Commit Graph

848 Commits

Author SHA1 Message Date
Linus Torvalds 8f0cb6660a These are the latest RCU bits for v5.9:
- kfree_rcu updates
   - RCU tasks updates
   - Read-side scalability tests
   - SRCU updates
   - Torture-test updates
   - Documentation updates
   - Miscellaneous fixes
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8n80ERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gauA/+NtuExW9V9cPDZ8AAp6x6QfoEIgqN4VEk
 pYuyP0+ZbmwH+h8z7qPqMrwxUHQnhef7gqtlWa7wj9MawbEbmqnA/3uivjX/3Aao
 bGMMXkqXppc6hgwktgLNk8vfq3LRVEH2P0i0I+Tymgxu3DCHSGRep4LWfdAS/q3z
 4pe5JXqdMx+Qnfy/bsVxJTaJAncMq1LQNAtWY1TIwK8L8RmpXrj5dvuLKUr7q+zl
 P+BfXyrdX+x05TpmHHnI/bR3w9yASL32E0S3IaQYRRqH8TsUIGHWe13Ib6hKXXG5
 j7W5KrsOgr0fQBxi+JW2fgGQkrua4o7yk4H2Ygj+Fi5RvP2uqNZdvXFAlP2cUMu/
 7Pg8+7kC6jKIrwpD03s9ZZzm0QN3jsCxFs2PEkkHMzjXbe1CI4tIkTH6ex1uvjR2
 v3OhCIp6ypxpEIJbFQucia0iQ4NF+evKjqCvRkbepqQ096jg+CNFh0VG0Tp8XR+y
 Gk9B9oXvLLPMd6ah5CI9nLJKiMWVRV8mvvqspoblGo//+39ksh4mzxm865tFXYg4
 C+DPJvKlY15Ib5eJ/xr8EZ/oS0K2sUF9sMYnK4P8QMhyTBMbpAZiljHYK+Wujt8I
 g/JCWxrEMv3LHPY9/guB5Nod/Qb4Jqqm9iE9qEX3MQxtt2O2nmmWd91pzFcUXlFU
 RDBWYJ63Okg=
 =rNhf
 -----END PGP SIGNATURE-----

Merge tag 'core-rcu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull RCU updates from Ingo Molnar:

 - kfree_rcu updates

 - RCU tasks updates

 - Read-side scalability tests

 - SRCU updates

 - Torture-test updates

 - Documentation updates

 - Miscellaneous fixes

* tag 'core-rcu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (109 commits)
  torture: Remove obsolete "cd $KVM"
  torture: Avoid duplicate specification of qemu command
  torture: Dump ftrace at shutdown only if requested
  torture: Add kvm-tranform.sh script for qemu-cmd files
  torture: Add more tracing crib notes to kvm.sh
  torture: Improve diagnostic for KCSAN-incapable compilers
  torture: Correctly summarize build-only runs
  torture: Pass --kmake-arg to all make invocations
  rcutorture: Check for unwatched readers
  torture: Abstract out console-log error detection
  torture: Add a stop-run capability
  torture: Create qemu-cmd in --buildonly runs
  rcu/rcutorture: Replace 0 with false
  torture: Add --allcpus argument to the kvm.sh script
  torture: Remove whitespace from identify_qemu_vcpus output
  rcutorture: NULL rcu_torture_current earlier in cleanup code
  rcutorture: Handle non-statistic bang-string error messages
  torture: Set configfile variable to current scenario
  rcutorture: Add races with task-exit processing
  locktorture: Use true and false to assign to bool variables
  ...
2020-08-03 14:31:33 -07:00
Ingo Molnar c1cc4784ce Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull the v5.9 RCU bits from Paul E. McKenney:

 - Documentation updates
 - Miscellaneous fixes
 - kfree_rcu updates
 - RCU tasks updates
 - Read-side scalability tests
 - SRCU updates
 - Torture-test updates

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-07-31 00:15:53 +02:00
Filipe Manana 5e548b3201 btrfs: do not set the full sync flag on the inode during page release
When removing an extent map at try_release_extent_mapping(), called through
the page release callback (btrfs_releasepage()), we always set the full
sync flag on the inode, which forces the next fsync to use a slower code
path.

This hurts performance for workloads that dirty an amount of data that
exceeds or is very close to the system's RAM memory and do frequent fsync
operations (like database servers can for example). In particular if there
are concurrent fsyncs against different files, by falling back to a full
fsync we do a lot more checksum lookups in the checksums btree, as we do
it for all the extents created in the current transaction, instead of only
the new ones since the last fsync. These checksums lookups not only take
some time but, more importantly, they also cause contention on the
checksums btree locks due to the concurrency with checksum insertions in
the btree by ordered extents from other inodes.

We actually don't need to set the full sync flag on the inode, because we
only remove extent maps that are in the list of modified extents if they
were created in a past transaction, in which case an fsync skips them as
it's pointless to log them. So stop setting the full fsync flag on the
inode whenever we remove an extent map.

This patch is part of a patchset that consists of 3 patches, which have
the following subjects:

1/3 btrfs: fix race between page release and a fast fsync
2/3 btrfs: release old extent maps during page release
3/3 btrfs: do not set the full sync flag on the inode during page release

Performance tests were ran against a branch (misc-next) containing the
whole patchset. The test exercises a workload where there are multiple
processes writing to files and fsyncing them (each writing and fsyncing
its own file), and in total the amount of data dirtied ranges from 2x to
4x the system's RAM memory (16GiB), so that the page release callback is
invoked frequently.

The following script, using fio, was used to perform the tests:

  $ cat test-fsync.sh
  #!/bin/bash

  DEV=/dev/sdk
  MNT=/mnt/sdk
  MOUNT_OPTIONS="-o ssd"
  MKFS_OPTIONS="-d single -m single"

  if [ $# -ne 3 ]; then
      echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ"
      exit 1
  fi

  NUM_JOBS=$1
  FILE_SIZE=$2
  FSYNC_FREQ=$3

  cat <<EOF > /tmp/fio-job.ini
  [writers]
  rw=write
  fsync=$FSYNC_FREQ
  fallocate=none
  group_reporting=1
  direct=0
  bs=64k
  ioengine=sync
  size=$FILE_SIZE
  directory=$MNT
  numjobs=$NUM_JOBS
  thread
  EOF

  echo "Using config:"
  echo
  cat /tmp/fio-job.ini
  echo

  mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null
  mount $MOUNT_OPTIONS $DEV $MNT
  fio /tmp/fio-job.ini
  umount $MNT

The tests were performed for different numbers of jobs, file sizes and
fsync frequency. A qemu VM using kvm was used, with 8 cores (the host has
12 cores, with cpu governance set to performance mode on all cores), 16GiB
of ram (the host has 64GiB) and using a NVMe device directly (without an
intermediary filesystem in the host). While running the tests, the host
was not used for anything else, to avoid disturbing the tests.

The obtained results were the following, and the last line printed by
fio is pasted (includes aggregated throughput and test run time).

