Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_* helpers from
Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter values,
display domain indices in sysfs, eliminate domain suffix in event names,
from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
other dt bits, and minor fixes/cleanup."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
Y6ptGm0rYAJluPNlziFj
=qkAt
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This was delayed a day or two by some build-breakage on old toolchains
which we've now fixed.
There's two PCI commits both acked by Bjorn.
There's one commit to mm/hugepage.c which is (co)authored by Kirill.
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul
Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_*
helpers from Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/
relaxed variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas
Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs
from Wei Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell
Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev
Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter
values, display domain indices in sysfs, eliminate domain suffix in
event names, from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit
checksum optimizations, 86xx consolidation, e5500/e6500 cpu
hotplug, more fman and other dt bits, and minor fixes/cleanup"
* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
powerpc: Fix unrecoverable SLB miss during restore_math()
powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
powerpc/rcpm: Fix build break when SMP=n
powerpc/book3e-64: Use hardcoded mttmr opcode
powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
powerpc/T104xRDB: add tdm riser card node to device tree
powerpc32: PAGE_EXEC required for inittext
powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
powerpc/86xx: Introduce and use common dtsi
powerpc/86xx: Update device tree
powerpc/86xx: Move dts files to fsl directory
powerpc/86xx: Switch to kconfig fragments approach
powerpc/86xx: Update defconfigs
powerpc/86xx: Consolidate common platform code
powerpc32: Remove one insn in mulhdu
powerpc32: small optimisation in flush_icache_range()
powerpc: Simplify test in __dma_sync()
powerpc32: move xxxxx_dcache_range() functions inline
powerpc32: Remove clear_pages() and define clear_page() inline
...
To read the adapter VPD, drivers can't rely on pci config APIs, as it
wouldn't work on powerVM. cxl introduced a new kernel API especially
for this, so start using it.
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With the current value of cmd_per_lun at 16, the throughput
over a single adapter is limited to around 150kIOPS.
Increase the value of cmd_per_lun to 256 to improve
throughput. With this change a single adapter is able to
attain close to the maximum throughput (380kIOPS).
Also change the number of RRQ entries that can be queued.
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When switching to the internal LUN defined on the
IBM CXL flash adapter, there is an unnecessary
scan occurring on the second port. This scan leads
to the following extra lines in the log:
Dec 17 10:09:00 tul83p1 kernel: [ 3708.561134] cxlflash 0008:00:00.0: cxlflash_queuecommand: (scp=c0000000fc1f0f00) 11/1/0/0 cdb=(A0000000-00000000-10000000-00000000)
Dec 17 10:09:00 tul83p1 kernel: [ 3708.561147] process_cmd_err: cmd failed afu_rc=32 scsi_rc=0 fc_rc=0 afu_extra=0xE, scsi_extra=0x0, fc_extra=0x0
By definition, both of the internal LUNs are on the first port/channel.
When the lun_mode is switched to internal LUN the
same value for host->max_channel is retained. This
causes an unnecessary scan over the second port/channel.
This fix alters the host->max_channel to 0 (1 port), if internal
LUNs are configured and switches it back to 1 (2 ports) while
going back to external LUNs.
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
In order to support cxlflash in the PowerVM environment, underlying
hypervisor APIs have imposed a kernel API ordering change.
For the superpipe access to LUN, user applications need a context.
The cxlflash module creates this context by making a sequence of
cxl calls. In the current code, a context is initialized via
cxl_dev_context_init() followed by cxl_process_element(), a function
that obtains the process element id. Finally, cxl_start_work()
is called to attach the process element.
In the PowerVM environment, a process element id cannot be obtained
from the hypervisor until the process element is attached. The
cxlflash module is unable to create contexts without a valid
process element id.
To fix this problem, cxl_start_work() is called before obtaining
the process element id.
Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The cxlflash_disk_attach() routine currently uses a cascading error
gate strategy for its error cleanup path. While this strategy is
commonly used to handle cleanup scenarios, it is too restrictive when
function callouts need to be restructured. Problems range from
inserting error path bugs in previously 'good' code to the cleanup
path imposing design changes to how the normal path is structured.
A less restrictive approach is needed to support ordering changes
that come about when operating in different environments.
To overcome this restriction, the error cleanup path is modified to
have a single entrypoint and use conditional logic to cleanup where
necessary. Entities that require multiple cleanup steps must be
carefully vetted to ensure their APIs support state. In cases where
they do not (none as of this commit) additional local variables can
be used to maintain state on their behalf.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Presently, context information structures are allocated and
initialized in the same routine, create_context(). This imposes
an ordering restriction such that all pieces of information needed
to initialize a context must be known before the context is even
allocated.
This design point is not flexible when the order of context
creation needs to be modified. Specifically, this can lead to
problems when members of the context information structure are
a part of an ordering dependency (i.e. - the 'work' structure
embedded within the context).
To remedy, the allocation is left as-is, inside of the existing
create_context() routine and the initialization is transitioned
to a new void routine, init_context(). At the same time, in
anticipation of these routines not being called in sequence, a
state boolean is added to the context information structure to
track when the context has been initilized. The context teardown
routine, destroy_context(), is modified to support being called
with a non-initialized context.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When operating in the PowerVM environment, the cxlflash module can
receive an error from the hypervisor indicating that there are
existing mappings in the page table for the process MMIO space.
This issue exists because term_afu() currently invokes term_mc()
before stop_afu(), allowing for the master context to be detached
first and the problem state area to be unmapped second.
To resolve this issue, stop_afu() should be called before term_mc().
Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The calls to pci_request_regions(), pci_resource_start(),
pci_set_dma_mask(), pci_set_master() and pci_save_state() are all
unnecessary for the IBM CXL flash adapter since data buffers
are not required to be mapped to the device's memory.
The use of services such as pci_set_dma_mask() are problematic on
hypervisor managed systems as the IBM CXL flash adapter is operating
under a virtual PCI Host Bridge (virtual PHB) which does not support
these services.
cxlflash 0001:00:00.0: init_pci: Failed to set PCI DMA mask rc=-5
The resolution is to simplify init_pci(), to a point where it does the
bare minimum (pci_enable_device). Similarly, remove the call the
pci_release_regions() from cxlflash_remove().
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This drop enables a future card with a device id of 0x0600 to be
recognized by the cxlflash driver.
As per the design, the Accelerator Function Unit (AFU) for this new IBM
CXL Flash Adapter retains the same host interface as the previous
generation. For the early prototypes of the new card, the driver with
this change behaves exactly as the driver prior to this behaved with the
earlier generation card. Therefore, no card specific programming has
been added. These card specific changes can be staged in later if
needed.
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
If an async error interrupt is generated, and the error requires the FC
link to be reset, it cannot be performed in the interrupt context. So a
work element is scheduled to complete the link reset in a process
context. If either an EEH event or an escalation occurs in between when
the interrupt is generated and the scheduled work is started, the MMIO
space may no longer be available. This will cause an oops in the worker
thread.
[ 606.806583] NIP kthread_data+0x28/0x40
[ 606.806633] LR wq_worker_sleeping+0x30/0x100
[ 606.806694] Call Trace:
[ 606.806721] 0x50 (unreliable)
[ 606.806796] wq_worker_sleeping+0x30/0x100
[ 606.806884] __schedule+0x69c/0x8a0
[ 606.806959] schedule+0x44/0xc0
[ 606.807034] do_exit+0x770/0xb90
[ 606.807109] die+0x300/0x460
[ 606.807185] bad_page_fault+0xd8/0x150
[ 606.807259] handle_page_fault+0x2c/0x30
[ 606.807338] wait_port_offline.constprop.12+0x60/0x130 [cxlflash]
To prevent the problem space area from being unmapped, when there is
pending work, a mapcount (using the kref mechanism) is held. The
mapcount is released only when the work is completed. The last
reference release is tied to the unmapping service.
