of nmi_enter/exit(). If MCEs happen then hardware
latency tracing is the least of the worries.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.476734898@linutronix.de
The functions invoked from handle_debug() can be instrumented. Tell objtool
about it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.380927730@linutronix.de
Now that there are separate entry points, move the kernel/user_mode specifc
checks into the entry functions so the common handling code does not need
the extra mode checks. Make the code more readable while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.283276272@linutronix.de
The MCE entry point uses the same mechanism as the IST entry point for
now. For #DB split the inner workings and just keep the nmi_enter/exit()
magic in the IST variant. Fixup the ASM code to emit the proper
noist_##cfunc call.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.177564104@linutronix.de
Provide NOIST entry point macros which allows to implement NOIST variants
of the C entry points. These are invoked when #DB or #MC enter from user
space. This allows explicit handling of the difference between user mode
and kernel mode entry later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.084882104@linutronix.de
The C entry points do not expect an error code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.992621707@linutronix.de
Convert #DB to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY_DB
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.900297476@linutronix.de
DR6/7 should be handled before nmi_enter() is invoked and restore after
nmi_exit() to minimize the exposure.
Split it out into helper inlines and bring it into the correct order.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.808628211@linutronix.de
Mark all functions in the fragile code parts noinstr or force inlining so
they can't be instrumented.
Also make the hardware latency tracer invocation explicit outside of
non-instrumentable section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.716186134@linutronix.de
Convert #NMI to IDTENTRY_NMI:
- Implement the C entry point with DEFINE_IDTENTRY_NMI
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.609932306@linutronix.de
XEN/PV has special wrappers for NMI and DB exceptions. They redirect these
exceptions through regular IDTENTRY points. Provide the necessary IDTENTRY
macros to make this work
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.518622698@linutronix.de
mce_check_crashing_cpu() is called right at the entry of the MCE
handler. It uses mce_rdmsr() and mce_wrmsr() which are wrappers around
rdmsr() and wrmsr() to handle the MCE error injection mechanism, which is
pointless in this context, i.e. when the MCE hits an offline CPU or the
system is already marked crashing.
The MSR access can also be traced, so use the untraceable variants. This
is also safe vs. XEN paravirt as these MSRs are not affected by XEN PV
modifications.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.426347351@linutronix.de
Convert #MC to IDTENTRY_MCE:
- Implement the C entry points with DEFINE_IDTENTRY_MCE
- Emit the ASM stub with DECLARE_IDTENTRY_MCE
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the error code from *machine_check_vector() as
it is always 0 and not used by any of the functions
it can point to. Fixup all the functions as well.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.334980426@linutronix.de
There is no reason to have nmi_enter/exit() in the actual MCE
handlers. Move it to the entry point. This also covers the until now
uncovered initial handler which only prints.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.243936614@linutronix.de
Same as IDTENTRY but for exceptions which run on Interrupt Stacks (IST) on
64bit. For 32bit this maps to IDTENTRY.
There are 3 variants which will be used:
IDTENTRY_MCE
IDTENTRY_DB
IDTENTRY_NMI
These map to IDTENTRY_IST, but only the MCE and DB variants are emitting
ASM code as the NMI entry needs hand crafted ASM still.
The function defines do not contain any idtenter/exit calls as these
exceptions need special treatment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.137125609@linutronix.de
For code simplicity split up the int3 handler into a kernel and user part
which makes the code flow simpler to understand.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505135314.045220765@linutronix.de
Convert #BP to IDTENTRY_RAW:
- Implement the C entry point with DEFINE_IDTENTRY_RAW
- Invoke idtentry_enter/exit() from the function body
- Emit the ASM stub with DECLARE_IDTENTRY_RAW
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
This could be a plain IDTENTRY, but as Peter pointed out INT3 is broken
vs. the static key in the context tracking code as this static key might be
in the state of being patched and has an int3 which would recurse forever.
IDTENTRY_RAW is therefore chosen to allow addressing this issue without
lots of code churn.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135313.938474960@linutronix.de
Some exception handlers need to do extra work before any of the entry
helpers are invoked. Provide IDTENTRY_RAW for this.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135313.830540017@linutronix.de
Avoid calling out to bsearch() by inlining it, for normal kernel configs
this was the last external call and poke_int3_handler() is now fully self
sufficient -- no calls to external code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135313.731774429@linutronix.de
Use arch_atomic_*() and __READ_ONCE() to ensure nothing untoward
creeps in and ruins things.