    *****************************************************
    ****     1 job, 32GiB file, fsync frequency 1     ****
    *****************************************************

Before patchset:

WRITE: bw=29.1MiB/s (30.5MB/s), 29.1MiB/s-29.1MiB/s (30.5MB/s-30.5MB/s), io=32.0GiB (34.4GB), run=1127557-1127557msec

After patchset:

WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=32.0GiB (34.4GB), run=1119042-1119042msec
(+0.7% throughput, -0.8% run time)

    *****************************************************
    ****     2 jobs, 16GiB files, fsync frequency 1   ****
    *****************************************************

Before patchset:

WRITE: bw=33.5MiB/s (35.1MB/s), 33.5MiB/s-33.5MiB/s (35.1MB/s-35.1MB/s), io=32.0GiB (34.4GB), run=979000-979000msec

After patchset:

WRITE: bw=39.9MiB/s (41.8MB/s), 39.9MiB/s-39.9MiB/s (41.8MB/s-41.8MB/s), io=32.0GiB (34.4GB), run=821283-821283msec
(+19.1% throughput, -16.1% runtime)

    *****************************************************
    ****     4 jobs, 8GiB files, fsync frequency 1    ****
    *****************************************************

Before patchset:

WRITE: bw=52.1MiB/s (54.6MB/s), 52.1MiB/s-52.1MiB/s (54.6MB/s-54.6MB/s), io=32.0GiB (34.4GB), run=629130-629130msec

After patchset:

WRITE: bw=71.8MiB/s (75.3MB/s), 71.8MiB/s-71.8MiB/s (75.3MB/s-75.3MB/s), io=32.0GiB (34.4GB), run=456357-456357msec
(+37.8% throughput, -27.5% runtime)

    *****************************************************
    ****     8 jobs, 4GiB files, fsync frequency 1    ****
    *****************************************************

Before patchset:

WRITE: bw=76.1MiB/s (79.8MB/s), 76.1MiB/s-76.1MiB/s (79.8MB/s-79.8MB/s), io=32.0GiB (34.4GB), run=430708-430708msec

After patchset:

WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=245458-245458msec
(+74.7% throughput, -43.0% run time)

    *****************************************************
    ****    16 jobs, 2GiB files, fsync frequency 1    ****
    *****************************************************

Before patchset:

WRITE: bw=74.7MiB/s (78.3MB/s), 74.7MiB/s-74.7MiB/s (78.3MB/s-78.3MB/s), io=32.0GiB (34.4GB), run=438625-438625msec

After patchset:

WRITE: bw=184MiB/s (193MB/s), 184MiB/s-184MiB/s (193MB/s-193MB/s), io=32.0GiB (34.4GB), run=177864-177864msec
(+146.3% throughput, -59.5% run time)

    *****************************************************
    ****    32 jobs, 2GiB files, fsync frequency 1    ****
    *****************************************************

Before patchset:

WRITE: bw=72.6MiB/s (76.1MB/s), 72.6MiB/s-72.6MiB/s (76.1MB/s-76.1MB/s), io=64.0GiB (68.7GB), run=902615-902615msec

After patchset:

WRITE: bw=227MiB/s (238MB/s), 227MiB/s-227MiB/s (238MB/s-238MB/s), io=64.0GiB (68.7GB), run=288936-288936msec
(+212.7% throughput, -68.0% run time)

    *****************************************************
    ****    64 jobs, 1GiB files, fsync frequency 1    ****
    *****************************************************

Before patchset:

WRITE: bw=98.8MiB/s (104MB/s), 98.8MiB/s-98.8MiB/s (104MB/s-104MB/s), io=64.0GiB (68.7GB), run=663126-663126msec

After patchset:

WRITE: bw=294MiB/s (308MB/s), 294MiB/s-294MiB/s (308MB/s-308MB/s), io=64.0GiB (68.7GB), run=222940-222940msec
(+197.6% throughput, -66.4% run time)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:48 +02:00
Filipe Manana fbc2bd7e7a btrfs: release old extent maps during page release
When removing an extent map at try_release_extent_mapping(), called through
the page release callback (btrfs_releasepage()), we never release an extent
map that is in the list of modified extents. This is to prevent races with
a concurrent fsync using the fast path, which could lead to not logging an
extent created in the current transaction.

However we can safely remove an extent map created in a past transaction
that is still in the list of modified extents (because no one fsynced yet
the inode after that transaction got commited), because such extents are
skipped during an fsync as it is pointless to log them. This change does
that.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:48 +02:00
Filipe Manana 3d6448e631 btrfs: fix race between page release and a fast fsync
When releasing an extent map, done through the page release callback, we
can race with an ongoing fast fsync and cause the fsync to miss a new
extent and not log it. The steps for this to happen are the following:

1) A page is dirtied for some inode I;

2) Writeback for that page is triggered by a path other than fsync, for
   example by the system due to memory pressure;

3) When the ordered extent for the extent (a single 4K page) finishes,
   we unpin the corresponding extent map and set its generation to N,
   the current transaction's generation;

4) The btrfs_releasepage() callback is invoked by the system due to
   memory pressure for that no longer dirty page of inode I;

5) At the same time, some task calls fsync on inode I, joins transaction
   N, and at btrfs_log_inode() it sees that the inode does not have the
   full sync flag set, so we proceed with a fast fsync. But before we get
   into btrfs_log_changed_extents() and lock the inode's extent map tree:

6) Through btrfs_releasepage() we end up at try_release_extent_mapping()
   and we remove the extent map for the new 4Kb extent, because it is
   neither pinned anymore nor locked. By calling remove_extent_mapping(),
   we remove the extent map from the list of modified extents, since the
   extent map does not have the logging flag set. We unlock the inode's
   extent map tree;

7) The task doing the fast fsync now enters btrfs_log_changed_extents(),
   locks the inode's extent map tree and iterates its list of modified
   extents, which no longer has the 4Kb extent in it, so it does not log
   the extent;

8) The fsync finishes;

9) Before transaction N is committed, a power failure happens. After
   replaying the log, the 4K extent of inode I will be missing, since
   it was not logged due to the race with try_release_extent_mapping().

So fix this by teaching try_release_extent_mapping() to not remove an
extent map if it's still in the list of modified extents.

Fixes: ff44c6e36d ("Btrfs: do not hold the write_lock on the extent tree while logging")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:47 +02:00
Josef Bacik fbabd4a36f btrfs: return EROFS for BTRFS_FS_STATE_ERROR cases
Eric reported seeing this message while running generic/475

  BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted

Full stack trace:

  BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction)
  BTRFS info (device dm-0): forced readonly
  BTRFS warning (device dm-0): Skipping commit of aborted transaction.
  ------------[ cut here ]------------
  BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure
  BTRFS: Transaction aborted (error -117)
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10
  WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs]
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10
  BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10
  CPU: 3 PID: 23985 Comm: fsstress Tainted: G        W    L    5.8.0-rc4-default+ #1181
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
  RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs]
  RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286
  RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
  RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7
  RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000
  R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70
  FS:  00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0
  Call Trace:
   ? finish_wait+0x90/0x90
   ? __mutex_unlock_slowpath+0x45/0x2a0
   ? lock_acquire+0xa3/0x440
   ? lockref_put_or_lock+0x9/0x30
   ? dput+0x20/0x4a0
   ? dput+0x20/0x4a0
   ? do_raw_spin_unlock+0x4b/0xc0
   ? _raw_spin_unlock+0x1f/0x30
   btrfs_sync_file+0x335/0x490 [btrfs]
   do_fsync+0x38/0x70
   __x64_sys_fsync+0x10/0x20
   do_syscall_64+0x50/0xe0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7f6a6ef1b6e3
  Code: Bad RIP value.
  RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
  RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3
  RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003
  RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c
  R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f
  R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
  irq event stamp: 0
  hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
  softirqs last  enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
  softirqs last disabled at (0): [<0000000000000000>] 0x0
  ---[ end trace af146e0e38433456 ]---
  BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted

This ret came from btrfs_write_marked_extents().  If we get an aborted
transaction via EIO before, we'll see it in btree_write_cache_pages()
and return EUCLEAN, which gets printed as "Filesystem corrupted".

Except we shouldn't be returning EUCLEAN here, we need to be returning
EROFS because EUCLEAN is reserved for actual corruption, not IO errors.

We are inconsistent about our handling of BTRFS_FS_STATE_ERROR
elsewhere, but we want to use EROFS for this particular case.  The
original transaction abort has the real error code for why we ended up
with an aborted transaction, all subsequent actions just need to return
EROFS because they may not have a trans handle and have no idea about
the original cause of the abort.

After patch "btrfs: don't WARN if we abort a transaction with EROFS" the
stacktrace will not be dumped either.