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
After a few iterations of resetting the card, either during EEH
recovery, or a host_reset the following is seen in the logs. cxlflash
0008:00: cxlflash_queuecommand: could not get a free command
At every reset of the card, the commands that are outstanding are being
leaked. No effort is being made to reap these commands. A few more
resets later, the above error message floods the logs and the card is
rendered totally unusable as no free commands are available.
Iterated through the 'cmd' queue and printed out the 'free' counter and
found that on each reset certain commands were in-use and stayed in-use
through subsequent resets.
To resolve this issue, when the card is reset, reap all the commands
that are active/outstanding.
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Having a date for the driver requires it to be updated quite
often. Removing the date which is not necessary. Also made
use of the existing symbol to print the driver name.
Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Applications which use virtual LUN's that are backed by a physical LUN
over both adapter ports may experience an I/O failure in the event of a
link loss (e.g. cable pull).
Virtual LUNs may be accessed through one or both ports of the adapter.
This access is encoded in the translation entries that comprise the
virtual LUN and used by the AFU for load-balancing I/O and handling
failover scenarios. In a link loss scenario, even though the AFU is able
to maintain connectivity to the LUN, it is up to the application to
retry the failed I/O. When applications are unaware of the virtual LUN's
underlying topology, they are unable to make a sound decision of when to
retry an I/O and therefore are forced to make their reaction to a failed
I/O absolute. The result is either a failure to retry I/O or increased
latency for scenarios where a retry is pointless.
To remedy this scenario, provide feedback back to the application on
virtual LUN creation as to which ports the LUN may be accessed. LUN's
spanning both ports are candidates for a retry in a presence of an I/O
failure.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The original fix to escalate a 'login timed out' error to a LINK_RESET
was only made for one of the two ports on the card. This fix resolves
the same issue for the second port (port 1).
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
IS_ERR_OR_NULL already contain an unlikely compiler flag. Drop it.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The "> MAX_CONTEXT" should be ">= MAX_CONTEXT". Otherwise we go one
step beyond the end of the cfg->ctx_tbl[] array.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Contexts may be skipped over for cleanup in situations where contention
for the adapter's table-list mutex is experienced in the presence of a
signal during the execution of the release handler.
This can lead to two known issues:
- A hang condition on remove as that path tries to wait for users to
cleanup - something that will never complete should this scenario play
out as the user has already cleaned up from their perspective.
- An Oops in the unmap_mapping_range() call that is made as part of
the user waiting mechanism that is invoked on remove when contexts
are found to still exist.
The root cause of this issue can be found in get_context() and how the
table-list mutex is acquired. As this code path is shared by several
different access points within the driver, a decision was made during
the development cycle to acquire this mutex in this location using the
interruptible version of the mutex locking service. In almost all of
the use-cases and environmental scenarios this holds up, even when the
mutex is contended. However, for critical system threads (such as the
release handler), failing to acquire the mutex and bailing with the
intention of the user being able to try again later is unacceptable.
In such a scenario, the context _must_ be derived as it is on an
irreversible path to being freed. Without being able to derive the
context, the code mistakenly assumes that it has already been freed
and proceeds to free up the underlying CXL context resources. From
this point on, any usage of [the now stale] CXL context resources
will result in undefined behavior. This is root cause of the Oops
mentioned as the second known issue as the mapping passed to the
unmap_mapping_range() service is owned by the CXL context.
To fix this problem, acquisition of the table-list mutex within
get_context() is simply changed to use the uninterruptible version
of the mutex locking service. This is safe as the timing windows for
holding this mutex are short and also protected against blocking.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
When running with lock instrumentation (e.g. lockdep), some of the
instrumentation can become disabled at probe time for a cxlflash
adapter. This is due to a missing lock registration for the tmf_slock.
The fix is to call spin_lock_init() for the tmf_slock during probe.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The port selection mask of a LUN can be corrupted when the manage LUN
ioctl (DK_CXLFLASH_MANAGE_LUN) is issued more than once for any device.