That is; this is the INT3 text poke handler, strictly limit the code
that runs in it, lest it inadvertenly hits yet another INT3.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135313.517429268@linutronix.de
In order to ensure poke_int3_handler() is completely self contained -- this
is called while modifying other text, imagine the fun of hitting another
INT3 -- ensure that everything it uses is not traced.
The primary means here is to force inlining; bsearch() is notrace because
all of lib/ is.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135313.410702173@linutronix.de
Convert the IRET exception handler to IDTENTRY_SW. This is slightly
different than the conversions of hardware exceptions as the IRET exception
is invoked via an exception table when IRET faults. So it just uses the
IDTENTRY_SW mechanism for consistency. It does not emit ASM code as it does
not fit the other idtentry exceptions.
- Implement the C entry point with DEFINE_IDTENTRY_SW() which maps to
DEFINE_IDTENTRY()
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134906.128769226@linutronix.de
Convert #XF to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Handle INVD_BUG in C
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134906.021552202@linutronix.de
Convert #AC to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.928967113@linutronix.de
Convert #MF to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.838823510@linutronix.de
Convert #SPURIOUS to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.728077036@linutronix.de
Convert #GP to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.637269946@linutronix.de
Convert #SS to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.539867572@linutronix.de
Convert #NP to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.443591450@linutronix.de
Convert #TS to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.350676449@linutronix.de
Same as IDTENTRY but the C entry point has an error code argument.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.258989060@linutronix.de
Convert #OLD_MF to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.838823510@linutronix.de
Convert #NM to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.056243863@linutronix.de
Convert #UD to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Fixup the FOOF bug call in fault.c
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.955511913@linutronix.de
Convert #BR to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.863001309@linutronix.de
Convert #OF to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.771457898@linutronix.de
Convert #DE to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134904.663914713@linutronix.de
Prepare for using IDTENTRY to define the C exception/trap entry points. It
would be possible to glue this into the existing macro maze, but it's
simpler and better to read at the end to just make them distinct.
Provide a trivial inline helper to read the trap address and add a comment
explaining the logic behind it.
The existing macros will be removed once all instances are converted.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.556327833@linutronix.de
Provide functions which handle the low level entry and exit similar to
enter/exit from user mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134904.457578656@linutronix.de
Provide DECLARE/DEFINE_IDTENTRY() macros.
DEFINE_IDTENTRY() provides a wrapper which acts as the function
definition. The exception handler body is just appended to it with curly
brackets. The entry point is marked noinstr so that irq tracing and the
enter_from_user_mode() can be moved into the C-entry point. As all
C-entries use the same macro (or a later variant) the necessary entry
handling can be implemented at one central place.
DECLARE_IDTENTRY() provides the function prototypes:
- The C entry point cfunc
- The ASM entry point asm_cfunc
- The XEN/PV entry point xen_asm_cfunc
They all follow the same naming convention.
When included from ASM code DECLARE_IDTENTRY() is a macro which emits the
low level entry point in assembly by instantiating idtentry.
IDTENTRY is the simplest variant which just has a pt_regs argument. It's
going to be used for all exceptions which have no error code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.273363275@linutronix.de
32 and 64 bit have unnecessary different ways to populate the exception
entry code. Provide a idtentry macro which allows to consolidate all of
that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.166735365@linutronix.de
For gradual conversion provide a macro parameter and the required code
which allows to handle instrumentation and interrupt flags tracking in C.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134904.058904490@linutronix.de
idtentry is a completely unreadable maze. Split it into distinct idtentry
variants which only contain the minimal code:
- idtentry for regular exceptions
- idtentry_mce_debug for #MCE and #DB
- idtentry_df for #DF
The generated binary code is equivalent.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134903.949227617@linutronix.de
Move them all together so verifying the cleanup patches for binary
equivalence will be easier.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134903.841853522@linutronix.de
So they can be used in ASM code. For this it is also necessary to convert
them to defines. Will be used for the rework of the entry code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134903.731004084@linutronix.de
Traps enable interrupts conditionally but rely on the ASM return code to
disable them again. That results in redundant interrupt disable and trace
calls.