Reported-by: Eric Sandeen <esandeen@redhat.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add full test stacktrace ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:46 +02:00
Nikolay Borisov b69d1ee923 btrfs: remove done label in writepage_delalloc
Since there is not common cleanup run after the label it makes it
somewhat redundant.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:45 +02:00
Nikolay Borisov 3526302f26 btrfs: streamline btrfs_get_io_failure_record logic
Make the function directly return a pointer to a failure record and
adjust callers to handle it. Also refactor the logic inside so that
the case which allocates the failure record for the first time is not
handled in an 'if' arm, saving us a level of indentation. Finally make
the function static as it's not used outside of extent_io.c .

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:39 +02:00
Nikolay Borisov 2279a27053 btrfs: make get_state_failrec return failrec directly
Only failure that get_state_failrec can get is if there is no failure
for the given address. There is no reason why the function should return
a status code and use a separate parameter for returning the actual
failure rec (if one is found). Simplify it by making the return type
a pointer and return ERR_PTR value in case of errors.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:39 +02:00
Nikolay Borisov cd4c0bf942 btrfs: make writepage_delalloc take btrfs_inode
Only find_lock_delalloc_range uses vfs_inode so let's take the
btrfs_inode as a parameter.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:35 +02:00
Nikolay Borisov d4580fe25d btrfs: make __extent_writepage_io take btrfs_inode
It has only a single use for a generic vfs inode vs 3 for btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:34 +02:00
Nikolay Borisov 98456b9c46 btrfs: make btrfs_run_delalloc_range take btrfs_inode
All children now take btrfs_inode so convert it to taking it as a
parameter as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:34 +02:00
David Sterba bab16e21e8 btrfs: don't use UAPI types for fiemap callback
The fiemap callback is not part of UAPI interface and the prototypes
don't have the __u64 types either.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:27 +02:00
Nikolay Borisov ad7ff17b65 btrfs: make extent_clear_unlock_delalloc take btrfs_inode
It has one VFS and 1 btrfs inode usages but converting it to btrfs_inode
interface will allow seamless conversion of its callers.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:26 +02:00
Linus Torvalds 0669704270 for-5.8-rc6-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8auzgACgkQxWXV+ddt
 WDv0CRAAooFO+hloV+br40eEfJwZJJk+iIvc3tyq3TRUrmt1D0G4F7nUtiHjb8JU
 ch2HK+GNZkIK4747OCgcFREpYZV2m0hrKybzf/j4mYb7OXzHmeHTMfGVut1g80e7
 dlpvP7q4VZbBP8BTo/8wqdSAdCUiNhLFy5oYzyUwyflJ5S8FpjY+3dXIRHUnhxPU
 lxMANWhX9y/qQEceGvxqwqJBiYT6WI7dwONiULc1klWDIug/2BGZQR0WuC5PVr0G
 YNuxcEU6rluWzKWJ5k3104t+N1Nc5+xglIgBLeLKAyTVYq8zAMf+P8bBPnQ3QDkV
 zniNIH9ND8tYSjmGkmO0ltExFrE2o9NRnjapOFXfB0WGXee5LfzFfzd5Hk9YV+Ua
 bs98VNGR4B12Iw++DvrbhbFAMxBHiBfAX/O44xJ81uAYVUs21OfefxHWrLzTJK+1
 xYfiyfCDxZDGpC/weg9GOPcIZAzzoSAvqDqWHyWY5cCZdB60RaelGJprdG5fP/gA
 Y+hDIdutVXMHfhaX0ktWsDvhPRXcC7MT0bjasljkN5WUJ/xZZQr6QmgngY+FA8G/
 0n/dv0pYdOTK/8YVZAMO+VklzrDhziqzc2sBrH1k3MA9asa/Ls5v+r2PU+qBKZJm
 cBJGtxxsx72CHbkIhtd5oGj5LNTXFdXeHph37ErzW3ajeamO4X0=
 =51h/
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into master

Pull btrfs fixes from David Sterba:
 "A few resouce leak fixes from recent patches, all are stable material.

  The problems have been observed during testing or have a reproducer"

* tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix mount failure caused by race with umount
  btrfs: fix page leaks after failure to lock page for delalloc
  btrfs: qgroup: fix data leak caused by race between writeback and truncate
  btrfs: fix double free on ulist after backref resolution failure
2020-07-24 14:11:43 -07:00
Robbie Ko 5909ca110b btrfs: fix page leaks after failure to lock page for delalloc
When locking pages for delalloc, we check if it's dirty and mapping still
matches. If it does not match, we need to return -EAGAIN and release all
pages. Only the current page was put though, iterate over all the
remaining pages too.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 22:08:53 +02:00
Linus Torvalds aa27b32b76 for-5.8-rc4-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8EdTkACgkQxWXV+ddt
 WDv6xA/9Hguo/k6oj/7Nl9n3UUZ7gp44R/jy37fhMuNcwuEDuqIEfAgGXupdJVaj
 pYDorUMRUQfI2yLB1iHAnPgBMKBidSroDsdrRHKuimnhABSO2/KX/KXPianIIRGi
 wPvqZR04L565LNpRlDQx7OYkJWey7b6xf47UZqDglivnKY1OwCJlXgfCj/9FApr0
 Y+PVlgEU78ExTeAHs/h8ofZ/f5T2eqiluBSFVykzCg1NngaQVOKpN3gnWEatUAvM
 ekm6U4E1ZR9oOprdhlf6V96ztGzVTRKB1vFIeCvJLqLNIe+0pxlRfRn2aOj8vzEO
 DRjgOlhyAIgypp78SwCspjhvejvVneSFdEGSVvHOw1ombB//OJ1qBb5G/lIcwCj3
 PZ3OnQJV7+/Ty7Xt/X26W841zvnu90K0di0CsOPehtbkgkR4txgHCJB9mSlsMugN
 awN5Ryy1rw1cAM5GspXG9EEOvJmnSizQf4BcK649IG5eUKThYYLc5mp68jiMljs0
 NHFPg5P4yTRjk7Yqgxq5VvTPLLJo5j5xxqtY/1zDWuguRa40wIoy/JUJaJoPg9Vd
 221/qRG4R4xGyZXGx6XTiWK+M3qjTlS9My9tGoWygwlExRkr7Uli9Ikef3U0tBoF
 bjTcfCNOuCp+JECHNcnMZ9fhhFaMwIL1V4OflB1iicBAtXxo8Lk=
 =+4BZ
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - regression fix of a leak in global block reserve accounting

 - fix a (hard to hit) race of readahead vs releasepage that could lead
   to crash

 - convert all remaining uses of comment fall through annotations to the
   pseudo keyword

 - fix crash when mounting a fuzzed image with -o recovery

* tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: reset tree root pointer after error in init_tree_roots
  btrfs: fix reclaim_size counter leak after stealing from global reserve
  btrfs: fix fatal extent_buffer readahead vs releasepage race
  btrfs: convert comments to fallthrough annotations
2020-07-07 14:10:33 -07:00
Boris Burkov 6bf9cd2eed btrfs: fix fatal extent_buffer readahead vs releasepage race
Under somewhat convoluted conditions, it is possible to attempt to
release an extent_buffer that is under io, which triggers a BUG_ON in
btrfs_release_extent_buffer_pages.

This relies on a few different factors. First, extent_buffer reads done
as readahead for searching use WAIT_NONE, so they free the local extent
buffer reference while the io is outstanding. However, they should still
be protected by TREE_REF. However, if the system is doing signficant
reclaim, and simultaneously heavily accessing the extent_buffers, it is
possible for releasepage to race with two concurrent readahead attempts
in a way that leaves TREE_REF unset when the readahead extent buffer is
released.

Essentially, if two tasks race to allocate a new extent_buffer, but the
winner who attempts the first io is rebuffed by a page being locked
(likely by the reclaim itself) then the loser will still go ahead with
issuing the readahead. The loser's call to find_extent_buffer must also
race with the reclaim task reading the extent_buffer's refcount as 1 in
a way that allows the reclaim to re-clear the TREE_REF checked by
find_extent_buffer.