This mask indicates to the AFU which port[s] can be used for a data
transfer to/from a particular LUN. The mask is critical to ensuring the
correct behavior when using the virtual LUN function of this adapter.
When the mask is configured for both ports, an I/O may be sent to either
port as the AFU assumes that each port has access to the same physical
device (specified by LUN ID in the port LUN table).
In a situation where the mask becomes incorrectly configured to reflect
access to both ports when in fact there is only access through a single
port, an I/O can be targeted to the wrong physical device. This can lead
to data corruption among other ill effects (e.g. security leaks).
The cause for this corruption is the assumption that the ioctl will only
be called a second time for a LUN when it is being configured for access
via a second port. A boolean 'newly_created' variable is used to
differentiate between a LUN that was created (and subsequently configured
for single port access) and one that is destined for access across both
ports. While initially set to 'true', this sticky boolean is toggled to
the 'false' state during a lookup on any next ioctl performed on a device
with a matching WWN/WWID. The code fails to realize that the match could
in fact be the same device calling in again. From here, an assumption is
made that any LUN with 'newly_created' set to 'false' is configured for
access over both ports and the port selection mask is set to reflect this.
Any future attempts to use this LUN for hosting a virtual LUN will result
in the port LUN table being incorrectly programmed.
As a remedy, the 'newly_created' concept was removed entirely and replaced
with code that always constructs the port selection mask based upon the
SCSI channel of the LUN being accessed. The bits remain sticky, therefore
allowing for a device to be accessed over both ports when that is in fact
the correct physical configuration.
Also included in this commit are a few minor related changes to enhance
the fix and provide better debug information for port selection mask and
port LUN table bugs in the future. These include renaming refresh_local()
to lookup_local(), tracing the WWN/WWID as a big-endian entity, and
tracing the port selection mask, SCSI channel, and LUN ID each time the
port LUN table is programmed.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
A 'login timed out' asynchronous error interrupt is generated if no
response is seen to a FLOGI within 2 seconds. If the time out error
is not escalated to a LINK_RESET the port will not be available for
use. This fix provides the required escalation.
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
When running with an unsupported AFU, the cxlflash driver fails
the probe. When the driver is removed, the following Oops is
encountered on a show_interrupts() thread:
Call Trace:
[c000001fba5a7a10] [0000000000000003] 0x3 (unreliable)
[c000001fba5a7a60] [c00000000053dcf4] vsnprintf+0x204/0x4c0
[c000001fba5a7ae0] [c00000000030045c] seq_vprintf+0x5c/0xd0
[c000001fba5a7b20] [c00000000030051c] seq_printf+0x4c/0x60
[c000001fba5a7b50] [c00000000013e140] show_interrupts+0x370/0x4f0
[c000001fba5a7c10] [c0000000002ff898] seq_read+0xe8/0x530
[c000001fba5a7ca0] [c00000000035d5c0] proc_reg_read+0xb0/0x110
[c000001fba5a7cf0] [c0000000002ca74c] __vfs_read+0x6c/0x180
[c000001fba5a7d90] [c0000000002cb464] vfs_read+0xa4/0x1c0
[c000001fba5a7de0] [c0000000002cc51c] SyS_read+0x6c/0x110
[c000001fba5a7e30] [c000000000009204] system_call+0x38/0xb4
The Oops is due to not cleaning up correctly on the unsupported
AFU error path, leaving various allocated and registered resources.
In this case, interrupts are in a semi-allocated/registered state,
which the show_interrupts() thread attempts to use.
To fix, the cleanup logic in init_afu() is consolidated to error
gates at the bottom of the function and the appropriate goto is
added to each error path. As a mini side fix while refactoring
in this routine, the else statement following the AFU version
evaluation is eliminated as it is not needed.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Ioctl threads that use scsi_execute() can run for an excessive amount
of time due to the fact that they have lengthy timeouts and retry logic
built in. Under normal operation this is not an issue. However, once EEH
enters the picture, a long execution time coupled with the possibility
that a timeout can trigger entry to the driver via registered reset
callbacks becomes a liability.