Make the trap handlers disable interrupts before returning to avoid that,
which allows simplification of the ASM entry code in follow up changes.
Originally-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134903.622702796@linutronix.de
When PARAVIRT_XXL is in use, then load_gs_index() uses xen_load_gs_index()
and asm_load_gs_index() is unused.
It's therefore pointless to use the paravirtualized SWAPGS implementation
in asm_load_gs_index(). Switch it to a plain swapgs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Juergen Gross <jgross@suse.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200512213809.583980272@linutronix.de
There is absolutely no point in doing this in ASM code. Move it to C.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134903.531534675@linutronix.de
Replace the notrace and NOKPROBE annotations with noinstr.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134903.439765290@linutronix.de
This is called from deep entry ASM in a situation where instrumentation
will cause more harm than providing useful information.
Switch from memmove() to memcpy() because memmove() can't be called
from noinstr code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134903.346741553@linutronix.de
Currently entry_64_compat is exempt from objtool, but with vmlinux
mode there is no hiding it.
Make the following changes to make it pass:
- change entry_SYSENTER_compat to STT_NOTYPE; it's not a function
and doesn't have function type stack setup.
- mark all STT_NOTYPE symbols with UNWIND_HINT_EMPTY; so we do
validate them and don't treat them as unreachable.
- don't abuse RSP as a temp register, this confuses objtool
mightily as it (rightfully) thinks we're doing unspeakable
things to the stack.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134341.272248024@linutronix.de
Prevent the compiler from uninlining and creating traceable/probable
functions as this is invoked _after_ context tracking switched to
CONTEXT_USER and rcu idle.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134340.902709267@linutronix.de
This is another step towards more C-code and less convoluted ASM.
Similar to the entry path, invoke the tracer before context tracking which
might turn off RCU and invoke lockdep as the last step before going back to
user space. Annotate the code sections in exit_to_user_mode() accordingly
so objtool won't complain about the tracer invocation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134340.703783926@linutronix.de
Now that the C entry points are safe, move the irq flags tracing code into
the entry helper:
- Invoke lockdep before calling into context tracking
- Use the safe trace_hardirqs_on_prepare() trace function after context
tracking established state and RCU is watching.
enter_from_user_mode() is also still invoked from the exception/interrupt
entry code which still contains the ASM irq flags tracing. So this is just
a redundant and harmless invocation of tracing / lockdep until these are
removed as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134340.611961721@linutronix.de
Mark the various syscall entries with noinstr to protect them against
instrumentation and add the noinstrumentation_begin()/end() annotations to mark the
parts of the functions which are safe to call out into instrumentable code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134340.520277507@linutronix.de
Both the callers in the low level ASM code and __context_tracking_exit()
which is invoked from enter_from_user_mode() via user_exit_irqoff() are
marked NOKPROBE. Allowing enter_from_user_mode() to be probed is
inconsistent at best.
Aside of that while function tracing per se is safe the function trace
entry/exit points can be used via BPF as well which is not safe to use
before context tracking has reached CONTEXT_KERNEL and adjusted RCU.
Mark it noinstr which moves it into the instrumentation protected text
section and includes notrace.
Note, this needs further fixups in context tracking to ensure that the
full call chain is protected. Will be addressed in follow up changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134340.429059405@linutronix.de
All ASM code which is not part of the entry functionality can move out into
the .text section. No reason to keep it in the non-instrumentable entry
section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134340.320164650@linutronix.de
All ASM code which is not part of the entry functionality can move out into
the .text section. No reason to keep it in the non-instrumentable entry
section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134340.227579223@linutronix.de
Warnings, bugs and stack protection fails from noinstr sections, e.g. low
level and early entry code, are likely to be fatal.
Mark them as "safe" to be invoked from noinstr protected code to avoid
annotating all usage sites. Getting the information out is important.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134100.376598577@linutronix.de
The sanitizers are not really applicable to the fragile low level entry
code. Entry code needs to carefully setup a normal 'runtime' environment.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134059.970057117@linutronix.de
No users left since two years due to commit 21d375b6b3 ("x86/entry/64:
Remove the SYSCALL64 fast path")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134059.061301403@linutronix.de
GAS cannot optimize out the test and conditional jump when context tracking
is disabled and CALL_enter_from_user_mode is an empty macro.