The following represents an example execution demonstrating the race:

            CPU0                                                         CPU1                                           CPU2
reada_for_search                                            reada_for_search
  readahead_tree_block                                        readahead_tree_block
    find_create_tree_block                                      find_create_tree_block
      alloc_extent_buffer                                         alloc_extent_buffer
                                                                  find_extent_buffer // not found
                                                                  allocates eb
                                                                  lock pages
                                                                  associate pages to eb
                                                                  insert eb into radix tree
                                                                  set TREE_REF, refs == 2
                                                                  unlock pages
                                                              read_extent_buffer_pages // WAIT_NONE
                                                                not uptodate (brand new eb)
                                                                                                            lock_page
                                                                if !trylock_page
                                                                  goto unlock_exit // not an error
                                                              free_extent_buffer
                                                                release_extent_buffer
                                                                  atomic_dec_and_test refs to 1
        find_extent_buffer // found
                                                                                                            try_release_extent_buffer
                                                                                                              take refs_lock
                                                                                                              reads refs == 1; no io
          atomic_inc_not_zero refs to 2
          mark_buffer_accessed
            check_buffer_tree_ref
              // not STALE, won't take refs_lock
              refs == 2; TREE_REF set // no action
    read_extent_buffer_pages // WAIT_NONE
                                                                                                              clear TREE_REF
                                                                                                              release_extent_buffer
                                                                                                                atomic_dec_and_test refs to 1
                                                                                                                unlock_page
      still not uptodate (CPU1 read failed on trylock_page)
      locks pages
      set io_pages > 0
      submit io
      return
    free_extent_buffer
      release_extent_buffer
        dec refs to 0
        delete from radix tree
        btrfs_release_extent_buffer_pages
          BUG_ON(io_pages > 0)!!!

We observe this at a very low rate in production and were also able to
reproduce it in a test environment by introducing some spurious delays
and by introducing probabilistic trylock_page failures.

To fix it, we apply check_tree_ref at a point where it could not
possibly be unset by a competing task: after io_pages has been
incremented. All the codepaths that clear TREE_REF check for io, so they
would not be able to clear it after this point until the io is done.

Stack trace, for reference:
[1417839.424739] ------------[ cut here ]------------
[1417839.435328] kernel BUG at fs/btrfs/extent_io.c:4841!
[1417839.447024] invalid opcode: 0000 [#1] SMP
[1417839.502972] RIP: 0010:btrfs_release_extent_buffer_pages+0x20/0x1f0
[1417839.517008] Code: ed e9 ...
[1417839.558895] RSP: 0018:ffffc90020bcf798 EFLAGS: 00010202
[1417839.570816] RAX: 0000000000000002 RBX: ffff888102d6def0 RCX: 0000000000000028
[1417839.586962] RDX: 0000000000000002 RSI: ffff8887f0296482 RDI: ffff888102d6def0
[1417839.603108] RBP: ffff88885664a000 R08: 0000000000000046 R09: 0000000000000238
[1417839.619255] R10: 0000000000000028 R11: ffff88885664af68 R12: 0000000000000000
[1417839.635402] R13: 0000000000000000 R14: ffff88875f573ad0 R15: ffff888797aafd90
[1417839.651549] FS:  00007f5a844fa700(0000) GS:ffff88885f680000(0000) knlGS:0000000000000000
[1417839.669810] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1417839.682887] CR2: 00007f7884541fe0 CR3: 000000049f609002 CR4: 00000000003606e0
[1417839.699037] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1417839.715187] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1417839.731320] Call Trace:
[1417839.737103]  release_extent_buffer+0x39/0x90
[1417839.746913]  read_block_for_search.isra.38+0x2a3/0x370
[1417839.758645]  btrfs_search_slot+0x260/0x9b0
[1417839.768054]  btrfs_lookup_file_extent+0x4a/0x70
[1417839.778427]  btrfs_get_extent+0x15f/0x830
[1417839.787665]  ? submit_extent_page+0xc4/0x1c0
[1417839.797474]  ? __do_readpage+0x299/0x7a0
[1417839.806515]  __do_readpage+0x33b/0x7a0
[1417839.815171]  ? btrfs_releasepage+0x70/0x70
[1417839.824597]  extent_readpages+0x28f/0x400
[1417839.833836]  read_pages+0x6a/0x1c0
[1417839.841729]  ? startup_64+0x2/0x30
[1417839.849624]  __do_page_cache_readahead+0x13c/0x1a0
[1417839.860590]  filemap_fault+0x6c7/0x990
[1417839.869252]  ? xas_load+0x8/0x80
[1417839.876756]  ? xas_find+0x150/0x190
[1417839.884839]  ? filemap_map_pages+0x295/0x3b0
[1417839.894652]  __do_fault+0x32/0x110
[1417839.902540]  __handle_mm_fault+0xacd/0x1000
[1417839.912156]  handle_mm_fault+0xaa/0x1c0
[1417839.921004]  __do_page_fault+0x242/0x4b0
[1417839.930044]  ? page_fault+0x8/0x30
[1417839.937933]  page_fault+0x1e/0x30
[1417839.945631] RIP: 0033:0x33c4bae
[1417839.952927] Code: Bad RIP value.
[1417839.960411] RSP: 002b:00007f5a844f7350 EFLAGS: 00010206
[1417839.972331] RAX: 000000000000006e RBX: 1614b3ff6a50398a RCX: 0000000000000000
[1417839.988477] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000002
[1417840.004626] RBP: 00007f5a844f7420 R08: 000000000000006e R09: 00007f5a94aeccb8
[1417840.020784] R10: 00007f5a844f7350 R11: 0000000000000000 R12: 00007f5a94aecc79
[1417840.036932] R13: 00007f5a94aecc78 R14: 00007f5a94aecc90 R15: 00007f5a94aecc40

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 10:18:33 +02:00
Paul E. McKenney 9f47eb5461 fs/btrfs: Add cond_resched() for try_release_extent_mapping() stalls
Very large I/Os can cause the following RCU CPU stall warning:

RIP: 0010:rb_prev+0x8/0x50
Code: 49 89 c0 49 89 d1 48 89 c2 48 89 f8 e9 e5 fd ff ff 4c 89 48 10 c3 4c =
89 06 c3 4c 89 40 10 c3 0f 1f 00 48 8b 0f 48 39 cf 74 38 <48> 8b 47 10 48 85 c0 74 22 48 8b 50 08 48 85 d2 74 0c 48 89 d0 48
RSP: 0018:ffffc9002212bab0 EFLAGS: 00000287 ORIG_RAX: ffffffffffffff13
RAX: ffff888821f93630 RBX: ffff888821f93630 RCX: ffff888821f937e0
RDX: 0000000000000000 RSI: 0000000000102000 RDI: ffff888821f93630
RBP: 0000000000103000 R08: 000000000006c000 R09: 0000000000000238
R10: 0000000000102fff R11: ffffc9002212bac8 R12: 0000000000000001
R13: ffffffffffffffff R14: 0000000000102000 R15: ffff888821f937e0
 __lookup_extent_mapping+0xa0/0x110
 try_release_extent_mapping+0xdc/0x220
 btrfs_releasepage+0x45/0x70
 shrink_page_list+0xa39/0xb30
 shrink_inactive_list+0x18f/0x3b0
 shrink_lruvec+0x38e/0x6b0
 shrink_node+0x14d/0x690
 do_try_to_free_pages+0xc6/0x3e0
 try_to_free_mem_cgroup_pages+0xe6/0x1e0
 reclaim_high.constprop.73+0x87/0xc0
 mem_cgroup_handle_over_high+0x66/0x150
 exit_to_usermode_loop+0x82/0xd0
 do_syscall_64+0xd4/0x100
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

On a PREEMPT=n kernel, the try_release_extent_mapping() function's
"while" loop might run for a very long time on a large I/O.  This commit
therefore adds a cond_resched() to this loop, providing RCU any needed
quiescent states.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-06-29 11:58:50 -07:00
Linus Torvalds f3cdc8ae11 for-5.8-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
 WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
 ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
 V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
 o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
 ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
 NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
 UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
 ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
 miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
 VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
 eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
 =qTt8
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "Highlights:

   - speedup dead root detection during orphan cleanup, eg. when there
     are many deleted subvolumes waiting to be cleaned, the trees are
     now looked up in radix tree instead of a O(N^2) search

   - snapshot creation with inherited qgroup will mark the qgroup
     inconsistent, requires a rescan

   - send will emit file capabilities after chown, this produces a
     stream that does not need postprocessing to set the capabilities
     again

   - direct io ported to iomap infrastructure, cleaned up and simplified
     code, notably removing last use of struct buffer_head in btrfs code

  Core changes:

   - factor out backreference iteration, to be used by ordinary
     backreferences and relocation code

   - improved global block reserve utilization
      * better logic to serialize requests
      * increased maximum available for unlink
      * improved handling on large pages (64K)

   - direct io cleanups and fixes
      * simplify layering, where cloned bios were unnecessarily created
        for some cases
      * error handling fixes (submit, endio)
      * remove repair worker thread, used to avoid deadlocks during
        repair

   - refactored block group reading code, preparatory work for new type
     of block group storage that should improve mount time on large
     filesystems

  Cleanups:

   - cleaned up (and slightly sped up) set/get helpers for metadata data
     structure members

   - root bit REF_COWS got renamed to SHAREABLE to reflect the that the
     blocks of the tree get shared either among subvolumes or with the
     relocation trees

  Fixes:

   - when subvolume deletion fails due to ENOSPC, the filesystem is not
     turned read-only

   - device scan deals with devices from other filesystems that changed
     ownership due to overwrite (mkfs)

   - fix a race between scrub and block group removal/allocation

   - fix long standing bug of a runaway balance operation, printing the
     same line to the syslog, caused by a stale status bit on a reloc
     tree that prevented progress

   - fix corrupt log due to concurrent fsync of inodes with shared
     extents

   - fix space underflow for NODATACOW and buffered writes when it for
     some reason needs to fallback to COW mode"

* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
  btrfs: fix space_info bytes_may_use underflow during space cache writeout
  btrfs: fix space_info bytes_may_use underflow after nocow buffered write
  btrfs: fix wrong file range cleanup after an error filling dealloc range
  btrfs: remove redundant local variable in read_block_for_search
  btrfs: open code key_search
  btrfs: split btrfs_direct_IO to read and write part
  btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
  fs: remove dio_end_io()
  btrfs: switch to iomap_dio_rw() for dio
  iomap: remove lockdep_assert_held()
  iomap: add a filesystem hook for direct I/O bio submission
  fs: export generic_file_buffered_read()
  btrfs: turn space cache writeout failure messages into debug messages
  btrfs: include error on messages about failure to write space/inode caches
  btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
  btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
  btrfs: make checksum item extension more efficient
  btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
  btrfs: unexport btrfs_compress_set_level()
  btrfs: simplify iget helpers
  ...
2020-06-02 19:59:25 -07:00
Guoqing Jiang d1b89bc042 btrfs: use attach/detach_page_private
Since the new pair function is introduced, we can call them to clean the
code in btrfs.

Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Link: http://lkml.kernel.org/r/20200517214718.468-4-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:07 -07:00
Matthew Wilcox (Oracle) ba206a026f btrfs: convert from readpages to readahead
Implement the new readahead method in btrfs using the new
readahead_page_batch() function.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-18-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:07 -07:00
David Sterba c60ac0ffd6 btrfs: drop unnecessary offset_in_page in extent buffer helpers
Helpers that iterate over extent buffer pages set up several variables,
one of them is finding out offset of the extent buffer start within a
page. Right now we have extent buffers aligned to page sizes so this is
effectively storing zero. This makes the code harder the follow and can
be simplified.

The same change is done in all the helpers:

* remove: size_t start_offset = offset_in_page(eb->start);
* simplify code using start_offset

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:34 +02:00
David Sterba 2b48966a4d btrfs: constify extent_buffer in the API functions
There are many helpers around extent buffers, found in extent_io.h and
ctree.h. Most of them can be converted to take constified eb as there
are no changes to the extent buffer structure itself but rather the
pages.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:34 +02:00
David Sterba db3756c879 btrfs: remove unused map_private_extent_buffer
All uses of map_private_extent_buffer have been replaced by more
effective way. The set/get helpers have their own bounds checker.
The function name was confusing since the non-private helper was removed
in a65917156e ("Btrfs: stop using highmem for extent_buffers") many
years ago.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:33 +02:00
Omar Sandoval 77d5d68931 btrfs: unify buffered and direct I/O read repair
Currently, direct I/O has its own versions of bio_readpage_error() and
btrfs_check_repairable() (dio_read_error() and
btrfs_check_dio_repairable(), respectively). The main difference is that
the direct I/O version doesn't do read validation. The rework of direct
I/O repair makes it possible to do validation, so we can get rid of
btrfs_check_dio_repairable() and combine bio_readpage_error() and
dio_read_error() into a new helper, btrfs_submit_read_repair().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:27 +02:00
Omar Sandoval fd9d6670ed btrfs: simplify direct I/O read repair
Direct I/O read repair was originally implemented in commit 8b110e393c
("Btrfs: implement repair function when direct read fails"). This
implementation is unnecessarily complicated. There is major code
duplication between __btrfs_subio_endio_read() (checks checksums and
handles I/O errors for files with checksums),
__btrfs_correct_data_nocsum() (handles I/O errors for files without
checksums), btrfs_retry_endio() (checks checksums and handles I/O errors
for retries of files with checksums), and btrfs_retry_endio_nocsum()
(handles I/O errors for retries of files without checksum). If it sounds
like these should be one function, that's because they should.
Additionally, these functions are very hard to follow due to their
excessive use of goto.

This commit replaces the original implementation. After the previous
commit getting rid of orig_bio, we can reuse the same endio callback for
repair I/O and the original I/O, we just need to track the file offset
and original iterator in the repair bio. We can also unify the handling
of files with and without checksums and simplify the control flow. We
also no longer have to wait for each repair I/O to complete one by one.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:26 +02:00
Omar Sandoval ce06d3ec2b btrfs: make btrfs_check_repairable() static
Since its introduction in commit 2fe6303e7c ("Btrfs: split
bio_readpage_error into several functions"), btrfs_check_repairable()
has only been used from extent_io.c where it is defined.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:25 +02:00
Omar Sandoval f337bd7478 btrfs: don't do repair validation for checksum errors
The purpose of the validation step is to distinguish between good and
bad sectors in a failed multi-sector read. If a multi-sector read
succeeded but some of those sectors had checksum errors, we don't need
to validate anything; we know the sectors with bad checksums need to be
repaired.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:25 +02:00
Omar Sandoval c7333972b9 btrfs: look at full bi_io_vec for repair decision
Read repair does two things: it finds a good copy of data to return to
the reader, and it corrects the bad copy on disk. If a read of multiple
sectors has an I/O error, repair does an extra "validation" step that
issues a separate read for each sector. This allows us to find the exact
failing sectors and only rewrite those.

This heuristic is implemented in
bio_readpage_error()/btrfs_check_repairable() as:

	failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
	if (failed_bio_pages > 1)
		do validation

However, at this point, bi_iter may have already been advanced. This
means that we'll skip the validation step and rewrite the entire failed
read.

Fix it by getting the actual size from the biovec (which we can do
because this is only called for non-cloned bios, although that will
change in a later commit).

Fixes: 8a2ee44a37 ("btrfs: look at bi_size for repair decisions")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:25 +02:00
Josef Bacik 8c38938c7b btrfs: move the root freeing stuff into btrfs_put_root
There are a few different ways to free roots, either you allocated them
yourself and you just do

free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);

Which is the pattern for log roots.  Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.

Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped.  This
makes the root freeing code much more significant.

The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time.  This will be addressed in the
future when we kill the btree_inode.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:59 +01:00
Josef Bacik 3fd6372758 btrfs: make the extent buffer leak check per fs info
I'm going to make the entire destruction of btrfs_root's controlled by
their refcount, so it will be helpful to notice if we're leaking their
eb's on umount.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:58 +01:00
Qu Wenruo b3ff8f1d38 btrfs: Don't submit any btree write bio if the fs has errors
[BUG]
There is a fuzzed image which could cause KASAN report at unmount time.