In particular, a deadlock can occur when an EEH event is encountered
while in running in scsi_execute(). As part of the recovery, the EEH
handler drains all currently running ioctls, waiting until they have
completed before proceeding with a reset. As the scsi_execute()'s are
situated on the ioctl path, the EEH handler will wait until they (and
the remainder of the ioctl handler they're associated with) have
completed. Normally this would not be much of an issue aside from the
longer recovery period. Unfortunately, the scsi_execute() triggers a
reset when it times out. The reset handler will see that the device is
already being reset and wait until that reset completed. This creates
a condition where the EEH handler becomes stuck, infinitely waiting for
the ioctl thread to complete.
To avoid this behavior, temporarily unmark the scsi_execute() threads
as an ioctl thread by releasing the ioctl read semaphore. This allows
the EEH handler to proceed with a recovery while the thread is still
running. Once the scsi_execute() returns, the ioctl read semaphore is
reacquired and the adapter state is rechecked in case it changed while
inside of scsi_execute(). The state check will wait if the adapter is
still being recovered or returns a failure if the recovery failed. In
the event that the adapter reset failed, the failure is simply returned
as the ioctl would be unable to continue.
Reported-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The trace following the failure of alloc_mem() incorrectly identifies
which function failed. This can lead to misdiagnosing a failure.
Fix the string to correctly indicate that alloc_mem() failed.
Reported-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The fops owned by the adapter can be corrupted in certain scenarios,
opening a window where certain fops are temporarily NULLed before being
reset to their proper value. This can potentially lead software to make
incorrect decisions, leaving the user with the inability to function as
intended.
An example of this behavior can be observed when there are a number of
users with a high rate of turn around (attach to LUN, perform an I/O,
detach from LUN, repeat). Every so often a user is given a valid
context and adapter file descriptor, but the file associated with the
descriptor lacks the correct read permission bit (FMODE_CAN_READ) and
thus the read system call bails before calling the valid read fop.
Background:
The fops is stored in the adapter structure to provide the ability to
lookup the adapter structure from within the fop handler. CXL services
use the file's private_data and at present, the CXL context does not
have a private section. In an effort to limit areas of the cxlflash
driver with code specific the superpipe function, a design choice was
made to keep the details of the fops situated away from the legacy
portions of the driver. This drove the behavior that the adapter fops
is set at the beginning of the disk attach ioctl handler when there
are no users present.
The corruption that this fix remedies is due to the fact that the fops
is initially defaulted to values found within a static structure. When
the fops is handed down to the CXL services later in the attach path,
certain services are patched. The fops structure remains correct until
the user count drops to 0 and the fops is reset, triggering the process
to repeat again. The user counts are tightly coupled with the creation
and deletion of the user context. If multiple users perform a disk
attach at the same time, when the user count is currently 0, some users
can be in the middle of obtaining a file descriptor and have not yet
reached the context creation code that [in addition to creating the
context] increments the user count. Subsequent users coming in to
perform the attach see that the user count is still 0, and reinitialize
the fops, temporarily removing the patched fops. The users that are in
the middle obtaining their file descriptor may then receive an invalid
descriptor.
The fix simply removes the user count altogether and moves the fops
initialization to probe time such that it is only performed one time
for the life of the adapter. In the future, if the CXL services adopt
a private member for their context, that could be used to store the
adapter structure reference and cxlflash could revert to a model that
does not require an embedded fops.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The operator used to double the master context response delay
is incorrect and does not result in delay doubling.
To fix, use a left shift instead of the XOR operator.
Reported-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Following an adapter reset, the AFU RRQ that resides in host memory
holds stale data. This can lead to a condition where the RRQ interrupt
handler tries to process stale entries and/or endlessly loops due to an
out of sync generation bit.