Wrap it in #ifdeffery. Will go away once all this is moved to C.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134058.955968069@linutronix.de
Use of memmove() in #DF is problematic considered tracing and other
instrumentation.
Remove the memmove() call and simply write out what needs doing; this
even clarifies the code, win-win! The code copies from the espfix64
stack to the normal task stack, there is no possible way for that to
overlap.
Survives selftests/x86, specifically sigreturn_64.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134058.863038566@linutronix.de
A data breakpoint near the top of an IST stack will cause unrecoverable
recursion. A data breakpoint on the GDT, IDT, or TSS is terrifying.
Prevent either of these from happening.
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134058.272448010@linutronix.de
With commit dc20b2d526 ("x86/idt: Move interrupt gate initialization to
IDT code") non assigned system vectors are also marked as used in
'used_vectors' (now 'system_vectors') bitmap. This makes checks in
arch_show_interrupts() whether a particular system vector is allocated to
always pass and e.g. 'Hyper-V reenlightenment interrupts' entry always
shows up in /proc/interrupts.
Another side effect of having all unassigned system vectors marked as used
is that irq_matrix_debug_show() will wrongly count them among 'System'
vectors.
As it is now ensured that alloc_intr_gate() is not called after init, it is
possible to leave unused entries in 'system_vectors' unset to fix these
issues.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200428093824.1451532-4-vkuznets@redhat.com
There seems to be no reason to allocate interrupt gates after init. Mark
alloc_intr_gate() as __init and add WARN_ON() checks making sure it is
only used before idt_setup_apic_and_irq_gates() finalizes IDT setup and
maps all un-allocated entries to spurious entries.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200428093824.1451532-3-vkuznets@redhat.com
As a preparatory change for making alloc_intr_gate() __init split
xen_callback_vector() into callback vector setup via hypercall
(xen_setup_callback_vector()) and interrupt gate allocation
(xen_alloc_callback_vector()).
xen_setup_callback_vector() is being called twice: on init and upon
system resume from xen_hvm_post_suspend(). alloc_intr_gate() only
needs to be called once.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200428093824.1451532-2-vkuznets@redhat.com
machine_check is function address, the address operator on it is nop for
compiler.
Make it consistent with the other function addresses in the same file.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200419144049.1906-3-laijs@linux.alibaba.com
The label .Lcommon_\sym was introduced by 39e9543344.
(x86-64: Reduce amount of redundant code generated for invalidate_interruptNN)
And all the other relevant information was removed by 52aec3308d
(x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200419144049.1906-4-laijs@linux.alibaba.com
Currently instrumentation of atomic primitives is done at the architecture
level, while composites or fallbacks are provided at the generic level.
The result is that there are no uninstrumented variants of the
fallbacks. Since there is now need of such variants to isolate text poke
from any form of instrumentation invert this ordering.
Doing this means moving the instrumentation into the generic code as
well as having (for now) two variants of the fallbacks.
Notes:
- the various *cond_read* primitives are not proper fallbacks
and got moved into linux/atomic.c. No arch_ variants are
generated because the base primitives smp_cond_load*()
are instrumented.
- once all architectures are moved over to arch_atomic_ one of the
fallback variants can be removed and some 2300 lines reclaimed.
- atomic_{read,set}*() are no longer double-instrumented
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/20200505134058.769149955@linutronix.de
Pull misc uaccess updates from Al Viro:
"Assorted uaccess patches for this cycle - the stuff that didn't fit
into thematic series"
* 'uaccess.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
bpf: make bpf_check_uarg_tail_zero() use check_zeroed_user()
x86: kvm_hv_set_msr(): use __put_user() instead of 32bit __clear_user()
user_regset_copyout_zero(): use clear_user()
TEST_ACCESS_OK _never_ had been checked anywhere
x86: switch cp_stat64() to unsafe_put_user()
binfmt_flat: don't use __put_user()
binfmt_elf_fdpic: don't use __... uaccess primitives
binfmt_elf: don't bother with __{put,copy_to}_user()
pselect6() and friends: take handling the combined 6th/7th args into helper