  BUG: KASAN: use-after-free in btrfs_queue_work+0x2c1/0x390
  Read of size 8 at addr ffff888067cf6848 by task umount/1922

  CPU: 0 PID: 1922 Comm: umount Tainted: G        W         5.0.21 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
  Call Trace:
   dump_stack+0x5b/0x8b
   print_address_description+0x70/0x280
   kasan_report+0x13a/0x19b
   btrfs_queue_work+0x2c1/0x390
   btrfs_wq_submit_bio+0x1cd/0x240
   btree_submit_bio_hook+0x18c/0x2a0
   submit_one_bio+0x1be/0x320
   flush_write_bio.isra.41+0x2c/0x70
   btree_write_cache_pages+0x3bb/0x7f0
   do_writepages+0x5c/0x130
   __writeback_single_inode+0xa3/0x9a0
   writeback_single_inode+0x23d/0x390
   write_inode_now+0x1b5/0x280
   iput+0x2ef/0x600
   close_ctree+0x341/0x750
   generic_shutdown_super+0x126/0x370
   kill_anon_super+0x31/0x50
   btrfs_kill_super+0x36/0x2b0
   deactivate_locked_super+0x80/0xc0
   deactivate_super+0x13c/0x150
   cleanup_mnt+0x9a/0x130
   task_work_run+0x11a/0x1b0
   exit_to_usermode_loop+0x107/0x130
   do_syscall_64+0x1e5/0x280
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

[CAUSE]
The fuzzed image has a completely screwd up extent tree:

  leaf 29421568 gen 8 total ptrs 6 free space 3587 owner EXTENT_TREE
  refs 2 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 5938
          item 0 key (12587008 168 4096) itemoff 3942 itemsize 53
                  extent refs 1 gen 9 flags 1
                  ref#0: extent data backref root 5 objectid 259 offset 0 count 1
          item 1 key (12591104 168 8192) itemoff 3889 itemsize 53
                  extent refs 1 gen 9 flags 1
                  ref#0: extent data backref root 5 objectid 271 offset 0 count 1
          item 2 key (12599296 168 4096) itemoff 3836 itemsize 53
                  extent refs 1 gen 9 flags 1
                  ref#0: extent data backref root 5 objectid 259 offset 4096 count 1
          item 3 key (29360128 169 0) itemoff 3803 itemsize 33
                  extent refs 1 gen 9 flags 2
                  ref#0: tree block backref root 5
          item 4 key (29368320 169 1) itemoff 3770 itemsize 33
                  extent refs 1 gen 9 flags 2
                  ref#0: tree block backref root 5
          item 5 key (29372416 169 0) itemoff 3737 itemsize 33
                  extent refs 1 gen 9 flags 2
                  ref#0: tree block backref root 5

Note that leaf 29421568 doesn't have its backref in the extent tree.
Thus extent allocator can re-allocate leaf 29421568 for other trees.

In short, the bug is caused by:

- Existing tree block gets allocated to log tree
  This got its generation bumped.

- Log tree balance cleaned dirty bit of offending tree block
  It will not be written back to disk, thus no WRITTEN flag.

- Original owner of the tree block gets COWed
  Since the tree block has higher transid, no WRITTEN flag, it's reused,
  and not traced by transaction::dirty_pages.

- Transaction aborted
  Tree blocks get cleaned according to transaction::dirty_pages. But the
  offending tree block is not recorded at all.

- Filesystem unmount
  All pages are assumed to be are clean, destroying all workqueue, then
  call iput(btree_inode).
  But offending tree block is still dirty, which triggers writeback, and
  causes use-after-free bug.

The detailed sequence looks like this:

- Initial status
  eb: 29421568, header=WRITTEN bflags_dirty=0, page_dirty=0, gen=8,
      not traced by any dirty extent_iot_tree.

- New tree block is allocated
  Since there is no backref for 29421568, it's re-allocated as new tree
  block.
  Keep in mind that tree block 29421568 is still referred by extent
  tree.

- Tree block 29421568 is filled for log tree
  eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9 << (gen bumped)
      traced by btrfs_root::dirty_log_pages

- Some log tree operations
  Since the fs is using node size 4096, the log tree can easily go a
  level higher.

- Log tree needs balance
  Tree block 29421568 gets all its content pushed to right, thus now
  it is empty, and we don't need it.
  btrfs_clean_tree_block() from __push_leaf_right() get called.

  eb: 29421568, header=0 bflags_dirty=0, page_dirty=0, gen=9
      traced by btrfs_root::dirty_log_pages

- Log tree write back
  btree_write_cache_pages() goes through dirty pages ranges, but since
  page of tree block 29421568 gets cleaned already, it's not written
  back to disk. Thus it doesn't have WRITTEN bit set.
  But ranges in dirty_log_pages are cleared.

  eb: 29421568, header=0 bflags_dirty=0, page_dirty=0, gen=9
      not traced by any dirty extent_iot_tree.

- Extent tree update when committing transaction
  Since tree block 29421568 has transid equal to running trans, and has
  no WRITTEN bit, should_cow_block() will use it directly without adding
  it to btrfs_transaction::dirty_pages.

  eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9
      not traced by any dirty extent_iot_tree.

  At this stage, we're doomed. We have a dirty eb not tracked by any
  extent io tree.

- Transaction gets aborted due to corrupted extent tree
  Btrfs cleans up dirty pages according to transaction::dirty_pages and
  btrfs_root::dirty_log_pages.
  But since tree block 29421568 is not tracked by neither of them, it's
  still dirty.

  eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9
      not traced by any dirty extent_iot_tree.

- Filesystem unmount
  Since all cleanup is assumed to be done, all workqueus are destroyed.
  Then iput(btree_inode) is called, expecting no dirty pages.
  But tree 29421568 is still dirty, thus triggering writeback.
  Since all workqueues are already freed, we cause use-after-free.

This shows us that, log tree blocks + bad extent tree can cause wild
dirty pages.

[FIX]
To fix the problem, don't submit any btree write bio if the filesytem
has any error.  This is the last safe net, just in case other cleanup
haven't caught catch it.

Link: https://github.com/bobfuzzer/CVE/tree/master/CVE-2019-19377
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:46 +01:00
Jules Irenge 5ce48d0f0e btrfs: Add missing lock annotation for release_extent_buffer()
Sparse reports a warning at release_extent_buffer()
warning: context imbalance in release_extent_buffer() - unexpected unlock

The root cause is the missing annotation at release_extent_buffer()
Add the missing __releases(&eb->refs_lock) annotation

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:42 +01:00
Filipe Manana 55ffaabe23 Btrfs: avoid unnecessary splits when setting bits on an extent io tree
When attempting to set bits on a range of an exent io tree that already
has those bits set we can end up splitting an extent state record, use
the preallocated extent state record, insert it into the red black tree,
do another search on the red black tree, merge the preallocated extent
state record with the previous extent state record, remove that previous
record from the red black tree and then free it. This is all unnecessary
work that consumes time.

This happens specifically at the following case at __set_extent_bit():

  $ cat -n fs/btrfs/extent_io.c
   957  static int __must_check
   958  __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  (...)
  1044          /*
  1045           *     | ---- desired range ---- |
  1046           * | state |
  1047           *   or
  1048           * | ------------- state -------------- |
  1049           *
  (...)
  1060          if (state->start < start) {
  1061                  if (state->state & exclusive_bits) {
  1062                          *failed_start = start;
  1063                          err = -EEXIST;
  1064                          goto out;
  1065                  }
  1066
  1067                  prealloc = alloc_extent_state_atomic(prealloc);
  1068                  BUG_ON(!prealloc);
  1069                  err = split_state(tree, state, prealloc, start);
  1070                  if (err)
  1071                          extent_io_tree_panic(tree, err);
  1072
  1073                  prealloc = NULL;

So if our extent state represents a range from 0 to 1MiB for example, and
we want to set bits in the range 128KiB to 256KiB for example, and that
extent state record already has all those bits set, we end up splitting
that record, so we end up with extent state records in the tree which
represent the ranges from 0 to 128KiB and from 128KiB to 1MiB. This is
temporary because a subsequent iteration in that function will end up
merging the records.