To fix, the AFU RRQ in host memory needs to be cleared after each reset.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
There are several spelling and grammar mistakes throughout the
driver. Additionally there are a handful of places where there
are extra lines and unnecessary variables/statements. These are
a nuisance and pollute the driver.
Fix spelling and grammar issues. Update some comments for clarity and
consistency. Remove extra lines and a few unneeded variables/statements.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The process_sense() routine can perform a read capacity which
can take some time to complete. If an EEH occurs while waiting
on the read capacity, the EEH handler will wait to obtain the
context's mutex in order to put the context in an error state.
The EEH handler will sit and wait until the context is free,
but this wait can potentially last forever (deadlock) if the
scsi_execute() that performs the read capacity experiences a
timeout and calls into the reset callback. When that occurs,
the reset callback sees that the device is already being reset
and waits for the reset to complete. This leaves two threads
waiting on the other.
To address this issue, make the context unavailable to new,
non-system owned threads and release the context while calling
into process_sense(). After returning from process_sense() the
context mutex is reacquired and the context is made available
again. The context can be safely moved to the error state if
needed during the unavailable window as no other threads will
hold its reference.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Sparse uncovered several errors with MMIO operations (accessing
directly) and handling endianness. These can cause issues when
running in different environments.
Introduce __iomem and proper endianness tags/swaps where
appropriate to make driver sparse clean.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Several function prologs have incorrect parameter names and return
code descriptions. This can lead to confusion when reviewing the
source and creates inaccurate documentation.
To remedy, update the function prologs to properly reflect parameter
names and return codes.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The host reset handler is called with I/O already blocked, thus
there is no need to explicitly block and unblock I/O in the handler.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
When the device reset handler is entered while a reset operation
is taking place, the handler exits without actually sending a
reset (TMF) to the targeted device. This behavior is incorrect
as the device is not reset. Further complicating matters is the
fact that a success is returned even when the TMF was not sent.
To fix, the state is rechecked after coming out of the reset
state. When the state is normal, a TMF will be sent out.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The workq can process work in parallel with a remove event, leading
to a condition where the workq handler can access freed memory.
To remedy, the workq should be terminated prior to freeing memory. Move
the termination call earlier in remove and use cancel_work_sync() instead
of flush_work() as there is not a need to process any scheduled work when
shutting down.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Currently, scsi_host_put() is being called prematurely in the
remove path and is missing entirely in an error cleanup path.
The former can lead to memory being freed too early with
subsequent access potentially corrupting data whilst the former
would result in a memory leak.
Move the usage on remove to be the last cleanup action taken
and introduce a call to scsi_host_put() in the one initialization
error path that does not use remove to cleanup.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The AFU version is stored as a non-terminated string of bytes within
a 64-bit little-endian register. Presently the value is read directly
(no MMIO accessor) and is stored in a buffer that is not big enough
to contain a NULL terminator. Additionally the version obtained is not
evaluated against a known value to prevent usage with unsupported AFUs.
All of these deficiencies can lead to a variety of problems.
To remedy, use the correct MMIO accessor to read the version value into
a null-terminated buffer and add a check to prevent an incompatible AFU
from being used with this driver.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
At present, both ports must be online for the device to
configure properly. Remove this dependency and the unnecessary
internal LUN override logic as well. Additionally, as a refactoring
measure, change the return code variable name to match that used
throughout the driver.
With this change, the card will be able to configure even when the
link is down. At some later point when the link is transitioned to
'up', a link state change interrupt will trigger the port configuration.
Note that despite its void-like behavior, the function was left with a
return code for right now in case its behavior needs to be altered again
in the near future based on testing.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
A bug was introduced earlier in the development cycle when cleaning
up logic statements. Instead of skipping bits that are not set, set
bits are skipped, causing async interrupts to not be handled correctly.