The splitting requires using the preallocated extent state record, so
a future iteration that needs to do another split will need to allocate
another extent state record in an atomic context, something not ideal
that we try to avoid as much as possible. The splitting also requires
an insertion in the red black tree, and a subsequent merge will require
a deletion from the red black tree and freeing an extent state record.

This change just skips the splitting of an extent state record when it
already has all the bits the we need to set.

Setting a bit that is already set for a range is very common in the
inode's 'file_extent_tree' extent io tree for example, where we keep
setting the EXTENT_DIRTY bit every time we replace an extent.

This change also fixes a bug that happens after the recent patchset from
Josef that avoids having implicit holes after a power failure when not
using the NO_HOLES feature, more specifically the patch with the subject:

  "btrfs: introduce the inode->file_extent_tree"

This patch introduced an extent io tree per inode to keep track of
completed ordered extents and figure out at any time what is the safe
value for the inode's disk_i_size. This assumes that for contiguous
ranges in a file we always end up with a single extent state record in
the io tree, but that is not the case, as there is a short time window
where we can have two extent state records representing contiguous
ranges. When this happens we end setting up an incorrect value for the
inode's disk_i_size, resulting in data loss after a clean unmount
of the filesystem. The following example explains how this can happen.

Suppose we have an inode with an i_size and a disk_i_size of 1MiB, so in
the inode's file_extent_tree we have a single extent state record that
represents the range [0, 1MiB) with the EXTENT_DIRTY bit set. Then the
following steps happen:

1) A buffered write against file range [512KiB, 768KiB) is made. At this
   point delalloc was not flushed yet;

2) Deduplication from some other inode into this inode's range
   [128KiB, 256KiB) is made. This causes btrfs_inode_set_file_extent_range()
   to be called, from btrfs_insert_clone_extent(), to mark the range
   [128KiB, 256KiB) with EXTENT_DIRTY in the inode's file_extent_tree;

3) When btrfs_inode_set_file_extent_range() calls set_extent_bits(), we
   end up at __set_extent_bit(). In the first iteration of that function's
   loop we end up in the following branch:

   $ cat -n fs/btrfs/extent_io.c
    957  static int __must_check
    958  __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
   (...)
   1044          /*
   1045           *     | ---- desired range ---- |
   1046           * | state |
   1047           *   or
   1048           * | ------------- state -------------- |
   1049           *
   (...)
   1060          if (state->start < start) {
   1061                  if (state->state & exclusive_bits) {
   1062                          *failed_start = start;
   1063                          err = -EEXIST;
   1064                          goto out;
   1065                  }
   1066
   1067                  prealloc = alloc_extent_state_atomic(prealloc);
   1068                  BUG_ON(!prealloc);
   1069                  err = split_state(tree, state, prealloc, start);
   1070                  if (err)
   1071                          extent_io_tree_panic(tree, err);
   1072
   1073                  prealloc = NULL;
   (...)
   1089                  goto search_again;

   This splits the state record into two, one for range [0, 128KiB) and
   another for the range [128KiB, 1MiB). Both already have the EXTENT_DIRTY
   bit set. Then we jump to the 'search_again' label, where we unlock the
   the spinlock protecting the extent io tree before jumping to the
   'again' label to perform the next iteration;

4) In the meanwhile, delalloc is flushed, the ordered extent for the range
   [512KiB, 768KiB) is created and when it completes, at
   btrfs_finish_ordered_io(), it calls btrfs_inode_safe_disk_i_size_write()
   with a value of 0 for its 'new_size' argument;

5) Before the deduplication task currently at __set_extent_bit() moves to
   the next iteration, the task finishing the ordered extent calls
   find_first_extent_bit() through btrfs_inode_safe_disk_i_size_write()
   and gets 'start' set to 0 and 'end' set to 128KiB - because at this
   moment the io tree has two extent state records, one representing the
   range [0, 128KiB) and another representing the range [128KiB, 1MiB),
   both with EXTENT_DIRTY set. Then we set 'isize' to:

   isize = min(isize, end + 1)
         = min(1MiB, 128KiB - 1 + 1)
         = 128KiB

   Then we set the inode's disk_i_size to 128KiB (isize).

   After a clean unmount of the filesystem and mounting it again, we have
   the file with a size of 128KiB, and effectively lost all the data it
   had before in the range from 128KiB to 1MiB.

This change fixes that issue too, as we never end up splitting extent
state records when they already have all the bits we want set.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:38 +01:00
David Sterba f657a31c86 btrfs: sink argument tree to __do_readpage
The tree pointer can be safely read from the inode, use it and drop the
redundant argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:35 +01:00
David Sterba b6660e80f1 btrfs: sink arugment tree to contiguous_readpages
The tree pointer can be safely read from the inode, use it and drop the
redundant argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:35 +01:00
David Sterba 0d44fea77e btrfs: sink argument tree to __extent_read_full_page
The tree pointer can be safely read from the inode, use it and drop the
redundant argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:35 +01:00
David Sterba 71ad38b44e btrfs: sink argument tree to extent_read_full_page
The tree pointer can be safely read from the page's inode, use it and
drop the redundant argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:35 +01:00
David Sterba b272ae22ac btrfs: drop argument tree from btrfs_lock_and_flush_ordered_range
The tree pointer can be safely read from the inode so we can drop the
redundant argument from btrfs_lock_and_flush_ordered_range.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:34 +01:00
David Sterba ae6957ebbf btrfs: add assertions for tree == inode->io_tree to extent IO helpers
Add assertions to all helpers that get tree as argument and verify that
it's the same that can be obtained from the inode or from its pages. In
followup patches the redundant arguments and assertions will be removed
one by one.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:34 +01:00
David Sterba 0ceb34bf46 btrfs: drop argument tree from submit_extent_page
Now that we're sure the tree from argument is same as the one we can get
from the page's inode io_tree, drop the redundant argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:34 +01:00
David Sterba 45b08405b9 btrfs: remove extent_page_data::tree
All functions that set up extent_page_data::tree set it to the inode
io_tree. That's passed down the callstack that accesses either the same
inode or its pages. In the end submit_extent_page can pull the tree out
of the page and we don't have to store it in the structure.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:34 +01:00
Josef Bacik 41a2ee75aa btrfs: introduce per-inode file extent tree
In order to keep track of where we have file extents on disk, and thus
where it is safe to adjust the i_size to, we need to have a tree in
place to keep track of the contiguous areas we have file extents for.

Add helpers to use this tree, as it's not required for NO_HOLES file
systems.  We will use this by setting DIRTY for areas we know we have
file extent item's set, and clearing it when we remove file extent items
for truncation.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:24 +01:00
Josef Bacik 5ab5805569 btrfs: drop the -EBUSY case in __extent_writepage_io
Now that we only return 0 or -EAGAIN from btrfs_writepage_cow_fixup, we
do not need this -EBUSY case.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:02:11 +01:00
Nikolay Borisov 5750c37523 btrfs: Correctly handle empty trees in find_first_clear_extent_bit
Raviu reported that running his regular fs_trim segfaulted with the
following backtrace:

[  237.525947] assertion failed: prev, in ../fs/btrfs/extent_io.c:1595
[  237.525984] ------------[ cut here ]------------
[  237.525985] kernel BUG at ../fs/btrfs/ctree.h:3117!
[  237.525992] invalid opcode: 0000 [#1] SMP PTI
[  237.525998] CPU: 4 PID: 4423 Comm: fstrim Tainted: G     U     OE     5.4.14-8-vanilla #1
[  237.526001] Hardware name: ASUSTeK COMPUTER INC.
[  237.526044] RIP: 0010:assfail.constprop.58+0x18/0x1a [btrfs]
[  237.526079] Call Trace:
[  237.526120]  find_first_clear_extent_bit+0x13d/0x150 [btrfs]
[  237.526148]  btrfs_trim_fs+0x211/0x3f0 [btrfs]
[  237.526184]  btrfs_ioctl_fitrim+0x103/0x170 [btrfs]
[  237.526219]  btrfs_ioctl+0x129a/0x2ed0 [btrfs]
[  237.526227]  ? filemap_map_pages+0x190/0x3d0
[  237.526232]  ? do_filp_open+0xaf/0x110
[  237.526238]  ? _copy_to_user+0x22/0x30
[  237.526242]  ? cp_new_stat+0x150/0x180
[  237.526247]  ? do_vfs_ioctl+0xa4/0x640
[  237.526278]  ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[  237.526283]  do_vfs_ioctl+0xa4/0x640
[  237.526288]  ? __do_sys_newfstat+0x3c/0x60
[  237.526292]  ksys_ioctl+0x70/0x80
[  237.526297]  __x64_sys_ioctl+0x16/0x20
[  237.526303]  do_syscall_64+0x5a/0x1c0
[  237.526310]  entry_SYSCALL_64_after_hwframe+0x49/0xbe

That was due to btrfs_fs_device::aloc_tree being empty. Initially I
thought this wasn't possible and as a percaution have put the assert in
find_first_clear_extent_bit. Turns out this is indeed possible and could
happen when a file system with SINGLE data/metadata profile has a 2nd
device added. Until balance is run or a new chunk is allocated on this
device it will be completely empty.

In this case find_first_clear_extent_bit should return the full range
[0, -1ULL] and let the caller handle this i.e for trim the end will be
capped at the size of actual device.

Link: https://lore.kernel.org/linux-btrfs/izW2WNyvy1dEDweBICizKnd2KDwDiDyY2EYQr4YCwk7pkuIpthx-JRn65MPBde00ND6V0_Lh8mW0kZwzDiLDv25pUYWxkskWNJnVP0kgdMA=@protonmail.com/
Fixes: 45bfcfc168 ("btrfs: Implement find_first_clear_extent_bit")
CC: stable@vger.kernel.org # 5.2+
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:01:29 +01:00
Josef Bacik 42ffb0bf58 btrfs: flush write bio if we loop in extent_write_cache_pages
There exists a deadlock with range_cyclic that has existed forever.  If
we loop around with a bio already built we could deadlock with a writer
who has the page locked that we're attempting to write but is waiting on
a page in our bio to be written out.  The task traces are as follows

  PID: 1329874  TASK: ffff889ebcdf3800  CPU: 33  COMMAND: "kworker/u113:5"
   #0 [ffffc900297bb658] __schedule at ffffffff81a4c33f
   #1 [ffffc900297bb6e0] schedule at ffffffff81a4c6e3
   #2 [ffffc900297bb6f8] io_schedule at ffffffff81a4ca42
   #3 [ffffc900297bb708] __lock_page at ffffffff811f145b
   #4 [ffffc900297bb798] __process_pages_contig at ffffffff814bc502
   #5 [ffffc900297bb8c8] lock_delalloc_pages at ffffffff814bc684
   #6 [ffffc900297bb900] find_lock_delalloc_range at ffffffff814be9ff
   #7 [ffffc900297bb9a0] writepage_delalloc at ffffffff814bebd0
   #8 [ffffc900297bba18] __extent_writepage at ffffffff814bfbf2
   #9 [ffffc900297bba98] extent_write_cache_pages at ffffffff814bffbd

  PID: 2167901  TASK: ffff889dc6a59c00  CPU: 14  COMMAND:
  "aio-dio-invalid"
   #0 [ffffc9003b50bb18] __schedule at ffffffff81a4c33f
   #1 [ffffc9003b50bba0] schedule at ffffffff81a4c6e3
   #2 [ffffc9003b50bbb8] io_schedule at ffffffff81a4ca42
   #3 [ffffc9003b50bbc8] wait_on_page_bit at ffffffff811f24d6
   #4 [ffffc9003b50bc60] prepare_pages at ffffffff814b05a7
   #5 [ffffc9003b50bcd8] btrfs_buffered_write at ffffffff814b1359
   #6 [ffffc9003b50bdb0] btrfs_file_write_iter at ffffffff814b5933
   #7 [ffffc9003b50be38] new_sync_write at ffffffff8128f6a8
   #8 [ffffc9003b50bec8] vfs_write at ffffffff81292b9d
   #9 [ffffc9003b50bf00] ksys_pwrite64 at ffffffff81293032

I used drgn to find the respective pages we were stuck on

page_entry.page 0xffffea00fbfc7500 index 8148 bit 15 pid 2167901
page_entry.page 0xffffea00f9bb7400 index 7680 bit 0 pid 1329874

As you can see the kworker is waiting for bit 0 (PG_locked) on index
7680, and aio-dio-invalid is waiting for bit 15 (PG_writeback) on index
8148.  aio-dio-invalid has 7680, and the kworker epd looks like the
following

  crash> struct extent_page_data ffffc900297bbbb0
  struct extent_page_data {
    bio = 0xffff889f747ed830,
    tree = 0xffff889eed6ba448,
    extent_locked = 0,
    sync_io = 0
  }

Probably worth mentioning as well that it waits for writeback of the
page to complete while holding a lock on it (at prepare_pages()).

Using drgn I walked the bio pages looking for page
0xffffea00fbfc7500 which is the one we're waiting for writeback on

  bio = Object(prog, 'struct bio', address=0xffff889f747ed830)
  for i in range(0, bio.bi_vcnt.value_()):
      bv = bio.bi_io_vec[i]
      if bv.bv_page.value_() == 0xffffea00fbfc7500:
	  print("FOUND IT")

which validated what I suspected.

The fix for this is simple, flush the epd before we loop back around to
the beginning of the file during writeout.

Fixes: b293f02e14 ("Btrfs: Add writepages support")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:01:25 +01:00
Josef Bacik 556755a8a9 btrfs: fix improper setting of scanned for range cyclic write cache pages
We noticed that we were having regular CG OOM kills in cases where there
was still enough dirty pages to avoid OOM'ing.  It turned out there's
this corner case in btrfs's handling of range_cyclic where files that
were being redirtied were not getting fully written out because of how
we do range_cyclic writeback.

We unconditionally were setting scanned = 1; the first time we found any
pages in the inode.  This isn't actually what we want, we want it to be
set if we've scanned the entire file.  For range_cyclic we could be
starting in the middle or towards the end of the file, so we could write
one page and then not write any of the other dirty pages in the file
because we set scanned = 1.

Fix this by not setting scanned = 1 if we find pages.  The rules for
setting scanned should be

1) !range_cyclic.  In this case we have a specified range to write out.
2) range_cyclic && index == 0.  In this case we've started at the
   beginning and there is no need to loop around a second time.
3) range_cyclic && we started at index > 0 and we've reached the end of
   the file without satisfying our nr_to_write.

This patch fixes both of our writepages implementations to make sure
these rules hold true.  This fixed our over zealous CG OOMs in
production.

Fixes: d1310b2e0c ("Btrfs: Split the extent_map code into two parts")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:41:02 +01:00
Omar Sandoval c8b04030c5 btrfs: simplify compressed/inline check in __extent_writepage_io()
Commit 7087a9d8db ("btrfs: Remove
extent_io_ops::writepage_end_io_hook") left this logic in a confusing
state. Simplify it.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:55 +01:00
Omar Sandoval 39b07b5d70 btrfs: drop create parameter to btrfs_get_extent()
We only pass this as 1 from __extent_writepage_io(). The parameter
basically means "pretend I didn't pass in a page". This is silly since
we can simply not pass in the page. Get rid of the parameter from
btrfs_get_extent(), and since it's used as a get_extent_t callback,
remove it from get_extent_t and btree_get_extent(), neither of which
need it.

While we're here, let's document btrfs_get_extent().

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:55 +01:00