To fix, simply add back in the proper evaluation for an unset bit.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Following a link up event, the LUNs available to the host may
have changed. Without rescanning the host, the LUN topology is
unknown to the user. In such a state, the user would be unable
to locate provisioned resources.
To remedy, the host should be rescanned after a link up event.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The resid is incorrectly set which can lead to unnecessary retry
attempts by the stack. This is due to resid _always_ being set
using a value returned from the adapter. Instead, the value
should only be interpreted and set when in an underrun scenario.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Borrowing the TMF waitq's spinlock causes a stall condition when
waiting for the TMF to complete. To remedy, introduce our own spin
lock to serialize TMF and use the appropriate wait services.
Also add a timeout while waiting for a TMF completion. When a TMF
times out, report back a failure such that a bigger hammer reset
can occur.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
During run-time the driver can be very chatty and spam the system
kernel log. Various print statements can be limited and/or moved
to development-only mode. Additionally, numerous prints can be
converted to trace the corresponding device. Lastly, one spelling
correction was made: 'entra' to 'extra'.
The following changes were made:
- pr_debug to pr_devel
- pr_debug to pr_debug_ratelimited
- pr_err to dev_err
- pr_debug to dev_dbg
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Implement the following suggestions and add two new attributes
to allow for debugging the port LUN table.
- use scnprintf() instead of snprintf()
- use DEVICE_ATTR_RO and DEVICE_ATTR_RW
Suggested-by: Shane Seymour <shane.seymour@hp.com>
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Found during code inspection, that the following functions are not
being used outside of the file where they are defined. Make them static.
int cxlflash_send_cmd(struct afu *, struct afu_cmd *);
void cxlflash_wait_resp(struct afu *, struct afu_cmd *);
int cxlflash_afu_reset(struct cxlflash_cfg *);
struct afu_cmd *cxlflash_cmd_checkout(struct afu *);
void cxlflash_cmd_checkin(struct afu_cmd *);
void init_pcr(struct cxlflash_cfg *);
int init_global(struct cxlflash_cfg *);
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Limbo is not an accurate representation of this state and is
also not consistent with the terminology that other drivers
use to represent this concept. Rename the state and and its
associated waitq to 'reset'.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
During an EEH freeze event, certain CXL services should not be
called until after the hardware reset has taken place. Doing so
can result in unnecessary failures and possibly cause other ill
effects by triggering hardware accesses. This translates to a
requirement to quiesce all threads that may potentially use CXL
runtime service during this window. In particular, multiple ioctls
make use of the CXL services when acting on contexts on behalf of
the user. Thus, it is essential to 'drain' running ioctls _before_
proceeding with handling the EEH freeze event.
Create the ability to drain ioctls by wrapping the ioctl handler
call in a read semaphore and then implementing a small routine that
obtains the write semaphore, effectively creating a wait point for
all currently executing ioctls.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
The context encode mask covers more than 32-bits, making it
a long integer. This should be noted by appending the ULL
width suffix to the mask.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
Using sizeof(bool) is considered poor form for various reasons and
sparse warns us of that. Correct by changing type from bool to u8.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
If the same virtual LUN is accessed over multiple cards, only accesses
made over the first card will be valid. Accesses made over the second
card will go to the wrong LUN causing data corruption.
This is because the global LUN's mode word was being used to determine
whether the LUN table for that card needs to be programmed. The mode
word would be setup by the first card, causing the LUN table for the
second card to not be programmed.
By unconditionally initializing the LUN table (not depending on the
mode word), the problem is avoided.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
When a LUN is removed, the sdev that is associated with the LUN
remains intact until its reference count drops to 0. In order
to prevent an sdev from being removed while a context is still
associated with it, obtain an additional reference per-context
for each LUN attached to the context.
This resolves a potential Oops in the release handler when a
dealing with a LUN that has already been removed.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Reviewed-by: Brian King <brking@linux.vnet.ibm.com>
Reviewed-by: Tomas Henzl <thenzl@redhat.com>
Signed-off-by: James Bottomley <JBottomley@Odin.com>